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In 2001, with-no-lysine (WNK) kinases were identified as the genes responsible for the human hereditary hyper-
tensive disease pseudohypoaldosteronism type II (PHAII). It took a further 6 years to clarify that WNK kinases
participate in a signaling cascade with oxidative stress-responsive gene 1 (OSR1), Ste20-related proline-alanine-
rich kinase (SPAK), and thiazide-sensitive NaCl cotransporter (NCC) in the kidney and the constitutive activation
of this signaling cascade is the molecular basis of PHAII. Since this discovery, the WNK–OSR1/SPAK–NCC sig-
naling cascade has been shown to be involved not only in PHAII but also in the regulation of blood pressure
under normal and pathogenic conditions, such as hyperinsulinemia. However, the molecular mechanisms of WNK
kinase regulation by dietary and hormonal factors and by PHAII-causing mutations remain poorly understood. In
2012, two additional genes responsible for PHAII, Kelch-like 3 (KLHL3) and Cullin3, were identified. At the time of
their discovery, the molecular mechanisms underlying the interaction between these genes and their involvement
in PHAII were unknown. Here we review the pathophysiological roles of the WNK signaling cascade clarified to
date and introduce a new mechanism of WNK kinase regulation by KLHL3 and Cullin3, which provides insight on
previously unknown mechanisms of WNK kinase regulation.

With-no-lysine kinases and
pseudohypoaldosteronism type II
Polymerase chain reaction (PCR)-based homology
cloning of mitogen-activated protein kinases (MAP)
and MEK kinase initially identified WNK1 kinase
(Xu et al., 2000). Subsequently, a database search
revealed the existence of homologous kinase genes
in mammals and in other species: four homologues
(WNK1–4) were discovered in mammals, one in
Drosophila melanogaster, one in Caenorhabditis elegans,
and eight in Arabidopsis thaliana, but none was dis-
covered in yeast (Verissimo and Jordan, 2001). The
kinases were named “with-no-lysine” (WNK) kinases
because the lysine (K) residue present in subdomain
II of most kinases was not conserved in WNK ki-
nases but instead replaced with a cysteine residue.
As shown in Fig. 1, a kinase domain exists at the
N-terminus of WNK kinases, followed by an autoin-
hibitory domain (Xu et al., 2002) and a coiled-coil
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domain. Another coiled-coil domain is present at the
C-terminus.

In 2001, WNK1 and WNK4 were identified as the
genes responsible for the autosomal dominant hered-
itary hypertensive disease pseudohypoaldosteronism
type II (PHAII; Wilson et al., 2001). In addition
to hypertension, PHAII is characterised by hyper-
kalemia, metabolic acidosis and thiazide sensitivity
(Gordon, 1986). Thiazide is widely used as an anti-
hypertensive drug: It induces salt excretion into the
urine as it is a specific inhibitor for NaCl cotrans-
porter (NCC) in the distal tubules of the kidney.
NCC is responsible for the reabsorption of approxi-
mately 5%–10% of filtered NaCl in the glomeruli.
At the time of this discovery, a substrate for WNK
kinases was yet to be identified, but it was expected
that NCC was regulated by WNK1 and WNK4 be-
cause the activation of NCC was considered the major
pathogenesis of PHAII.

The mutations found in the WNK1 gene comprised
large deletions in intron 1, which were considered
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Figure 1 Structures of WNK, OSR1, and SPAK kinases
Acidic domains are located downstream of the first coiled-coil domain and conserved in all WNK kinases. Three of four

pseudohypoaldosteronism type II-causing mutations in WNK4 are located in the acidic domain. WNK kinases activate OSR1

and SPAK by phosphorylating threonine residues in their kinase domains (T185 and T233). Serine residues (S325 in OSR1 and

S373 in SPAK) in the S motif are also phosphorylated by WNK kinases, but their phosphorylation is not involved in the activation

of the kinases. Conserved C-terminal domains in OSR1 and SPAK (shown in yellow) bind to the RFx[V/I] motif in WNK and solute

carrier family 12 transporters. The N-terminal regions of NCC, NKCC1, and NKCC2 around the sites phosphorylated by OSR1

and SPAK are highly conserved.

to increase its transcription based on reverse tran-
scription PCR analysis of WNK1 mRNA levels in
the leukocytes of patients with PHAII (Wilson et al.,
2001). However, after the initial report, the existence
of two isoforms in WNK1, full-length WNK1 and
a kidney-specific WNK1 lacking the kinase domain,
was clarified (Delaloy et al., 2003; O’Reilly et al.,
2003). Exactly which isoform is increased in patients
with PHAII, and whether WNK1 expression is in-
deed increased in the human kidney, remains unde-
termined (Delaloy et al., 2008). In the case of WNK4,
four missense mutations were identified in patients
with PHAII, three of which are clustered within a
distance of four amino acids in a region termed the
“acidic domain” (Wilson et al., 2001). As shown in
Fig. 1, this domain is well conserved in all WNK
kinase isoforms.

Discovery of the WNK–oxidative
stress-responsive gene 1/Ste20-related
proline–alanine-rich kinase–solute carrier
family 12a transporter signaling cascade
After the identification of WNK1 and WNK4 as the
genes underlying PHAII, numerous investigations
of the effects of coexpressing WNK1 and WNK4
with transporters, including NCC, were published
(Kahle et al., 2003; Wilson et al., 2003; Yang et al.,
2003; Kahle et al., 2004; Yamauchi et al., 2004,
2005; Cai et al., 2006; Gamba, 2006; Garzon-Muvdi
et al., 2007; Ring et al., 2007; Yang et al., 2007a).
In most studies, WNK4 was demonstrated to ex-
ert an inhibitory effect on the transporters. However,
the detailed mechanisms of this regulation, in par-
ticular the intracellular signaling cascades involved,
were poorly understood. Then, in 2005, two groups
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identified that oxidative stress-responsive gene 1
(OSR1) and Ste20-related proline-alanine-rich ki-
nase (SPAK) were substrates of WNK1 and WNK4
(Moriguchi et al., 2005; Vitari et al., 2005). OSR1
and SPAK are related serine–threonine kinases that
possess an N-terminal catalytic domain similar to
those of other members of the Ste20 kinase subfam-
ily, and two conserved regions known as the serine
motif (S motif) and conserved C-terminal (CCT) do-
main. SPAK also possesses a unique 48-amino-acid
N-terminal extension that primarily consists of ala-
nine and proline. The CCT domains of OSR1 and
SPAK were shown to interact with the RFv[V/I]
motif in WNK kinases and solute carrier family 12
(SLC12) transporters (Fig. 1). OSR1 and SPAK were
already identified as regulators of the SLC12A2 [also
known as Na-K-2Cl-cotransporter 1 (NKCC1)] co-
transporter (Flemmer et al., 2002; Piechotta et al.,
2002; Dowd and Forbush, 2003; Piechotta et al.,
2003): through in vitro experiments, Moriguchi et
al. (2005) demonstrated that SLC12A3 (also known
as NCC) and SLC12A1 [also known as Na-K-2Cl-
cotransporter 2 (NKCC2)], which belong to the same
transporter family as NKCC1, could also be sub-
strates of OSR1 and SPAK. To prove this notion
in the kidney in vivo, Yang et al. (2007c) gener-
ated anti-phosphorylated NCC (pNCC) antibodies
that recognised potential serine and threonine phos-
phorylation sites deduced from sequence alignment
with NKCC1. They also generated a mouse model of
PHAII: a knock-in mouse carrying a PHAII-causing
missense mutation of WNK4 (D561A), correspond-
ing to the D574A mutation in patients with PHAII
(Yang et al., 2007c). Wnk4D561A/+ mice exhibited a
PHAII phenotype, including increased thiazide sen-
sitivity, indicating that NCC is activated in the kid-
neys of the mutant mice. Using anti-pNCC antibod-
ies, Yang et al. (2007c) demonstrated that NCC phos-
phorylation at three sites (Thr53, Thr58 and Ser71
in mouse NCC) was significantly increased in the
kidneys of PHAII model mice, and that pNCC was
concentrated on the apical plasma membranes of the
distal convoluted tubules. Phosphorylation of SPAK
and OSR1 was also increased in Wnk4D561A/+ mice,
suggesting that WNK–OSR1/SPAK–NCC signal-
ing was present in the kidney and activated by the
PHAII-causing WNK4 mutation. Subsequently, by
crossing Wnk4D561A/+ mice with SPAK and OSR1
knock-in mice, in which the T-loop Thr residues in

SPAK (Thr243) and OSR1 (Thr185) were mutated
to Ala to prevent activation by WNK kinases, Chiga
et al. (2011) demonstrated that NCC phosphoryla-
tion and PHAII phenotypes in Wnk4D561A/+ mice
were dependent on WNK–OSR1/SPAK signaling.
Thus, the WNK–OSR1/SPAK–NCC signaling cas-
cade in the kidney was established, and its activation
was shown to be the pathogenic mechanism underly-
ing PHAII. The WNK kinase responsible for NCC
phosphorylation in the kidney was later identified
as WNK4 through the analysis of WNK1, WNK3
and WNK4 knockout mice (Ohta et al., 2009; Oi
et al., 2012; Castaneda-Bueno et al., 2012; Susa et al.,
2012).

The mechanism of NCC activation by phosphory-
lation was initially investigated by Pacheco-Alvarez
et al. (2006) using the Xenopus laevis oocyte expres-
sion system. Phosphorylation-incompetent mutant
NCC molecules were present on the plasma mem-
brane, but their transport activity was significantly
decreased, suggesting that phosphorylation of NCC
is important for its transport activity. As previously
mentioned, analysis of NCC phosphorylation in the
kidney in vivo clarified that phosphorylated NCC was
exclusively present on the apical plasma membranes
of the distal convoluted tubules (Yang et al., 2007c;
Pedersen et al., 2010; Lee et al., 2013), suggesting
that phosphorylation regulates the plasma membrane
expression of NCC. Hossain Kahn et al. (2012) found
that phosphorylation of NCC decreased its ubiquiti-
nation: decreased endocytosis and/or degradation may
underlie the increased phosphorylated NCC accumu-
lation evident in the apical plasma membranes of the
distal convoluted tubules.

Regulators of WNK signaling
After the discovery of the WNK–OSR1/SPAK–NCC
signaling cascade in the kidney and its involvement in
PHAII, its pathophysiological roles outside of PHAII
were investigated (Fig. 2). Salt intake regulates this
cascade, partly through aldosterone (Chiga et al.,
2008; Vallon et al., 2009). High and low salt in-
take decreased and increased the phosphorylation of
OSR1/SPAK and NCC in the kidney, respectively,
adjusting the excretion of NaCl according to its in-
take. This regulation was abolished in Wnk4D561A/+
mice (Chiga et al., 2008): A high-salt diet did not
down-regulate WNK–OSR1/SPAK–NCC signaling
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Figure 2 Regulators and effectors of WNK–OSR1/SPAK kinase signaling
NaCl and K intakes regulate WNK kinase–OSR1/SPAK-NCC signaling in the kidney. Angiotensin II, aldosterone, vasopressin, and

insulin also regulate WNK–OSR1/SPAK–NCC signaling in the kidney. A WNK1/WNK3–SPAK–Na-K-2Cl-cotransporter 1 cascade

regulates arterial tonus.

in PHAII model mice. Elucidation of the mecha-
nism of this dysregulation was one of the important
unanswered questions in the molecular pathogenesis
of PHAII. Potassium intake also regulates this cas-
cade; high and low potassium intake decreased and
increased WNK–OSR1/SPAK–NCC signaling, re-
spectively (Vallon et al., 2009; Sorensen et al., 2013;
van der Lubbe et al., 2013). As the initial phenotype
of PHAII is hyperkalemia rather than hypertension,
WNK–OSR1/SPAK–NCC signaling must also regu-
late potassium homeostasis in the body. In this regard,
it is reasonable to predict that this signaling cascade is
regulated by potassium intake. Although Naito et al.
(2011) reported that extracellular potassium levels di-
rectly regulated WNK1 activity in cultured cells; the
mechanisms of WNK kinase regulation by dietary
potassium remain unclear. Hormonal factors also reg-
ulate WNK signaling. In addition to aldosterone, an-
giotensin II (San-Cristobal et al., 2009; Talati et al.,
2010; van der Lubbe et al., 2011; Castaneda-Bueno
et al., 2012; Castaneda-Bueno and Gamba, 2012) and
vasopressin (Mutig et al., 2010; Pedersen et al., 2010;
Rieg et al., 2013; Saritas et al., 2013) reportedly acti-

vated this signaling cascade. However, the details of
intracellular signaling from these hormones to WNK
kinases are poorly understood. Recently, insulin was
identified as a powerful activator of this signaling
cascade, and the phosphatidylinositol 3-kinase/Akt
pathway was shown to mediate the signal from in-
sulin to WNK4 (Sohara et al., 2011; Nishida et al.,
2012; Chavez-Canales et al., 2013). Constitutive ac-
tivation of this cascade caused by hyperinsulinemia
may underlie the pathogenesis of salt-sensitive hyper-
tension in metabolic syndrome (Nishida et al., 2012;
Komers et al., 2012).

Extrarenal roles of WNK–OSR1/SPAK
kinase signaling
In addition to NaCl and K homeostasis in the kid-
ney, WNK–OSR1/SPAK signaling has been shown
to be involved in the regulation of arterial tonus. In
this context, the transporter involved is not NCC but
NKCC1. SPAK knockout mice showed a decreased
response to phenylephrine and decreased phospho-
rylation of NKCC1 (Yang et al., 2010). Similarly,
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heterozygous WNK1 knockout mice exhibited re-
duced phosphorylation of NKCC1 and reduced ar-
terial tonus (Bergaya et al., 2011; Susa et al.,
2012). Zeniya et al. (2013) reported the exis-
tence of WNK3–SPAK–NKCC1 signaling in vas-
cular smooth muscle cells, which was regulated by
salt intake through angiotensin II. Thus, WNK–
OSR1/SPAK signaling is involved in the regulation
of blood pressure by modulating both NaCl excre-
tion in the kidney and vascular tonus in the arteries
(Fig. 2).

In addition, mutation of the WNK1 gene was
shown to be responsible for human neuropathy
(Shekarabi et al., 2008). WNK kinases were also
shown to regulate KCl cotransporters (KCC family;
Kahle et al., 2005; de de Los Heros et al., 2006;
Garzon-Muvdi et al., 2007; Rinehart et al., 2009).
The reciprocal regulation of NKCC1 and SLC12A5
(also known as KCC2) by WNK kinases is postu-
lated to regulate intracellular chloride concentration,
thereby regulating the excitability of neuronal cells
(Kahle et al., 2006). Although data supporting this
idea are accumulating, further validation by in vivo
experiments is necessary.

Discovery of Kelch-like 3 and Cullin3
as pseudohypoaldosteronism type II
causing genes
Although several upstream regulators of this cascade
have been identified (Fig. 2), exactly how these regu-
lators regulate WNK kinase activity remains largely
unknown. Similarly, how PHAII-causing mutations
of WNK4 activate the cascade remained uneluci-
dated. Recently, two new genes [Kelch-like protein 3
(KLHL3) and Cullin3] were identified as genes re-
sponsible for causing PHAII (Boyden et al., 2012;
Louis-Dit-Picard et al., 2012). However, how these
genes were involved in causing PHAII was unknown.
Determining how these genes (WNKs, KLHL3 and
Cullin3) interact and how their mutation causes a
common hypertensive disease would contribute to
the understanding of the molecular pathogenesis of
human hypertension, and also to the identification of
new targets for anti-hypertensive drugs.

KLHL3 is a member of the Kelch-like protein fam-
ily, which consists of 42 members (Dhanoa et al.,
2013). Kelch-like ECH-associated protein 1 (Keap1),
known as the E3 ligase to NRF2, also belongs to the

KLHL family and is designated KLHL19 (Dhanoa
et al., 2013). In general, KLHL proteins contain
one BTB domain, one BTB and C-terminal Kelch
(BACK) domain, and five to six Kelch domains
(Fig. 3). The BTB domain was named based on a
homologous, 115-amino-acid domain present in D.
melanogaster bric a brac 1, tramtrack, and broad com-
plex proteins and facilitates the protein–protein in-
teraction (Zollman et al., 1994). The Kelch domain
forms one blade of a β-propeller structure, as shown in
Fig. 3. This domain is also involved in the protein–
protein interaction. Kelch domain-containing pro-
teins have been shown to participate in many cel-
lular functions, such as the regulation of cell mor-
phology and gene expression (Adams et al., 2000).
Mutations in KLHL genes reportedly cause multi-
ple human diseases. KLHL7 mutations cause autoso-
mal dominant retinitis pigmentosa (Friedman et al.,
2009; Kigoshi et al., 2011), and a missense muta-
tion in KLHL9 causes distal myopathy (Cirak et al.,
2010). Mutations in KLHL16 are linked to human
giant axonal neuropathy (Bomont et al., 2000). In
investigations of the molecular pathogenesis of these
diseases, Kigoshi et al. (2011) clarified that KLHL7
assembles with Cullin3 and exerts E3 ligase activity.
Likewise, KLHL20 was also reported to function as
an E3 ligase in combination with Cullin3 on death-
associated protein kinase (Lee et al., 2010), PDZ-Rho
guanine nucleotide exchange factor (Lin et al., 2011)
and promyelocytic leukemia protein (Yuan et al.,
2011). KLHL7 and KLHL20 proteins bind to Cullin3
via their BTB domains and capture their substrates
with their Kelch repeats. Therefore, it has been spec-
ulated that the KLHL3-Cullin3 complex also acts an
E3 ligase on an unknown target protein.

WNK kinases are substrates of
Kelch-like protein 3-Cullin3 E3 ligase
As mutations in WNK4, KLHL3 and Cullin3 cause
the same disease, PHAII, and the activation of
WNK–OSR1/SPAK–NCC signaling underlies its
pathogenesis, it is reasonable to speculate that compo-
nents of this signaling cascade, in particular WNK4,
could be the substrate of KLHL3-Cullin3 E3 lig-
ase. A French group reported that KLHL3 was able
to bind to NCC and regulate its intracellular lo-
calisation (Louis-Dit-Picard et al., 2012). They did
not investigate whether NCC was ubiquitinated by
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Figure 3 Structure of Kelch-like proteins
The upper panel shows the structure of Kelch-like (KLHL) proteins with N-terminal BTB and BACK domains and five to six

C-terminal Kelch domains, and most autosomal dominant mutations causing pseudohypoaldosteronism type II (PHAII). The

BTB domain is a binding site for Cullin 3 and Kelch repeats constitute a propeller structure, as shown in the lower panels, and

capture a substrate. Each Kelch domain forms a blade, and most PHAII-causing mutations (shown in yellow lines) are located

in the loop regions linking each blade, which may be involved in substrate binding.

KLHL3. Then, Ohta et al. (2013) and Wakabayashi
et al. (2013) reported that WNK1 and WNK4 were
substrates of KLHL3-Cullin3 E3 ligase, respectively.
In both studies, the binding of KLHL3 to NCC
was not reproduced. Subsequently, two further re-
ports (Shibata et al., 2013; Wu and Peng, 2013)
supported WNK4 as a target of KLHL3-Cullin3 E3
ligase.

Analyses of PHAII-causing mutations in WNK4,
KLHL3 and Cullin 3 also clearly disclosed how these
three proteins interact. As previously mentioned,
PHAII-causing mutations in WNK4 were clustered
in the acidic domain, which is highly conserved in all
WNK kinases (Fig. 1). Wakabayashi et al. (2013) and
Mori et al. (2013) showed via fluorescent correlation
spectroscopy that binding of KLHL3 to WNK4 was
abolished by PHAII-causing mutations in WNK4,
indicating that the acidic domain is involved in bind-
ing KLHL3. In contrast to WNK4, mutations in
KLHL3 were not confined to a single domain, but
present in the BTB, BACK and Kelch domains. Mu-
tations in the BTB and BACK domains affected the

ability of KLHL3 to bind Cullin3, whereas muta-
tions in the Kelch domains affected the ability of
KLHL3 to bind WNK1 and WNK4 (Mori et al.,
2013). Impaired binding of KLHL3 to either Cullin3
or WNK4 decreased the ubiquitination of WNK4,
resulting in increased WNK4 within cells. PHAII-
causing Cullin3 mutations are clustered around the
splice donor and acceptor sites of exon 9. Boyden
et al. (2012) showed via experiments in cultured cells
that these mutations resulted in the skipping of exon
9. Osawa et al. (2013) and Tsuji et al. (2013) verified
that exon 9 was skipped in the leukocytes of patients
with PHAII. Mutant Cullin3 lacking a portion of
exon 9 did not show reduced binding to KLHL3,
but E3 ligase activity towards WNK4 was signifi-
cantly decreased (Wakabayashi et al., 2013). Thus,
all PHAII-causing mutations in WNK4, KLHL3 and
Cullin3 resulted in a common consequence: reduced
ubiquitination of WNK4 and increased WNK4 pro-
tein within cells (Fig. 4). This increase in WNK4
protein was confirmed in the kidneys of Wnk4D561A/+
mice (Wakabayashi et al., 2013).
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Figure 4 Molecular pathogenesis of pseudohypoaldosteronism type II
Under normal conditions, WNK 4 protein within cells are maintained by appropriate degradation after ubiquitination by KLHL3-

Cullin3 E3 ligase. However, PHAII causing-mutations in the acidic domain of WNK4 and in the Kelch domains of KLHL3 affect

their binding, thereby reducing the ubiquitination and degradation of WNK4. PHAII-causing mutant Cullin3 lacking the portion

corresponding to exon 9 exhibits lower E3 ligase activity in combination with KLHL3 toward WNK4. Thus, PHAII-causing

mutations in three different genes have a common consequence: decreased ubiquitination and increased WNK4 protein levels

within cells. The increase in WNK4 protein was confirmed in the kidneys of Wnk4D561A/+ PHAII model mice. Furthermore,

increased WNK4 protein levels in the kidneys of WNK4 transgenic mice activated OSR1/SPAK–NCC signaling. Although WNK4

is the major WNK kinase regulating NCC in the kidney, other WNKs normally expressed at low levels could also be increased in

kidneys with PHAII caused by KLHL3 and Cullin3 mutations, thereby contributing to the more severe phenotypes resulting from

these mutations compared with those resulting from WNK1 or WNK4 mutations alone.

Increased WNK4 in kidney activates
OSR1/SPAK–NCC signaling and causes
PHAII
Long-standing controversy exists about the influ-
ence of WNK4 on NCC function (McCormick and
Ellison, 2011). Initially, WNK4 overexpression ex-
periments in X. laevis oocytes showed that WNK4
is a negative regulator of NCC (Wilson et al., 2003;
Yang et al. 2003). Further analyses by Yang et al.
(2005, 2007b) showed that the inhibitory effect of
WNK4 on NCC was not kinase activity dependent.
Therefore, this inhibitory effect cannot be mediated
by OSR1/SPAK–NCC signaling. Casteneda-Bueno
et al. (2012) reported that WNK4 knockout mice

exhibit a phenotype reminiscent of Gitelman syn-
drome (Gitelman syndrome is caused by the loss of
function of NCC), indicating that WNK4 is a pos-
itive regulator of NCC in vivo. In fact, NCC phos-
phorylation, and even NCC protein abundance, was
markedly decreased in the kidneys of WNK4 knock-
out mice. Thus, it is barely possible that a decrease in
WNK4 levels activate NCC, and there is little evi-
dence that WNK4 is a negative regulator of NCC in
vivo, except that WNK4 BAC transgenic mice harbor-
ing a single copy of the wild-type WNK4 transgene
exhibited a Gitelman syndrome-like phenotype (Lali-
oti et al., 2006). The results of this transgenic mouse
study were obtained through analysis of a single line

C© 2013 The Authors. Biology of the Cell published by Wiley-VCH Verlag GmbH & Co. KGaA on behalf of Société de Biologie Cellulaire Francaise. 51
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of wild-type WNK4 transgenic mice, and whether
WNK4 protein abundance was indeed increased in
the kidney was not shown. Data from transgenic
mouse studies should be interpreted with caution,
as there is no guarantee that transgenes are expressed
in the same manner as endogenous genes. Sometimes,
transgenes disrupt endogenous genes by homologous
recombination. To circumvent the problems inher-
ent in transgenic mouse studies, analysis of multiple
lines of transgenic mice with different copy numbers
is necessary. Proof that an observed phenotype is de-
pendent on the level of the protein overexpressed
is very important to draw a definite conclusion.
Wakabayashi et al. (2013) reproduced the method
of transgenic mouse generation used by Lalioti et al.
(2006) to generate several lines of WNK4 BAC trans-
genic mice. They showed that, as WNK4 protein
levels in the kidney increased, phosphorylation of
OSR1, SPAK and NCC robustly increased. Further-
more, their WNK4 transgenic mice mimicked the
phenotype of PHAII model mice. These results in-
dicate that increased wild-type WNK4 in the kid-
ney activates the OSR1/SPAK–NCC signaling cas-
cade and causes PHAII.

Thus, impaired ubiquitination and a consequent
increase in WNK4 protein was established as the
molecular pathogenesis of PHAII caused by muta-
tions in WNK4, KLHL3 and Cullin3 (Fig. 4). How-
ever, WNK kinases other than WNK4 may also
be regulated by the KLHL3-Cullin3 complex. The
amino acid sequence of the KLHL3 binding site in
WNK4 is highly conserved in other WNK kinases
(Fig. 1), and both the WNK1 and WNK4 proteins
were shown to be regulated by KLHL3-Cullin3 (Ohta
et al., 2013; Wakabayashi et al., 2013). Therefore,
levels of both WNK1 and WNK4 may be increased
in the kidneys of patients with PHAII carrying the
KLHL3 and Cullin3 mutations, further contributing
to the activation of OSR1/SPAK–NCC signaling and
explaining the more severe PHAII phenotypes evi-
dent with Cullin3 and KLHL3 mutations than with
WNK1 and WNK4 mutations (Boyden et al., 2012).
PHAII-causing mutations in WNK1 consist of large
deletions in intron 1 (Wilson et al., 2001): This dele-
tion was recently discovered to increase full-length
WNK1 transcription in the kidneys of a mouse model
of the WNK1 mutation (Vidal-Petiot et al., 2013).
The mechanism elucidated in this study may not be
directly related to the pathogenesis of PHAII caused

by WNK1 mutations. However, PHAII should be
considered a disease caused by increased WNK kinase
caused by the dysregulation of either transcription or
the ubiquitination of WNK kinases.

Future perspectives
Analyses of PHAII pathogenesis suggest that the reg-
ulation of levels of WNK kinase protein is an impor-
tant regulatory mechanism of WNK–OSR1/SPAK–
SLC12 signaling. In addition to WNK1 and WNK4,
it is hypothesised that other WNKs, such as WNK2
and WNK3, could be substrates of KLHL3-Cullin3
E3 ligase because the KLHL3-binding domain of
WNK4 (the acidic domain) is highly conserved in
all WNK isoforms. Furthermore, KLHL2 is the clos-
est homolog to KLHL3 among KLHL proteins, and
it is also the closest homolog to D. melanogaster Kelch
(63% homology; (Soltysik-Espanola et al., 1999).
Kelch repeats in these three proteins are highly
conserved. KLHL2 shares almost perfect homology
(98%) with KLHL3 in the loop regions of the Kelch
repeats connecting each blade, in which most of the
PHAII-causing KLHL3 mutations cluster (Boyden
et al., 2012; Louis-Dit-Picard et al., 2012). The high
degree of homology between KLHL2 and KLHL3 is
not evident between KLHL3 and other Kelch-like
proteins (Prag and Adams, 2003). The function of
the loops connecting the blades of the Kelch repeats
has not yet been evaluated in KLHL3, but given
that these loops form the top face of the β-propeller
(Fig. 3) and that this face is considered the substrate-
binding pocket, extensive homology in these loop
domains between KLHL2 and KLHL3 supports the
theory of shared substrate specificity between KLHL2
and KLHL3. Takahashi et al. (2013) verified that
KLHL2 in combination with Cullin3 could func-
tion as an E3 ligase for all WNK isoforms. These
data suggest that all WNK kinases could be regu-
lated by KLHL2 and KLHL3 in multiple cell types.
Regulation of WNK kinases by KLHL2 and KLHL3
could be involved in PHAII and in other contexts
where WNK kinases are regulated. The hormones
and diets known to regulate WNK–OSR1/SPAK sig-
naling (Fig. 2) may not directly regulate WNK but
rather regulate KLHLs, thereby regulating WNK ki-
nase. In addition, the binding of WNKs to KLHL2
and KLHL3 could be regulated by external stimuli,
such as the phosphorylation of serine and threonine
residues in Kelch domains. Further analyses focusing
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on these points are necessary, in addition to the con-
firmation of PHAII pathogenesis in vivo in PHAII
model mice carrying KLHL3 and Cullin3 mutations.

Conclusions
Why PHAII-causing missense mutations in WNK4
are clustered and how these mutations activate
downstream signaling to NCC remained undeter-
mined. Recent advancements in genetics, in particu-
lar whole-exome sequencing, revealed two additional
genes responsible for causing PHAII, and their dis-
covery helped to construct a complete picture of the
molecular pathogenesis of PHAII. Levels of WNK
kinases within cells, regulated via ubiquitination by
KLHL proteins, are important determinants of the
activity of the WNK–OSR1/SPAK–SLC12A signal-
ing cascade. Consequently, KLHL2 and KLHL3 could
represent new targets for drug discovery to regulate
WNK kinase activity.
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