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  Clinical usage of several classes of antibiotics is associated with moderate to severe side effects due to the pro-
motion of mitochondrial dysfunction. We contend that this may be due to perturbation of unique evolutionary 
relationships that link selective biochemical and molecular aspects of mitochondrial biology to conserved en-
zymatic processes derived from bacterial progenitors. Operationally, stereo-selective conformational matching 
between mitochondrial respiratory complexes, cytosolic and nuclear signaling complexes appears to support 
the conservation of a critically important set of chemical messengers required for existential regulation of ho-
meostatic cellular processes. Accordingly, perturbation of normative mitochondrial function by select classes of 
antibiotics is certainly reflective of the high degree of evolutionary pressure designed to maintain ongoing bi-
directional signaling processes between cellular compartments. These issues are of critical importance in eval-
uating potentially severe side effects of antibiotics on complex behavioral functions mediated by CNS neuro-
nal groups. The CNS is extremely dependent on delivery of molecular oxygen for maintaining a required level 
of metabolic activity, as reflected by the high concentration of neuronal mitochondria. Thus, it is not surprising 
to find several distinct behavioral abnormalities conforming to established psychiatric criteria that are associ-
ated with antibiotic usage in humans. The manifestation of acute and/or chronic psychiatric conditions follow-
ing antibiotic usage may provide unique insights into key etiological factors of major psychiatric syndromes 
that involve rundown of cellular bioenergetics via mitochondrial dysfunction. Thus, a potential window of op-
portunity exists for development of novel therapeutic agents targeting diminished mitochondrial function as 
a factor in severe behavioral disorders.
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Background

Antibiotics represent an arsenal of chemical agents to fight 
against bacterial infections. The success of this therapy is ev-
ident between 1940–1970, where twenty novel classes of an-
tibiotics were discovered [1]. These antibiotics vary, concern-
ing their structure and mechanism of action. Today, many of 
these drugs are not so effective because bacteria develop re-
sistance, revealing a major challenge for our society [2]. They 
have at least four ways of rendering these drugs ineffective. 
The first is through modification, e.g., Beta-lactamase. Over 
190 bacterial proteins, including enzymes, like these exist [3]. 
These proteins cleave the antibiotic, so it cannot reach and in-
teract with its target site. The second method involves changing 
the structure of the targeted site. This is seen in Streptococcus 
pneumonia [4] and is possible because the bacteria obtains 
DNA from other bacteria via recombinational events [5]. The 
third way resistance to antibiotics occurs is by targeting new 
sites, e.g., methicillin-resistant Staphylococcus aureus (MRSA). 
Instead of just relying on the original penicillin binding proteins 
to maintain bacterial membrane integrity, this strain of bacte-
ria obtained DNA from an unknown bacterial donor. It has a 
new gene called mecA which codes for an alternative protein, 
called penicillin-binding protein 2a (PBP2a) [6,7]. Beta-lactam 
antibiotics are not capable of targeting these alternative pro-
teins and thus, MRSA infections can be lethal. The last meth-
od involves a decreased uptake of the antibiotic, and if it does 
get into the cell, it is pumped out at a faster rate. These types 
of resistance are now prevailing in many species and strains 
of bacteria, in part, because of our propensity to use these 
agents too frequently [8]. In time, bacteria with these resistant 
processes will emerge as the predominant form of the bacte-
ria and will be difficult to kill. As we respond to these bacte-
rial survival mechanisms we also inadvertently create drugs, 
which have the potential to influence other processes, e.g., hu-
man behavior. This occurs because our drug discovery process 
fine tunes itself as resistance develops and we simultaneously 
develop stereo specific overlaps with naturally occurring bio-
chemicals, altering their actions downstream.

Discussion

In addition to the above concerns in antibiotic development, 
many of the agents exhibit toxic effects on the host [9,10]. In 
part, we surmise, this is due to unique evolutionary relation-
ships that link selective biochemical and molecular aspects 
of mitochondrial biology to primordial processes in bacterial 
progenitors [11,12]. The mitochondrion is an enslaved bacteri-
um, normally producing significant amounts of ATP in compar-
ison to glycolysis [13]. The mitochondrial rRNA in healthy cells 
is of critical importance in drug development. It has a similar 
structure and function to that found in bacteria, and it has a 

higher level of mutations compared to the nuclear rRNA. This 
creates the scenarios where the mitochondria become prone 
to dysfunction [14–16]. Antibiotics that are supposed to tar-
get pathogens will also bind to mitochondria with high affini-
ty and cause side effects [17]. An example of this is seen with 
minocycline. It inhibits ATP synthesis and calcium retention in 
the mitochondria of brain cells [18]. The commonality of these 
antibiotic-induced side-effects lead physicians to create a term 
for this phenomenon called antimicrobial-induced mania, or 
antibiomania, since it can occur in neural tissues due to high-
er metabolic rates [19–21].

We and others propose that mitochondria dysfunction may be 
part of the core problem for abnormal behaviors induced by 
antibiotic treatment, e.g., depression, autism, etc. [16,22–27]. 
Dysfunctional mitochondria have recently become a center of 
interest in explaining mental disorders [28–33]. Ciprofloxacin 
induces a small percent of treated patients to develop psycho-
sis [34–36]. In this regard, gamma-aminobutyric acid (GABA) 
receptor binding is inhibited by ciprofloxacin. Importantly, the 
18 kDa translocator protein (TSPO) localized to the outer mito-
chondrial membrane, previously designated as the peripheral-
type benzodiazepine receptor, has been found to be temporally 
enhanced in the striatum and substantial nigra pars compacta 
in a neuro-inflammatory rat model of Parkinson’s Disease [37] 
or diffuse nerve injury [38]. Interestingly, a reversal of repeat-
ed social stress-induced anxiety-like behavioral outcomes in ro-
dents has been linked to the off-target peripheral effects of the 
widely used benzodiazepine lorazepam on TSPO activation [39]. 
More precisely, in vivo positron emission tomography (PET) 
scanning using the TSPO-specific ligand [11C]DPA713 has dem-
onstrated enhanced signal in select brain areas due to in vivo 
microglial activation as a result of aging and neuronal degener-
ation [40,41]. Once ciprofloxacin treatment stops, the behavior 
returns to normal. Interestingly, a subtype A of GABA receptor 
(GABAA) is regulated by the level of mitochondrial reactive ox-
ygen species(mROS) at inhibitory synapses of cerebellar stel-
late cells [42]. Behavioral changes are not limited just to cipro-
floxacin, but also occurs with exposure to metronidazole [43], 
ofloxacin [44], trimethoprim-sulfamethoxazole [45], cotrimox-
azole [46], procaine penicillin[47] and clarithromycin [48,49].

Additional examples of mitochondrial dysfunction, which are 
antibiotic-induced, are extensive and not limited to psychi-
atric behavior. Aminoglycosides have been used for decades, 
and they are still considered to be effective for treating bac-
terial infections [50]. However, there is a high risk of damage 
to sensory cells inside the inner ear when exposed to this an-
tibiotic due to reactive oxygen species (ROS) being released 
from the mitochondria [15,51–55]. Another experiment dem-
onstrated that binding of aminoglycosides to the human mi-
tochondrial H69 hairpin is the most likely factor in causing 
the side effect [56]. Moreover, tetracycline [57] also works by 

102
Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System]  
[ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica]  
[Chemical Abstracts/CAS] [Index Copernicus]

Stefano G.B. et al: 
Antibiotic-induced mitochondrial dysfunction

© Med Sci Monit, 2017; 23: 101-106
HYPOTHESIS

This work is licensed under Creative Common Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)



manipulating gene expression via the Tet-on/Tet-off system. In 
addition to gene manipulation, it will also induce unnecessary 
stress upon the mitochondria by disrupting translation [58]. 
Therefore, translation-targeted antibiotics must be used with 
extreme caution, especially in patients that have mitochon-
drial translation defects.

Antibiotic-induced mitochondrial damage can be pronounced 
on neurons, as noted earlier for behavior, especially given their 
metabolism, which requires 20% of the oxygen entering the 
body. Oligomycin disrupts mitochondria by directly targeting 
ATP synthase activity [59]. Nigericin and distamycin disturb 
mitochondrial respiration via altering ion permeability of the 
membrane [60]. They can also inhibit anaerobic glycolysis [61]. 
This phenomenon suggests that aspects of antibiotic activi-
ty and cancers may be connected via energy processing [62]. 
Mitochondrial dysfunction is involved in the survival of can-
cer stem cells [63]. Thus, antibiotics can either be beneficial or 
disastrous in a cancer therapy setting. Examples are erythro-
mycin, tetracycline, and glycylcyclines, which have beneficial 
roles in eradicating some cancer stem cell lines while chlor-
amphenicol, a broad spectrum antibiotic, exhibits conflicting 
results [64]. Abuse of chloramphenicol stimulates tumor de-
velopment. This drug works through the JNK and PI3k path-
ways, which lead to a phosphorylated c-Jun protein binding 
to the promoter region of the matrix metalloproteinase-13 re-
gion (MM-13) [65]. The increased levels of the MM-13 protein 
lead to tumor development [66].

Vancomycin is a very potent antibiotic and is prescribed against 
resistant Staphylococcus aureus (MRSA) infections[67]. However, 
it causes serious side effects, such as nephrotoxicity. This toxic 
effect occurs via altering mitochondrial activity [68]. HMOX1, a 
gene that is associated with cellular oxidative damage is regu-
lated upon vancomycin exposure. Exacerbating this event is the 
fact that antioxidant genes are down regulated, indicating that 
this potent drug could be increasing oxidative stress in neph-
rons [69]. Despite the danger in administering this antibiotic 
to kill Staphylococcus aureus, the benefit of this drug clearly 
outweighs the risk of damages that can occur. The long-term 
effect of this agent on mitochondria has yet to be determined.

Staphylococcus aureus and Pseudomonas aeruginosa [70] 
are deadly infections, which activate neutrophils [70,71]. 
Pseudomonas aeruginosa destroys the cell by releasing pyo-
cyanin, a permeable pigment that targets the mitochondri-
al respiratory chain [72]. Activation of the sphingomyelinase 
acid and the release of cytochrome C from the mitochondria 
shortly follow [72]. Staphylococcus, on the other hand, se-
cretes a toxin (PVL) that creates holes in the mitochondrial 
outer membrane of neutrophils and stimulates apoptosis via 
BAX genes [73]. Although eukaryotic cells can recognize and 
fight bacteria, the bacterium has an advantage. The prokaryotic 

bacterial organism has evolved, over millions of years, the abil-
ity to subvert the innate immune response via mitochondri-
al processes [74]. This strategy, in all probability, is based on 
conserved common molecular knowledge [75].

Clearly, a good part of the communication is within and exter-
nal to the cell’s organelles, whether it is the eukaryotic mito-
chondria or prokaryotic ribosomes, this occurs via conforma-
tional matching, providing the reason for the mechanism of 
action [76]. Antibiotics can bind to the bacteria cell and cause 
changes in the bacterial physiological responses, and the ef-
ficacy of these antibiotics is limited or enhanced by environ-
mental factors [77,78]. The relationship that exists between 
antibiotics and induced ROS have been studied through bio-
chemical, biophysical and enzymatic assays. To further prove 
that ROS, e.g., H202, is being produced, the promoters for oxi-
dative stress regulator were analyzed and showed that there 
was significant activation of these genes due to the treatment 
of norfloxacin and ampicillin [79]. These results prove exten-
sive ROS production is stimulated by antibiotics and strong-
ly suggest that mitochondria, in general, can be involved in 
the response.

Not all antibiotics create free radical damage [79]. Antibiotics 
broadly fall into one of two major categories. They can be ei-
ther bacteriostatic, or they can be bactericidal. Bacteriostatic 
drugs focus on inhibition of bacterial growth. On the contrary, 
bactericidal agents focus on killing bacteria through ROS. The 
mechanism of action of these antibiotics is what makes them 
unique. The action of bactericidal drugs can be via interfering 
with the tricarboxylic acid cycle, destabilizing iron-sulfur clus-
ters, so that iron will participate in the Fenton reaction that 
occurs in the mitochondria, producing harmful hydroxyl rad-
icals [80,81]. Hydroxyl radicals from the Fenton reaction also 
will damage nucleotides in bacteria [82] and cause the mito-
chondria to undergo metabolic stress [83].

A possible alternative to advance future antibiotic development 
involves targeting fatty acid biosynthesis because of differenc-
es found in eukaryotic and prokaryotic cells [84–86]. Key pro-
teins that can be inhibited in bacteria are, for example, AcpS, 
AccBCD, FabD, and CoaA [87]. These proteins assist in enzy-
matic activities in simple prokaryotes and inhibit fatty acid syn-
thesis gene expression. Platensimycin [88], platencin [89], and 
phomallenic acid [88] appear to destroy Gram-positive cocci, 
such as Staphylococcus- aureus, -pneumonia, and Enterococcus 
faecium. Relatively recent work demonstrates that some gram-
positive bacteria are resistant to agents targeting fatty acid 
synthesis pathways [90]. Problematically, studies show that 
certain bacterial strains grow better when they get an exoge-
nous source of fatty acids [91,92]. Interestingly, the large mi-
crobe population in the enteric system has not been examined 
for this phenomenon. These microbes may affect the activation 
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state of white blood cells, which can enter the brain compart-
ment and communicate with neurons [93].

Importantly, could target mitochondrial antibiotics alter can-
cer growth in a positive way? Since these agents are already 
in use, their approval status for FDA evaluation can be either 
shortened or exempt. In this case, they would become a high-
ly economical anticancer therapeutic.

Conclusions

This timely mini-review brings attention to the role that mi-
tochondria play in establishing an environment for normal 
overall behavior to emerge. Pathological perturbations of this 
process via antibiotics, demonstrate the role this enslaved 
bacterium performs. A large amount of oxygen consumed, 

e.g., in the brain, testifies to its moment by moment critical 
activity [23,24,94,95]. In the shared commonality of chemical 
communication with bacteria, antibiotic-induced mitochon-
drial interactions represent a critical factor in micro-environ-
mental and organismic survival. Thus, an enhanced microbi-
al presence or antibiotic level may alter the energy supply of 
a cell and thus enhance the occurrence of an induced behav-
ior disorder. In this case, the potential to initiate mitochon-
drial dysfunction becomes clear, and this cascading type of 
action ends in stimulating abnormal behaviors. Clearly, anti-
biotics have an important place in medicine; despite the risk 
of damage to the host. In this scenario, one may expect al-
terations in behavior since they will emerge from high-level 
energy nerve cells. We speculate that in susceptible individu-
als and ones using these agents for extended periods of time 
and non-recommended doses, antibiotics may turn an acute 
stress response into one that is chronic [23].
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