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REVIEW

Targeting Nrf2 may reverse the drug 
resistance in ovarian cancer
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Abstract 

Background: Acquired resistance to therapeutic drugs has become an important issue in treating ovarian cancer. 
Studies have shown that the prevalent chemotherapy resistance (cisplatin, paclitaxel etc.) for ovarian cancer occurs 
partly because of decreased production of reactive oxygen species within the mitochondria of ovarian cancer cells.

Main Body: Nuclear erythroid-related factor-2 (Nrf2) mainly controls the regulation of transcription of genes through 
the Keap1-Nrf2-ARE signaling pathway and protects cells by fighting oxidative stress and defending against harmful 
substances. This protective effect is reflected in the promotion of tumor cell growth and their resistance to chemo-
therapy drugs. Therefore, inhibition of the Nrf2 pathway may reverse drug resistance. In this review, we describe the 
functions of Nrf2 in drug resistance based on Nrf2-associated signaling pathways determined in previous studies.

Conclusions: Further studies on the relevant mechanisms of Nrf2 may help improve the outcomes of ovarian cancer 
therapy.
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Background
Malignant ovarian tumors are one of the most common 
malignant tumors of the female reproductive organ. 
Among them, ovarian epithelial cancer has the high-
est mortality rate, posing a serious threat to women’s 
life. Early stage ovarian tumors are usually located deep 
inside the pelvis, exhibit no typical symptoms and are 
thus discovered only at the advanced stage. The treat-
ment options for advanced ovarian cancer are usually 
cytoreductive surgery and chemotherapy. However, 
the current chemoresistance in ovarian cancer(OC)has 
become a key cause of treatment failure and OC-related 
deaths [1]. Although extensive research has been carried 
out on complex factors, including increased drug efflux, 
drug inactivation, alteration in drug target, and increased 

DNA repair, the existing mechanisms fail to completely 
account for the drug resistance in OC [2, 3]. In recent 
years, the level of oxygen species (ROS) has also been 
reported to play a vital role in the development of drug 
resistance in OC, and thus targeting ROS levels may be 
a promising strategy to conquer cancer chemoresistance.

Oxidative stress refers to the process of oxidative dam-
age caused by an imbalance between the production and 
scavenging of oxygen free radicals in the body or cells, 
resulting in the accumulation of ROS and RNS in the 
body or cells. Increased ROS levels activate relevant sign-
aling pathways, inhibit the function of tumor suppressor 
genes, and induce oncogenic mutations, ultimately lead-
ing to tumorigenesis [4, 5]. Moreover, the significance of 
elevated ROS lies in facilitating genomic instability and 
DNA damage in tumors with drug resistance and recur-
rence [6, 7]. Consequently, more researches on ROS reg-
ulation would assist us to overcome drug resistance in 
OC.

Nrf2 exerts a modifying influence on cellular oxida-
tive stress response. At the same time, by modulating the 
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expression of antioxidant genes, Nrf2 can help prevent 
cell damage from ROS and electrophiles and keep the 
balance of intracellular redox homeostasis [8, 9]. Con-
versely, findings from previous studies suggest that con-
tinuous activation of antioxidant Nrf2 may be beneficial 
to the growth of cancer cells, and may become a way for 
cancer cells to escape the attack of chemotherapy drugs, 
providing conditions for cancer cells to develop drug 
resistance [7, 10–12]. Accordingly, the purpose of this 
review is to review recent research on Nrf2-related drug 
resistance and mechanisms in OC to provide reference 
for clinical treatment.

Nrf2 and ROS
ROS regulation in OC
Recently, several studies showed that the generation 
of ROS is associated with drug resistance [13–16]. On 
the one hand that ROS mediate cytotoxicity induced 
by drugs in tumor cells. On the other hand ,cancer cells 
are surrounded by antioxidant molecules to keep ROS 
in the tumor microenvironment (TME), which contrib-
utes to the maintenance of drug resistance in OC [17]. 
This phenomenon may be caused by the different con-
centrations of ROS in cancer cells [18]. Usually, at low 
levels, ROS stimulate cell proliferation and survival in 
the form of mitogens [19, 20]. At medium levels, ROS 
may hinder the cell cycle process at varying degrees and 
induce cell differentiation [21]. At high levels, ROS might 
impair fundamental cellular substances such as proteins, 
DNAs, RNAs, and cause gene mutations—inhibition of 
tumor suppressor genes(P53,PTEN)and activation of 

oncogenes(K-ras, ERK,AKT), resulting in tumorigenesis 
in normal cells or multidrug resistance in cancers [18]. 
Consistently, Meng et  al. and Dharmaraja et  al. have 
identified that platinum-resistant OC cells can maintain 
steady high levels of ROS,which results in DNA damage 
[13, 22, 23]. In addition, several studies have indicated 
that in the TME, hypoxia-induced ROS cause cisplatin 
resistance by downregulating p-Drp1 (Ser637) and Mfn1 
in OC cells [15, 16]. Common radio- and chemothera-
peutic agents affect tumor outcome by modulating ROS; 
therefore, the impact of ROS modulation is essential for 
cancer treatment.

Nrf2 regulation in OC
Nrf2 is a member of the Cap-n-Collar (CNC) regulatory 
protein family and is a transcription factor with a highly 
conserved basic leucine zipper structure. Nrf2 is a regula-
tory protein containing seven domains, Neh1–7, and has 
diverse features (Fig. 1). The Neh1 domain consists of the 
CNC-bZIP region, in which DNA binds to sMaf proteins 
as Nrf2 dimerization partners [24, 25]. The Neh2 domain 
contains two sites, namely DLG and ETGE, which com-
bine with the cytoplasmic protein Keap1, a negative 
regulator of Nrf2 transcriptional activity [26]. Neh3–5 
can bind to coactivating factors and are transactivating 
structural domains of Nrf2 [27, 28]. Neh6 is a serine-rich 
region associated with the negative regulation of Nrf2 
stability, which relies on Keap1 [29]. Neh7 containing the 
retinoid X receptor inhibits the transcriptional activity of 
Nrf2 [30].

Fig. 1 Structure of the human Nrf2 protein. The Neh1 domain consists of the CNC-bZIP region, in which DNA binds the sMaf proteins as Nrf2 
dimerization partners. The Neh2 domain contains two sites, named as DLG and ETGE, which combine with the cytoplasmic protein Keap1, a 
negative regulator of Nrf2 transcriptional activity. Neh3–5 can bind with coactivating factors and are transactivating structural domains of Nrf2.
Neh6 is a serine-rich region associated with the negative regulation of Nrf2 stability, which relies on Keap1. Neh7 containing the retinoid X receptor 
inhibits the transcriptional activity of Nrf2 
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Under physiological conditions, Nrf2 is anchored in 
the cytoplasm by Keap1 as a substrate for the cullin 
3-dependent E3 ubiquitin ligase complex and can induce 
ubiquitination and promptly degrade Nrf2 via the protea-
some. However, when ROS or electrophiles attack cells, 
Nrf2 detaches from Keap1 and is rapidly translocated 
into the nucleus, forming a heterodimer with the sMaf 
protein and then integrating with the ARE, thereby tran-
scriptionally activating Nrf2-regulated antioxidant gene 
expression including HO-1,NQO1,GCL,PRDX and SOD 
to exert anti-oxidative effects (Fig.  2). Nrf2 has a short 
half-life of around 10–30 min, and thus the high turno-
ver of Nrf2 induced by Keap1 maintains ultra-low lev-
els of Nrf2  [31, 32]. The protein products of these genes 
mediate detoxification through glutathione coupling and 
participate in ATP-dependent drug efflux, which may be 
involved with cisplatin resistance in OC [33]. High levels 
of Nrf2 provide a protective environment in both normal 
and cancer cells.

Excessive activation of Nrf2 is considered as an inter-
mediate link in cell proliferation and causes drug resist-
ance in cancer therapy as well [34–36]. To be specific, 

Nrf2 activation and Keap1 inactivation mutations are 
the precursors of permanent constitutive activation of 
the Nrf2-dependent AR pathway, which is frequently 
observed in cancer. Besides, anti-cancer radiation and 
chemotherapies, rely heavily on the production of ROS to 
induce cytotoxicity [37–39]. Hence, excessive activation 
of the Nrf2-dependent AR pathway will reduce the effec-
tiveness of such treatments [40, 41].

A clinical study has indicated that high cytoplasmic 
Nrf2 expression (the inactivated form of Nrf2) in serous 
carcinoma subtypes is associated with longer survival 
(p  <  0.05), which appears to correlate with high ERα 
expression (p < 0.05) [42]. The same team found that Nrf2 
expression in the cytoplasm was positively correlated 
with PR expression (p < 0.05) [43]. Furthermore, a retro-
spective study of the relationship between Nrf2 expres-
sion and clinical prognosis in 108 patients with different 
subtypes of OC showed that a high expression of Nrf2 in 
OC indicates short DFS (HR: 2.084; 95% CI: 1.229–3.536) 
and OS (HR: 2.487; 95% CI: 1.443–4.286) [44]. Konstan-
tinopoulos et  al. found that among 64 advanced EOC 
patients, the upregulation of Nrf2 promoted cisplatin 

Fig. 2 The classical view of Nrf2 activation and response. Under physiological conditions, Nrf2 is anchored in the cytoplasm by Keap1 as a substrate 
for Cullin 3-dependent E3 ubiquitin ligase complex and can induce ubiquitination and promptly degrade Nrf2 via the proteasome. However, when 
ROS or electrophiles attack cells, Nrf2 detaches from Keap1 and is rapidly transferred into the nucleus, forming a heterodimer with the sMaf protein 
and then integrating with the ARE, thereby transcriptionally activating Nrf2-regulated antioxidant gene expression including HO-1,NQO1,GCL,PRDX 
and SOD to exert anti-oxidative effects
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resistance in OC patients and was associated with a 
short OS (P < 0.05) [45]. However, another study showed 
that chemoresistance is not significantly correlated with 
Nrf2 expression, although patients with low Nrf2 expres-
sion have higher recurrence rates and death rates than 
patients with high Nrf2 expression. [46] Hence, further 
studies on the relationships between clinical prognosis 
and Nrf2 expression, as well as relevant drug resistance 
mechanisms related to Nrf2, are needed.

Effect of Nrf2 on treatments for OC
Oncogenic mutations in OC may promote drug resistance 
by activating Nrf2
Disorder of Nrf2/Keap1 caused by mutation and activa-
tion of up-stream oncogenes is associated with nuclear 
transportation and constitutive activation of Nrf2. Gina 
et  al. have confirmed that oncogenic mutations in pri-
mary murine cells, such as Kras, Braf and Myc, separately 
increased the constitutive transcription of Nrf2 to stabi-
lize the basal Nrf2 level and hence reduce intracellular 
ROS, ultimately causing cells to escape from apoptosis 
and promoting tumorigenesis, metastasis and chemore-
sistance [9, 47]. In view of the relationship of ROS and 
Nrf2 with tumorigenesis, Nrf2 appears to be a significant 
target for cancer treatment.

Role of Nrf2 in ROS‑mediated therapy resistance in OC
Role of Nrf2 in ROS‑mediated cisplatin resistance in OC
As mentioned earlier, ROS play an indispensable role in 
the development of drug resistance. As the main antioxi-
dant regulator, Nrf2, which is involved in ROS detoxifi-
cation, tightly regulates drug resistance of tumors. It has 
been reported that during oxidative stress, as the tran-
scription target of Nrf2, p62/SQSTM1 competes with 
Nrf2 for binding to Keap1 and forms a positive feed-
back loop between p62 and Nrf2  [48]. Xia et al. showed 
that overexpressed p62 may protect cells from vitamin 
K3-induced ROS generation by up-regulating antioxidant 
genes downstream of Nrf2, including HO-1 and NQO1, in 
OC [49]. Additionally, recent cases reported by Wu et al. 
also support the hypothesis that overexpression of CD99, 
a significant downstream gene of Nrf2, facilitates Nrf2-
mediated cisplatin resistance in OC [50, 51]. Bao et  al. 
suggested that low levels of Nrf2 suppressed the expres-
sion of ABCF2 and enhanced cisplatin sensitivity in OC 
cells by mediating the drug efflux pump mechanism [52]. 
Chen et al. argued that knockdown of Nrf2 in the SKVO3 
cell line increased the production of ROS induced by 
cisplatin by increasing the phosphorylation level of p38-
JNK.This subsequently led to elevation of ATF2 levels, 
followed by decreased expression of AKR1C1,which is 
involved in apoptosis, ultimately promoting the sensitiv-
ity of OC to cisplatin [53]. It was recently reported that 

activation of Nrf2 promotes activation of its downstream 
gene AKR1C1, which converts progesterone to an inac-
tive form and promotes platinum resistance in ovarian 
cancer, while metformin reverses this process by increas-
ing PR expression [54]. Mechanistically, Sun et al. found 
that SIRT5 contributes to the cisplatin resistance of OC 
by inhibiting cisplatin-mediated DNA damage via ROS 
through Nrf2 pathway modulation [55]. SLC40A1, as a 
novel iron metabolism-associated gene, serves as the 
only iron exporter gene with several putative Nrf2 bind-
ing sites. Wu et al. found that Nrf2 is highly expressed in 
cisplatin-resistant OC cells. Significantly increased gene 
expression of SLC401, a transferrin that inhibits Nrf2 
translocation into the nucleus, reverses iron overload—
induced cisplatin resistance in OC cells [56].

Molecular factors involved in Nrf2 regulation contribute 
to paclitaxel resistance
Paclitaxel is a first-line adjuvant drug for the treatment 
of OC, but only about half of OC patients respond to it 
[57, 58]. It is a new anti-microtubule drug that promotes 
tubulin polymerization to inhibit depolymerization, 
keeps tubulin stable, and inhibits cell mitosis. These dif-
ferent mechanisms cause a cascade of toxic effects in OC, 
such as the reduction of Δψm or elevation of ROS, which 
will eventually lead to cell death [59]. Enhancing the sen-
sitivity of OC patients to paclitaxel is of great significance 
to improve prognosis. Stimulation of NADPH oxidase to 
accumulate ROS is an important part of paclitaxel cyto-
toxicity in cancer cells [60, 61]. Woo et al. held the view 
that inhibition of Nrf2 can enhance the chemosensitiv-
ity of cancer cells to paclitaxel [62]. We have reason to 
believe that targeting Nrf2 levels in OC cells may play an 
important role in overcoming paclitaxel resistance.

Role of Nrf2 in ROS‑mediated PARP inhibitor sensitivity in OC
At present, under the condition of platinum resistance in 
OC, PARPi have shown encouraging effects in the first 
[63–65] and second-line [66, 67] maintenance therapy 
for patients with BRCA1/2 mutation and HRD [68]. Cells 
with HRD must depend on the replaceable mechanisms 
of NHEJ and BER, both of which require PARP enzymes 
[69].  BRCA1/2 mutant cancer cells may develop PARPi 
resistance by restoring HR repair and/or protecting rep-
lication forks [70].

Mitochondrial metabolism and ROS production cause 
DNA oxidative damage and genomic instability in can-
cers [71]. HRD OCcells require high levels of NAD + and 
ATP to power PARP-dependent DNA repair [72]. 
Besides, some scholars have found that PARPi enhanced 
the effect of Nrf2 inhibitors in BRCA1-mutant OC cells 
without fear of side effects from the combination of Nrf2 
inhibitors with chemotherapeutics [73]. From the above 
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findings, we can speculate that Nrf2 may play an irre-
placeable role in PARPi repair of ROS-DNA oxidative 
damage.

Role of Nrf2 in ROS‑mediated pertuzumab and trastuzumab 
resistance in OC
Several studies have proved that HER2/HER3, Nrf2,and 
ROS play a key role in promoting growth and drug resist-
ance in cancer cells [74–79].   Specifically, as a key regu-
lator of the Nrf2 pathway, ROS can regulate the HER2/
HER3 complex and activate its function. When per-
tuzumab and trastuzumab, which target HER2/HER3 
receptors, are used to treat with OC cell lines, Nrf2 inhi-
bition suppress the Nrf2-dependent antioxidant response 
pathway, thereby allowing OC cells to overcome resist-
ance to monoclonal antibodies. Khalil et al. proved that 
Nrf2 is a key factor driving the drug resistance in OC; this 
provides a new treatment idea in the sensitization of OC 
to immune targeted therapy [80].

Nrf2 inhibition increases the sensitivity of OC cells to 
adriamycin, one of the chemicals used in the treatment 
of OC [81]. Besides, Nrf2 modulates the sensitivity of OC 
cells to lapatinib and erlotinib by regulating the HER1 
receptor [82].

Role of  Nrf2 in ROS‑mediated Mppa‑PDT resistance in OC
PDT is a new type of tumor treatment method that has 
emerged in response to the development of medicine. It 
uses a photosensitizer that specifically accumulates in 
tumor tissues—currently, Mppa has a wide range of clini-
cal application prospects due to its good absorption, high 
energy density, and strong permeability [83, 84]. It is acti-
vated under a specific wavelength of light, and a complex 
photochemical reaction occurs to generate ROS, which 
lead to irreversible tumor damage [85–87]. According to 
a previous research, Nrf2 silencing enhanced PDT sensi-
tivity in breast, colon, renal, and glioblastoma cancer cells 
based on Mppa, which can increase the accumulation 
of photosensitizers by down-regulating ABCG2, thereby 
promoting the production of ROS [88]. Coincidentally, 
Tian et  al. found that the inhibition of Nrf2- ABCG2 /
HO-1 signaling increased ROS levels by attenuating anti-
oxidants or pumping Mppa out of OC cells—suggest-
ing that Nrf2-ABCG2 signaling might be involved in the 
intrinsic resistance to Mppa-PDT [89].

Role of Nrf2 in ROS‑mediated ferroptosis resistance in OC
Ferroptosis is a novel mode of cell death first discovered 
by Dixon et  al. in 2012 that is,—associated with unique 
morphological structure, biochemical, and genetic mani-
festations; it is essentially oxidative damage caused by 
excessive accumulation of iron ion-dependent lipid per-
oxidation products, mainly mitochondrial alterations 

[90]. Under normal conditions, Nrf2 remains inactive; 
when induced by ROS stimulation or electrophile sub-
stances, Nrf2 changes its molecular conformation and 
activates downstream antioxidant enzymes to play the 
role of an antioxidant and inhibit cellular ferroptosis 
[91]. There are two pathways to synthesize glutathione, 
which plays an essential role in combating oxidative 
stress, reducing lipid peroxidation, and protecting tissue 
cells, —in tumor cells: (a) The classical XC-system: the 
key factor is SLC7A11; and (b) Reverse transsulfuration 
pathway, and the key enzyme in this pathway is CBS; The 
above pathways can be activated by the ability of GPx4 
to specifically convert highly toxic lipid hydrogen perox-
ide to non-toxic lipid alcohols, breaking down hydrogen 
peroxide to water, and its inactivation can induce exces-
sive production of lipid ROS, which can contribute to 
ferroptosis. It has been reported that GPx4 is an Nrf2 
downstream gene and that Nrf2 upregulation or GPX4 
overexpression may be significantly associated with fer-
roptosis resistance in head and neck cancer, but this has 
not been confirmed in OC [92, 93]. In addition, Liu et al. 
showed that in OC, Nrf2 also causes erastin-induced fer-
roptosis resistance by activating CBS [94].

Natural inhibitors of Nrf2
Given that Nrf2 has a protective effect on tumors and 
can cause chemotherapy resistance, in recent years, 
many chemical substances and plant extracts have been 
reported to inhibit Nrf2 to confront the problem of drug 
resistance [95–100].

Brusatol, a quassinoid compound derived from Brucea 
javanica, is considered as a general translation inhibitor 
that results in decreased levels of short-lived proteins 
including Nrf2  [95]. For this reason, brusatol’s ability to 
overcome chemoresistance is compromised. Recently, 
Chen et  al. isolated a plCSA-binding peptide from the 
malaria protein VAR2CSA, which effectively promotes 
the binding of brustol to OC, thus overcoming the draw-
back mentioned above [96]. In addition, Cucci et  al. 
showed that ailanthone from Ailanthus altissima could 
significantly inhibit the expression of Nrf2 and YAP pro-
tein and subsequently inhibit the growth and colony for-
mation of cisplatin-sensitive and cisplatin-resistant OC 
cells, and exert greater inhibitory effects on the migration 
of targeted cisplatin-resistant cells [97].

There are also some compounds that have not been 
proven in OC. Ascorbic acid, an inhibitor of Nrf2, par-
tially restored cell sensitivity to imatinib by down-regu-
lating Nrf2 and reducing the expression of γ-GCSL and 
the level of glutathione [98], and increased the sensitiv-
ity of HeLa cells to cisplatin and adriamycin [99]. Api-
genin, a flavonoid extracted from various vegetables 
and fruits, inhibits the Nrf2 pathway, thereby making 
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doxorubicin-resistant liver cancer cells sensitive to doxo-
rubicin and increasing intracellular doxorubicin [100].

Conclusions
The Keap1-Nrf2-ARE system is a critical defense mecha-
nism to protect cells from oxidative stress and electro-
philic stress. While temporary Nrf2 activation during 
stress is advantageous for cell proliferation [101], sus-
tained Nrf2 activation in cancer cells confers chemore-
sistance and aggressive tumorigenic activity, which has 
deleterious effects on the cancer patients [102–105]. 
Since Nrf2 increases the antioxidant and detoxification 
capacity of cancer cells, sustained high levels of Nrf2 
activity can enhance therapeutic resistance of cancer 
cells. Nrf2 also drives metabolic reprogramming and 
cooperates with other oncogenic pathways to establish 
cellular metabolic processes that favor cell proliferation.

Most patients with OC treated by chemotherapy, 
immunotherapy, and molecular targeted therapy even-
tually develop resistance and show poor outcomes. In 

fact, there are many proteins that regulate the process of 
drug resistance in OC;—for example, downregulation of 
14-3-3ζ, a key protein involved in ovarian development 
and gamete function [106–108], by RNA interference 
in OC cells results in enhanced sensitivity to cisplatin-
induced cell death [109]. Meanwhile, multiple isoforms 
of 14-3-3 protein strongly interact with the cell cycle 
protein CDC25B, which is inactivated in Nrf2−/− cells, 
to regulate cell cycle in oocyte [110, 111]. Why did we 
choose to review Nrf2 as a key pivot in the regulation 
of drug resistance in OC? As described above, Nrf2, as 
the main regulator of the antioxidant response path-
way, has received increasing attention for its significant 
effect in drug-resistant OC and thus, may be targeted 
for treating advanced OC. So far, several Nrf2 inhibitors 
have been used for overcoming drug resistance in OC. 
In addition to Nrf2 inhibitors, new potential therapeutic 
targets related to Nrf2 for overcoming drug resistance 
in OC are being identified (Fig.  3; Table  1). However, 
the mechanisms of Nrf2-associated drug resistance in 

Fig. 3 Various drug resistance mechanisms associated with Nrf2. SIRT5,CD99,ABCG2/HO-2,HER1,HER2/HER3,ABCF2,GPX4,AKR1C1 and CBS have a 
positive relationship with Nrf2 as molecules regulated by Nrf2 or regulating Nrf2;while ATF and SLC40A1 have a negative relationship with Nrf2; As 
the transcription target of Nrf2, p62/SQSTM1 competes with Nrf2 for binding with Keap1 and form a positive feedback loop between p62 and Nrf2.
(“→” represents “activation” “— ” means “inhibition”.)
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OC cells remain unclear and should therefore be further 
investigated. There is also a need to develop appropri-
ate animal models to evaluate the therapeutic efficacy of 
Nrf2-related therapeutic targets in drug-resistant OC.

Besides active exploration and mechanistic research 
on therapeutic targets associated with Nrf2, studies for 
discovering diagnostic biomarkers and surrogate mark-
ers for refractory OC are also needed. For progress in 
diagnosis and treatment, further researches and technical 
improvements are required. Consequently, a thorough 
elucidation of the function of Nrf2 will help to improve 
the clinical diagnosis and prognosis of OC.
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