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Abstract: In various fields such as the 5G antenna system and satellite communication system, there
is a growing demand to develop a smart antenna with a frequency selective or beamforming function
within a limited space. While antennas utilizing mechanical, electronic, and material characteristics
are being studied, a method of having tunable frequency characteristics by applying a liquid crystal
material with dielectric anisotropy to a planar patch antenna is proposed. In resonance mode, the
design method for using only the minimum amount of expensive liquid crystals is systematically
arranged while maximizing the amount of change in the operating frequency of the antenna by
considering the electric field distribution on the surface of the patch antenna. Furthermore, to increase
the dielectric anisotropy of the liquid crystal, the liquid crystal must be aligned. Simultaneously, in
cases where the cell gap of the liquid crystal exceeds 100 µm, the alignment force is weakened. While
compensating for this shortcoming, securing the radiation characteristics of the antenna is proposed,
and simulations are performed.

Keywords: liquid crystal; dielectric anisotropy; frequency tunable antenna; smart antenna

1. Introduction

Research on a multi-functional smart antenna is actively conducted. Systems that
can quickly exchange large amounts of information, such as satellite communications,
next-generation mobile networks, and radar systems, are required [1,2]. At the same time,
the size of the hardware is increasingly miniaturized and flattened. Therefore, it can be said
that the development of an antenna for transmitting and receiving broadband information
while covering various frequency bands in a limited space is an important task [3–6].

Accordingly, various studies have been performed on an active frequency-selective
antenna to cover various application frequencies simultaneously. There is research of selec-
tively using frequency by changing the size of the antenna mechanically [7–10], electroni-
cally frequency tunable antennas using semiconductor devices such as MEMS [11,12], and
research of utilizing variations of material properties such as ferroelectric or ferrite [13–15].

Here, we propose applying a liquid crystal to a frequency tunable patch antenna for
a microwave frequency band. This liquid crystal is being actively studied in the field of
an antenna for variable frequency [16–20] and an electronic beamforming antenna for the
mm-wave frequency band [21–26]. However, research on technology for securing antenna
performance while using an expensive liquid crystal to a minimum is still insufficient [27].
In particular, we show a method of maximizing the antenna frequency change rate while
using only the minimum amount of expensive liquid crystal. Considering the electric-
field distribution on the surface of the patch antenna and the polarization ratio inside the
liquid crystal according to the thickness of the antenna substrate, a design method that
optimizes the injection position and quantity of liquid crystals in the directions parallel
and perpendicular to the antenna surface was developed.
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2. Materials and Methods
2.1. Modeling of Numerical Calculation

A patch antenna is a planar shape that induces electromagnetic radiation through
the gap between sandwiched metallic plates on top and bottom planes. As shown in
Figure 1a, the total length of the patch length (L) and fringing field length (∆L) parallel to the
wave propagation direction generates resonance at a frequency corresponding to the half
wavelength, causing the radio waves to radiate into the air. If this is expressed more clearly
as a formula [28], the resonance frequency (Fres) can be calculated as Fres = c/(2Le

√
εe),

Le = L + 2L. The c is the speed of light, and the εe is the effective permittivity of the substrate.
The factors that determine the resonant frequency (Fres) are the patch antenna length and
substrate thickness and the dielectric constant of the substrate material. By replacing
the substrate with a liquid crystal, it is possible to implement a frequency tunable patch
antenna by utilizing the dielectric anisotropy of the liquid crystal according to the voltage.
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In resonance mode, the electric field on the surface of the patch antenna is strongly
coupled at both ends of the direction of the wave propagation as shown in Figure 1b, and
null in the center region. Therefore, focusing on this electric-field distribution, we systemat-
ically analyze the effect of dielectric anisotropy of the liquid crystal on the operation of the
patch antenna while controlling the injection location and the area of the liquid crystal. Ad-
ditionally, in the case of ferrite, ferroelectric, and semiconductor devices, the dielectric loss
increases as the frequency increases, whereas the dielectric loss of liquid crystal decreases
as the frequency increases [29–31]. So, it is advantageous when used as a tunable device in
the mm-wave frequencies. However, since liquid crystal is a costly material and cannot be
used indefinitely, research to maximize tunability while using a minimum amount of liquid
crystal is necessary. First, the position and the area of the liquid crystal on the surface of
the patch, which significantly affects the amount of frequency change, are determined by
considering the electric-field distribution over the antenna surface. Second, in terms of the
substrate thickness, the effect of the thickness of the liquid crystal layer on the frequency
change rate is analyzed, and finally, an idea for maximizing the frequency change rate and
securing the radiation performance of the antenna is proposed. It is expected to provide
a design rule for optimizing the performance of a patch antenna for variable frequency
using a minimum amount of liquid crystal. In this paper, all the simulations are performed
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by using an HFSS (high-frequency structure simulator, Ansys Inc.), which is a tool for
analyzing electromagnetic wave propagation in the microwave frequencies.

2.2. Liquid Crystal

Liquid crystal is a material having dielectric constant anisotropy, in which the dielectric
constant changes according to the movement of the polarization of liquid crystal molecules
with the applied voltage. The liquid crystal used here is a nematic phase liquid crystal,
having directional ordering, with a vertically aligned configuration. When the voltage
is not applied, the polarization stands vertically on the surface of the alignment layer.
They can be described in the form of a rod, as shown in Figure 2a. When the elongated
polarization direction is parallel to the electric field direction, the permittivity is ε‖. When
the elongated polarization direction is perpendicular to the electric field direction, the
permittivity corresponds to ε⊥. The value of this permittivity continuously changes from
ε‖ to ε⊥ according to the applied voltage, and this change in permittivity makes it possible
to continuously change the resonant frequency of the patch antenna in Figure 2b. The
estimated dielectric constants ε‖ and ε⊥ calculated from the refractive index values of the
used liquid crystal are 2.19 and 2.43, respectively. Here, we propose a core model for
patch antenna having a variable dielectric constant through the behavior of liquid crystal
molecules that are changed by an external electric field. Therefore, VLC, which affects the
behavior of the liquid crystal, and VRF, which is the signal component of the antenna, are
applied to the liquid crystal cell, as shown in Figure 2a. According to the dielectric constant
of the nematic phase liquid crystal used in this study, the resonance frequency is ~0.3 GHz.
The liquid crystal used in this numerical calculation used Merck’s liquid crystal with a
negative dielectric constant. The material parameters of the liquid crystal were optical
anisotropy n = 0.1091, isotropic temperature 108 ◦C, splay elastic constant K11 = 13.8 pJ/m,
and bend elastic constant K33 = 18.1 pJ/m.Materials 2020, 13, x FOR PEER REVIEW 4 of 12 
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3. Results and Discussion
3.1. Analysis of Optimal Liquid crystal Position on the Patch Surface

As mentioned in the previous chapter, the operating frequency of the patch antenna is
determined according to the patch length in the wave propagation direction, and radiation
mainly occurs at both ends of the wave propagation direction. Therefore, considering the
electric field distribution on the surface, the analysis is conducted through simulation to
see how the frequency change rate changes while partially injecting a liquid crystal. In
the nematic phase LC with directional ordering, the LC director can be controlled by the
electric field, and dielectric constant change can be generated through the direction of LC
director. In this simulation, the frequency change was confirmed by varying the dielectric
constant in the electric field applied through the upper and lower patch antenna electrodes.

In Figure 1a, glass substrates with a dielectric constant of 5.5 are used as the substrates
with the patch antenna and the metal ground plane, and the patch antenna is placed on
top of the upper glass substrate and the metal ground on the bottom of the lower glass
substrate. The thickness of the upper and lower glass substrates is fixed at 100 µm each.
The liquid crystal substrate is inserted into the center between the two glass substrates as
the part marked green in Figure 1a, and the thickness of the liquid crystal layer is also fixed
at 100 µm. The size of the patch antenna is designed to operate in the 3.5 GHz band with a
size of 20 × 20 mm2, and the size of the metal ground plane is fixed at 30 × 30 mm2.

In the first analysis process, the liquid crystal area is set as an independent variable,
as shown in green in Figure 3a. The thickness of the liquid crystal is fixed at 100 µm, and a
square liquid crystal is placed in the center of the patch antenna, and the length of one side
is gradually increased to calculate the rate of frequency change for the area a × a mm2. The
frequency change rate of the patch antenna was calculated from the difference between
the resonant frequency when the dielectric constant was 2.19 and the resonance frequency
when the dielectric constant was changed to 2.43. In Figure 3b, the frequency change
hardly occurs at the point where the area is less than about (λe/4)2 = 100 mm2, whereas
the frequency change rate increases in proportion to the area as the area of the liquid
crystal increases through the (λe/4)2 point. As the area of the liquid crystal passes the
400 mm2 corresponding to the patch antenna area, it can be seen that the increase is slowed
and eventually converges to a constant value. Here, λe means the effective wavelength
considering the dielectric constant and corresponds to the length of about 40 mm.
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Next, the size of the liquid crystal in the y-direction is fixed at 20 mm (λe/2), and
the rate of frequency change of the patch antenna is investigated by increasing the size in
the x-direction only. Here, as shown in Figure 4, the results are confirmed by increasing
the liquid crystal size in two opposite directions, direction 1 and direction 2, respectively.
Similar results are obtained for both directions. While the size of ax increases from 0 at
the beginning, the frequency change rate linearly increases according to the change in the
dielectric constant of the liquid crystal. On the other hand, the frequency change rate stays
at 50 MHz while changing from about 8 to 12 mm. As ax increases to 12 mm or more, the
frequency change rate increases again, and when the size of the liquid crystal exceeds the
patch size of 20 mm, the frequency change rate does not increase and converges to about
100 MHz. In the center of the patch antenna where the null electric field forms, even if
liquid crystal is injected, it does not affect the frequency change rate much.Materials 2020, 13, x FOR PEER REVIEW 6 of 12 
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amount of frequency change.

The size of the liquid crystal in the x-direction is fixed at 20 mm, and the rate of
frequency change is analyzed while increasing the size in the y-direction, as shown in
Figure 5. Unlike the increase in the x-direction, as the size of ay increased, the tendency is
monotonically increased. However, when the ay becomes more extensive than the patch
antenna size of 20 mm, the frequency change rate becomes constant.
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In Figures 6 and 7, the liquid crystal area is fixed, and the frequency change rate is
checked while moving the position where the liquid crystal is injected. One side of the
liquid crystal is set to 20 mm, which is the length of one side of the patch antenna, and the
other side is fixed at 6 mm so that a certain degree of frequency change can be seen without
exceeding the size of λe/4. First, a 6 × 20 mm2 liquid crystal is placed parallel to the y-axis
in Figure 6a, and the frequency change rate is checked while moving on the x-axis, which
is the wave propagation direction. In the graph of Figure 6b, when a 6 × 20 mm2 liquid
crystal is located near the zero points, which is the center of the antenna, it shows a slight
change of less than 5 MHz, and when the liquid crystal moves near ±7 mm near both ends
of the patch, it provides the maximum change rate of about 40 MHz. When the liquid
crystal leaves both ends, the rate of frequency change decreases again. This simulation
confirms that the change in the dielectric constant of the liquid crystal significantly affects
the frequency change amount of the patch antenna when it is at both ends of the patch
antenna. However, it has little effect when it is at the center.
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A 6 × 20 mm2 liquid crystal is placed parallel to the x-axis, and the frequency change
rate of the patch antenna is checked while moving in the y-axis direction in Figure 7a.
In this simulation, a constant frequency change rate of about 15 MHz is shown at most
locations, except for ±10 mm, where the liquid crystal deviates slightly from the area
of the patch antenna. Since the electric field distribution is almost the same in the y-
direction, when the liquid crystal with the same size is moved, the frequency change rate is
uniformly displayed.

As a result of confirming the horizontal distribution of the liquid crystal on the surface
of the patch antenna, that is, the frequency variability according to the area and position
of the liquid crystal, the larger the area where the liquid crystal is distributed, the higher
the frequency variability. However, if the same amount of liquid crystal is injected, the
frequency variability can be increased if the liquid crystal is injected near both ends of
the patch in the x-direction rather than the central portion of the patch antenna. A liquid
crystal having a volume of 6 mm in the x-direction, 20 mm in the y-direction, and 0.1 mm
in thickness is placed at the end of the patch antenna parallel to the y-axis direction, and
then a simulation is performed to predict the dB(S11) and gain patterns of the antenna. At
this time, the tan δ of the liquid crystal is used as an estimated value of 0.01. As a result of
confirming the change in the resonant frequency of the patch antenna while changing the
permittivity from ε‖ to ε⊥, it can be seen that it decreases by about 40 MHz from 3.43 to
3.39 GHz, as shown in Figure 8a. In addition, the E-plane radiation patterns of the antenna
appear similar to that of a typical patch antenna, as shown in Figure 8b. The peak gain is
about 4.8 dBi, and the radiation efficiency is estimated to be about 73%.
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3.2. Analysis of Optimal Liquid Crystal Thickness in Patch Antenna Substrate

Structurally, the spacing between the top metallic patch and the bottom ground plane
has a dominant effect on the antenna radiation property. That is, as the substrate thickness
increases, the frequency bandwidth of the patch antenna increases. Therefore, in this
chapter, we analyze how the frequency change rate according to the vertical profile of the
patch antenna substrate varies.

The patch antenna is fabricated by patterning metal on a printed circuit board (PCB)
substrate such as glass. At this time, the top substrate and the bottom substrate are
separated to inject a liquid crystal between the substrates of the patch antenna. According
to the ratio of the liquid crystal cell gap to the sum of the thickness of the glass substrate
on which the top patch and the bottom ground plane are located, the frequency change
rate is confirmed through simulation. The cell gap of the liquid crystal is set to dLC, and the
thickness of the glass substrate was set to dsub. While changing the values of dLC and dsub,
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the frequency change rate of the antenna according to the change of the dielectric constant
of the liquid crystal is obtained, as shown in Figure 9b.Materials 2020, 13, x FOR PEER REVIEW 9 of 12 
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The thickness (dLC) of the liquid crystal was changed to 30, 60, 100, 200, and 300 µm,
and the frequency change rate was confirmed while increasing the thickness of the upper
and lower substrates to 1000 µm, respectively. As the liquid crystal cell gap increases, the
frequency change rate of the patch antenna increases. In addition, when the cell gap is
fixed, the frequency change rate decreases as the thickness of the glass with a dielectric
constant increases. In Figure 9c, the frequency change rate is redrawn as the ratio of the
thickness of the liquid crystal layer to the thickness of the entire substrate, not the absolute
value of the thickness. Regardless of the absolute value of the liquid crystal cell gap, it
can be seen that if the ratio of the liquid crystal layer to the total substrate thickness is
constant, the frequency change rate is almost the same. For example, suppose the ratio
of the thickness occupied by the liquid crystal layer compared to the total thickness of
the antenna substrate is constant at 0.2. In that case, a frequency change rate of about
60 MHz can be secured regardless of whether the liquid crystal layer used is 100 µm or
300 µm. Therefore, in order to obtain a desired frequency change rate, it can be secured by
appropriately adjusting the overall thickness rather than using an unconditionally thick
expensive liquid crystal.
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3.3. Liquid Crystal Patch Antenna Performance Enhancement Technique

Next, we propose an idea for maximizing the previously analyzed frequency change
rate and securing the bandwidth of the patch antenna. First of all, when fabricating a
patch antenna based on a liquid crystal, an alignment layer must be laid on the upper and
lower surfaces of the liquid crystal to secure the dielectric anisotropy of the liquid crystal
sufficiently. At this time, the alignment force of the alignment layer is rapidly weakened
at a thickness of 100 µm or more [8]. Therefore, it does not make much sense to use a
liquid crystal layer with a thickness of 100 µm or more when manufacturing a liquid crystal
patch antenna.

On the other hand, in terms of antenna radiation performance, since the frequency
bandwidth increases as the thickness of the substrate increases, it is advantageous to make
the thickness of the patch antenna substrate as thick as possible unless unwanted modes
occur. Since a patch antenna operating in the several GHz bands can secure a reasonable
bandwidth when using a substrate with a thickness of several hundred µm, this paper
proposes a method to increase the thickness of the antenna substrate while maintaining the
alignment force. As shown in Figure 10a, this is a method to increase the thickness of the
entire substrate by additionally inserting an alignment layer for each 100 µm-thick liquid
crystal layer. In this case, the thickness of the liquid crystal layer does not exceed 100 µm,
and the overall thickness of the antenna substrate can be increased. However, as previously
analyzed, since the substrate used as the alignment layer is additionally inserted, the ratio
of the thickness occupied by the liquid crystal layer among the thicknesses of the entire
substrate is reduced.
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Figure 10b shows a graph comparing the frequency bandwidth and frequency varia-
tion of the antenna while increasing the alignment layer inserted in the middle one by one.
The thickness of one liquid crystal layer is set to 100 µm, and the thickness of the inserted
alignment layer is also set to 100 µm. For example, when one alignment layer is inserted,
the liquid crystal layer becomes two, one above and one below, so the ratio of the liquid
crystal cell gap to the total thickness is 2/3. When two alignment layers are inserted, the
liquid crystal layers are divided into three, and the ratio of the liquid crystal cell gap to
the total substrate thickness is 3/5. As expected, as the number of 100 µm-thick liquid
crystal layers inserted, the total thickness of the antenna substrate increased, increasing
the frequency bandwidth, while the rate of frequency change decreased. In case of the
thickness of the layers inserted for the LC alignment to be less than 100 µm, it is possible to
suppress a decrease in frequency change rate due to an increase in the active layer ratio
(∑dLC/(∑(dLC + dsub))). Therefore, when designing a liquid crystal patch antenna, it is
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expected to be able to design it by appropriately selecting the number of liquid crystal
layers in consideration of the desired bandwidth and frequency change rate.

4. Conclusions

A method of effectively designing a patch antenna for variable frequencies using
the dielectric anisotropy of liquid crystal has been described. By analyzing the primary
electric-field distribution of the patch antenna and the radiation performance of the patch
antenna according to the substrate thickness, a study is conducted on where it is effective
to inject a liquid crystal to maximize the frequency variation of the patch antenna. By
proposing a method of maximizing the amount of frequency change using a minimum
amount of liquid crystal, a technology for efficient dispersing of expensive liquid crystals
on the substrate is secured. The development of a more practical liquid crystal smart
antenna can be accelerated when the remaining tasks include developing a liquid crystal
material optimized for the microwave band, the optimization of the structures for low
voltage driving, and the rapid response to voltage changes can be solved.
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