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Abstract

HIV viral load (VL) predicts both transmission potential and rate of disease progression. For reasons that are still not fully un-
derstood, the set point viral load (SPVL) established after acute infection varies across individuals and populations. Previous
studies have suggested that population mean SPVL (MSPVL) has evolved near an optimum that reflects a trade-off between
transmissibility and host survival. Sexual network structures affect rates of potential exposure during different within-host
phases of infection marked by different transmission probabilities, and thus affect the number and timing of transmission
events. These structures include relational concurrency, which has been argued to explain key differences in HIV burden across
populations. We hypothesize that concurrency will alter the fitness landscape for SPVL in ways that differ from other network
features whose impacts accrue at other times during infection. To quantitatively test this hypothesis, we developed a dy-
namic, stochastic, data-driven network model of HIV transmission, and evolution to assess the impact of key sexual network
phenomena on MSPVL evolution. Experiments were repeated in sensitivity runs that made different assumptions about trans-
missibility during acute infection, SPVL heritability, and the functional form of the relationship between VL and transmissibil-
ity. For our main transmission model, scenarios yielded MSPVLs ranging from 4.4 to 4.75 log;o copies/ml, covering much of the
observed empirical range. MSPVL evolved to be higher in populations with high concurrency and shorter relational durations,
with values varying over a clinically significant range. In linear regression analyses on these and other predictors, main effects
were significant (P < 0.05), as were interaction terms, indicating that effects are interdependent. We also noted a strong corre-
lation between two key emergent properties measured at the end of the simulations—MSPVL and HIV prevalence—most
clearly for phenomena that affect transmission networks early in infection. Controlling for prevalence, high concurrency
yielded higher MSPVL than other network phenomena. Interestingly, we observed lower prevalence in runs in which SPVL her-
itability was zero, indicating the potential for viral evolution to exacerbate disease burden over time. Future efforts to under-
stand empirical variation in MSPVL should consider local HIV burden and basic sexual behavioral and network structure.
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1. Introduction

HIV set point viral load (SPVL)—generally defined as the average
viral load (VL) an individual achieves during the period immedi-
ately following acute infection—varies among individuals and
across populations, and impacts both clinical outcomes and on-
ward transmission. Among individuals, SPVLs can vary over
orders of magnitude (Mellors et al. 1996; Bonhoeffer et al. 2003;
Bonhoeffer, Fraser, and Leventhal 2015). Predictors for higher
SPVL include CCRS, HLA, and other host genotypes (Blanpain
et al. 2002; van Manen et al. 2011; McLaren et al. 2015), sex
(Gandhi et al. 2002), genital inflammation (Roberts et al. 2012),
age (Hollingsworth, Anderson, and Fraser 2010) and possibly vi-
ral subtype (Robb et al. 2016, but see subsequent correspon-
dence), although the causal mechanisms for these predictors
are not all clear. Recent mathematical modeling work suggests
that intra-host meta-population dynamics may also be respon-
sible for some of this variation (Lythgoe et al. 2016).

The distribution of individual SPVL values does not occur
randomly across populations. For instance, one recent meta-
analysis (Herbeck et al. 2012) found that mean SPVL (MSPVL)
observed in different populations ranged from 4.2 to 5.1 logjo
copies/ml (nearly an order of magnitude), with the majority be-
tween 4.30 and 4.55 (Miiller et al. 2006; Dorrucci et al. 2007;
Herbeck et al. 2008; Gras et al. 2009; Miiller et al. 2009; Potard
et al. 2009; Troude et al. 2009; Crum-Cianflone et al. 2010). These
differences, while far narrower than those occurring among
individuals, are still clinically significant (Modjarrad, Chamod,
and Vermund 2008). Efforts to explain the correlates of this pop-
ulation variation, and the causal mechanisms for them, have
met limited success. For example, while transmission risk group
was associated with different MSPVL and different temporal
trends in an analysis of the Italian HIV epidemic (Miiller et al.
2009), the aforementioned meta-analysis (Herbeck et al. 2012)
considered multiple predictors for population variation in SPVL
trends, and found only seroconversion lag time to be significant;
other potential predictors, such as transmission risk group com-
position, were not. Sampling variation and sampling bias un-
doubtedly contribute to SPVL variation, although we are
unaware of any efforts to quantify these effects.

By being partially heritable from donor to recipient (Alizon
et al. 2010; Fraser et al. 2014), SPVL contains the necessary con-
ditions for evolution by natural selection as a viral phenotype. It
entails an evolutionary trade-off, with higher SPVL leading to
conditions for the virus that are both positive (higher transmis-
sibility, e.g. Quinn et al. 2000; Fideli et al. 2001) and negative
(higher host mortality, e.g. Coombs et al. 1996; Welles et al.
1996). Because it affects host morbidity and mortality, it is con-
sidered a measure of virulence, and a long theoretical literature
hypothesizes that virulence will often evolve to some interme-
diate, optimum level under this type of trade-off (for a review,
see Alizon et al. 2009). Modeling of some specific virological fea-
tures of HIV has suggested that the MSPVL observed in some
populations appears to be close to a hypothesized evolutionary
optimum of 4.52 log;q copies/ml (Fraser et al. 2007). A later
model predicted a higher optimum (4.75, Herbeck et al. 2014),
whereas other models suggest that SPVL may still be evolving in
some settings (Blanquart et al. 2016), as do some empirical anal-
yses (Miiller et al. 2009; Herbeck et al. 2012; Pantazis et al. 2014).
Interventions can further complicate HIV dynamics; e.g. treat-
ment scale-up (Herbeck et al. 2016) has been predicted to affect
expected MSPVL. Given the rapid levels of intra-host viral evolu-
tion in the face of short-term selection pressures, this between-
host heritability and the evolutionary dynamics that depend on
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Figure 1. Schematic diagram of a potential trade-off function between virulence
(as measured by mortality) and transmissibility, for a pathogen like HIV that has
no recovery. Under a host of simplifying assumptions, virulence is expected to
evolve to the level marked by the dot, located at the point of intersection for the
tangent line that contains the origin, and representing the conditions under
which Ry is maximized. Adapted from Bull and Lauring (2014).

it might seem surprising and to require an argument for group
selection; however, Fraser et al. (2014) hypothesize multiple
mechanisms by which this apparent puzzle may be explained.

The theoretical literature on virulence evolution emphasizes
that the nature of the trade-off curve between transmission and
duration of infection (a function of both recovery and mortality)
should change the level of virulence that evolves. For example,
in models with random mixing and other key simplifying
assumptions, pathogen virulence is expected to evolve to the
value represented by the intersection of the tangent to the
trade-off curve that passes through the origin (van Baalen and
Sabelis 1995; Bull and Lauring 2014). This is the point represent-
ing the highest Ro—or reproductive ratio—achievable by the vi-
rus given its evolutionary constraints. For HIV—where there is
obviously no recovery—duration is determined by mortality
(Fig. 1; note that the curve does not hit the origin since the x-
axis includes background mortality). These basic insights derive
from purposefully simple models; the literature has also gener-
ated various hypotheses about ways that relaxing different
assumptions may alter the expected pattern of virulence, both
over time and at equilibrium. For example, one line of work pre-
dicts that, under modeled conditions, more virulent strains may
be selected for early in an unfolding epidemic, even when at
equilibrium less virulent strains are favored (Andre and
Hochberg 2005).

Extensions to this literature have explored how non-random
mixing affects virulence. Many of these focus on spatial models
(e.g. Boots and Sasaki 1999; Haraguchi and Sasaki 2000; Kamo,
Sasaki, and Boots 2007; Berngruber, Lion, and Gandon 2015), al-
though at least two considered additional forms of contact het-
erogeneity in the form of networks (van Baalen 2002; Read and
Keeling 2003). The former compares purely random networks to
two structures: a “small worlds” model common in the net-
works literature that draws on the statistical physics tradition,
and a network model with high transitivity (one’s partners’
partner is one’s partner). They find that the transmission/sur-
vival trade-off leans more heavily towards high transmission in
high-transitivity networks than elsewhere, since strains are in
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more competition with closely related virus. Evolutionary dy-
namics in both types of structured networks are much slower
than in the random network. The latter paper also compares
networks with different levels of transitivity (there called
‘regularity’). The author finds that the effects of transitivity on
virulence evolution matter most in sparse networks (those in
which individuals have few contacts), and that in these cases,
the higher the regularity, the more that less virulent strains are
able to dominate. While both papers provide novel theoretical
insights, they are limited in their ability to elucidate evolution-
ary dynamics in real-world sexual networks, as the authors
themselves acknowledge. For instance, both assume a static
network (relationships do not form or break); one assumes peo-
ple average eight simultaneous partners (roughly an order of
magnitude higher than seen in empirical sexual networks)
while the other assumes no variance in partner number; and
one assumes no births and deaths.

Real sexual networks are, of course, dynamic, and vary in
the number of persons having multiple relationships at any
time point. One analysis that incorporated a more complex dy-
namic network model in the context of HIV SPVL is Herbeck
et al. (2016). Their model included multiple risk groups, each
displaying different relational durations and numbers of cumu-
lative partners over time. However, the analysis focused on evo-
lution of HIV virulence in response to different approaches to
scaling up of antiretroviral therapy, not in terms of variation in
network structure per se. The authors explored sensitivity analy-
ses in which network features were changed, but did not report
on the direct impacts of those changes on SPVL; rather, the fo-
cus was on demonstrating that the primary conclusion compar-
ing different treatment allocation strategies in terms of
evolutionary impact was insensitive to assumptions of network
structure. Moreover, the included network structure was se-
lected primarily to replicate existing ART models, with some
parameters tuned to calibrate the model to observed HIV preva-
lence, rather than derived from data.

There has been much debate about how realistic models
with so-called core-group dynamics like these are; one common
critique is that, in order to generate generalized heterosexual
epidemics in this framework, the proportion of the population
having very high cumulative partner numbers needs to far ex-
ceed that seen in any empirical data set (Deuchert and Brody
2007; Goodreau 2013). Heterogeneity in cumulative partner
numbers surely exists, with important implications for the epi-
demiology of HIV and other STIs, but researchers have sought
additional network features that could generate observed epi-
demics in ways that match empirical data. The most prominent
topic in this literature is concurrency—the practice of having
multiple relationships that overlap in time (e.g. Watts and May
1992; Morris and Kretzschmar 1995; Eaton, Hallet, and Garnett
2011; Goodreau et al. 2012a; Mah and Halperin 2010; Morris,
Epstein, and Wawer 2010; Epstein and Morris 2011; Maughan-
Brown, Kenyon, and Lurie 2014; Kenyon et al. 2016).
Concurrency has been argued to play a central role in creating
the connectivity needed to sustain heterosexual HIV epidemics,
where high mean lifetime partner numbers are not commonly
reported. More recent work has considered the prevalence and
consequences of relational concurrency among men who have
sex with men (MSM; Beyrer et al. 2010; Solomon et al. 2010;
Rosenberg, Khosropour, and Sullivan 2012; Rosenberg et al.
2013; Rosenberg 2014; Steele et al. 2013; Pines et al. 2016; Pines,
Karris, and Little 2017). In any population where persistent rela-
tionships are common, concurrency plays a unique role in de-
termining whether an individual can expose an HIV-negative

S.M. Goodreauetal. | 3

partner shortly after becoming infected, i.e. while still in the
acute phase. Although it plays a major role in the behavioral ep-
idemiology of HIV literature, the topic of concurrency and rela-
tional timing is largely absent from the theoretical literature on
virulence evolution. One exception is a sensitivity analysis pre-
sented in the supplement to Fraser et al. (2007), which modeled
different relational durations under the case of strict serial mo-
nogamy (no concurrency), and found shorter relationships lead-
ing to slightly higher SPVL. However, they did not consider
more realistic models involving different levels of ongoing con-
current relationships.

Because concurrency’s impacts on epidemic dynamics are
especially strong during early infection, it might be expected to
impact evolutionary trade-offs differently than, say, a behavior
whose main impacts occur later in infection or which are spread
evenly throughout. These include multiple behavioral parame-
ters that appear in the epidemiological literature and in dy-
namic models of HIV transmission, and which vary among
populations. For example, overall coital frequency within rela-
tionships should affect epidemic potential fairly consistently
throughout most of the course of infection. The timing of coital
cessation in AIDS obviously impacts transmission potential late
in infection (Wawer et al. 2005), reflecting the fact that morbid-
ity as well as mortality impacts HIV’s epidemiology and evolu-
tion, an important consideration in virulence modeling (Alizon
et al. 2009). Relational durations represent a more complex ex-
ample. When comparing populations or individuals with the
same number of partnerships at any point in time, shorter rela-
tional durations means higher cumulative partner numbers.
Shorter relational durations provide more opportunity for trans-
mission overall, but they also play a particular role, like concur-
rency, in making it possible for an individual to both become
infected from one partner and expose another in quick succes-
sion, maximizing HIV’s ability to make use of hyperviremia dur-
ing acute infection. Thus, comparing concurrency’s impacts on
SPVL evolution to these other phenomena provides additional
insight into the role of infection stages in the overall evolution
of virulence for multi-stage pathogens like HIV.

One might expect that disease burden, e.g. as measured by
prevalence, would play a prominent role in the literature on HIV
virulence evolution. Higher epidemic potential, whether due to
higher coital frequencies, higher partner change rates, or other
factors, might be expected to lead to both higher virulence and
higher disease burden under many circumstances. This is in
contrast to transmissibility and mortality, which would each in-
crease with higher virulence but have countervailing effects on
prevalence, presumably generating a more complex relation-
ship between prevalence and virulence. Notably, however, key
works in both the modeling (Fraser et al. 2007) and empirical
(Herbeck et al. 2012) realms provide no information on the prev-
alence of HIV infection found in either their simulated or ob-
served populations. This precludes considerations of how
overall disease burden and MPSVL might co-vary, and how
prevalence might mediate the relationships between various
network factors and the resulting MSPVL.

In this modeling study, we assess how variation in sexual
behaviors and networks across populations might explain vari-
ation in HIV-1 MSPVL. We focus on relational concurrency given
its prominence in the behavioral epidemiology literature, but
we compare this to other behaviors whose greatest impacts are
expected to be felt at different times during the course of infec-
tion or equally across the board. These include overall coital fre-
quency, mean relational duration, and the timing of coital
cessation during AIDS. For each, we set a default drawn from
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data and compare with values above and below this. We mea-
sure the impact each parameter has on an epidemiological out-
come (HIV prevalence) and an evolutionary one (MSPVL), and
consider the nature of the relationship between these two out-
comes across different levels of predictors. We choose preva-
lence over incidence since the latter is much more widely and
easily measured among populations. We focus on endemic
measures, following much of the theoretical literature reviewed
above. Given the challenges of measuring epidemiological
quantities imposed by relational concurrency and other sexual
network features, we focus this analysis on simulation-based
outcomes rather than analytical solutions.

Our aims in this work are two-fold: to gain insight about
how these types of behavioral phenomena can impact virulence
and infectious burden and the relationship between the two;
and to identify whether the range of variation in MSPVL ob-
served among empirical populations is similar to that obtain-
able by considering different types of behavioral variation.
Given the latter goal, we build off a pre-existing, relatively com-
plex model containing many features specific to HIV, mindful of
the assertion that detailed pathogen-specific models like this
are best suited to make predictions unique to that pathogen
(Alizon et al. 2009; Bull and Lauring 2014; Ebert and Bull 2003).
We run this model using parameters derived from behavioral
data; then vary key behavioral parameters alone and in combi-
nation. We also conduct sensitivity analyses, varying three
aspects of virology around which considerable uncertainty
remains: the level of heightened infectivity during acute phase
(Wawer et al. 2005), the level of SPVL heritability, and the rela-
tionship between VL and transmission probability. We conclude
with a discussion of the relevance for population MSPVL
variation.

2. Methods

We adapted a stochastic, dynamic, agent-, and network-based
model that builds on model components, code and parametri-
zations previously described (see MSM model in Herbeck et al.
2018). Code was written in R and C++ and constructed using the
EpiModel package API (Jenness, Goodreau, and Morris 2016b); it
is available at github/EvoNetHIV. A full description of the meth-
ods and all parameters used is in the Supplementary data. Since
MSM are the most prominent risk group in longitudinal SPVL
studies (Herbeck et al. 2012), we developed our model for one
sex, with transmission probabilities associated with anal sex.
Behavioral parameters were derived from existing MSM models
(Jenness et al. 2016a; Goodreau et al. 2017), which were in turn
based on two empirical studies of MSM sexual networks from
Atlanta (Hernandez-Romieu et al. 2015; Sullivan et al. 2015). We
begin our analyses with a scenario that reflects all of our behav-
ioral parameters as measured in the Atlanta cohort, and then
follow with a series of analyses in which we systematically vary
one or two features at a time away from those observed values.
Agents were defined by a variety of attributes (e.g. age; CD4+
count); key attributes for this model included SPVL (fixed per in-
dividual) and current VL (time-varying). Sexual networks were
governed by a separable-temporal exponential random graph
model (STERGM, Krivitsky and Handcock 2014). This is a general
statistical framework for networks that allows relationships to
form and break stochastically, while matching an arbitrary set
of target network statistics (e.g. mean concurrency prevalence),
thus making it increasingly common in network-based epi-
demic modeling (e.g. Ezenwa et al. 2016; Jenness et al. 2016a;
Webber et al. 2016; Goldstein et al. 2017; Herbeck et al. 2018;

Robinson et al. 2018; Vandormael et al. 2018). STERGM terms
were implemented in such a way that the mean degree (i.e. av-
erage number of partners) was held constant across scenarios
despite some individuals having more than one partner at a
time, in order to isolate the effects of network structure from
simple network density. Within relationships, coital acts oc-
curred stochastically with a constant rate per day, equal across
all relationships; the only exception was for relationships in
which either partner had reached the point of coital cessation
within AIDS stage. This implies no coital dilution (i.e. that those
with multiple concurrent partners do not have less sex with
each than those with one partner), consistent with some recent
findings (Delva et al. 2013; Jenness et al. 2015). Condom use per
coital act was also stochastic.

Given a serodiscordant coital act, transmission was a function
of donor’s current VL, type of sex (insertive or receptive), recipi-
ent’s circumcision status (if insertive), and condom use. We used
a modified version of one published transmission function
(Hughes et al. 2012), simplified to reduce the number of covari-
ates, and adjusted from penile-vaginal to penile-anal rates (Patel
et al. 2014). We chose this for its ability to incorporate the most
covariates in a jointly estimated unified model, and because it
expresses transmission probabilities as per-act, as required by
our behavioral scenarios. This transmission function assumes an
exponentially rising transmission probability with VL; however,
one of our sensitivity analyses considered a function with trans-
mission rates that plateau with VL (Fraser et al. 2014).

Each individual’s SPVL included viral and environmental con-
tributions. The former came from the donor, with a random mu-
tational parameter. The latter (a combination of undefined host
and environmental factors) followed a normal distribution with
mean 0 and SD that was a function of heritability. The viral con-
tribution in the initial population followed a normal distribution
with mean 4.5 log;o SPVL copies/ml. All subsequent references to
SPVL are expressed as log;o copies/ml, unless otherwise noted.

All newly infected individuals’ VL began at 10 * (a proxy for
zero VL) and rose exponentially to 7.7 x 10° (log;o VL = 6.89)
over 21 days. It then declined biphasically, to an intermediate
value after 11 days, and then to SPVL after another 58 days; col-
lectively, these three phases imply a total duration of 90 days
for acute infection. VL increased by 0.14 per year across the pe-
riod of chronic infection. At AIDS onset (defined by CD4 count;
see below), VL increased at a rate corresponding to a 400-fold in-
crease on the linear scale over 4 years, until it reached the VL
maximum in AIDS, set at 6.38. Although VL affected transmis-
sion, CD4 count affected progression and mortality. CD4 count
was measured in four categories, split at 500, 350, and 200, with
progression to AIDS defined as entering Category 4 (Cori et al.
2015). SPVL influenced both initial CD4 category placement and
subsequent progression rates.

The modeled population included 5,000 individuals between
18 and 55 years of age, seeded with 10% HIV prevalence, a value
within the range estimated for MSM populations in different US
metropolitan areas (Centers for Disease Control and Prevention
2016). Simulations were run for 50 years with 1-day time steps.
The rate of new arrivals reflected a Poisson distribution, and
departures occurred through AIDS mortality, background mortal-
ity, or aging out. We excluded antiretroviral treatment and oppor-
tunistic infection prophylaxis in our model, in order to focus on
the variation in SPVL independent of treatment dynamics.

Our main outcome measures were final HIV prevalence and
MSPVL among incident infections during the last 10 years of the
simulation (years 40-50). We select prevalence over incidence
for our epidemiological outcome because it is easier to measure
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Table 1. Parameters and model forms varied across scenarios (in order of exploration).

Model parameter Measured value

Values / forms explored

Coital frequency (mean sex acts per day per ex-
tant relationship)

Proportion of population with concurrent
partners

Mean relational duration

Acute-phase relative risk N/A

Proportion of time through AIDS before coital
cessation

Heritability of SPVL

Relationship between VL and transmission N/A
probability

0.23 (Goodreau et al. 2017)
0.142 (Goodreau et al. 2017)
212 days (Goodreau et al. 2017)
0.47 (Hollingsworth et al. 2008)

0.36 (Hollingsworth et al. 2010)

0.10, 0.15, 0.20 (default), 0.25
0.00, 0.05, 0.10, 0.15 (default), 0.20

50, 100, 200 (default), 300, 400, 500, 750, 1,000 days
1 (default), 3,5, 10
0, 0.5 (default)

0, 0.36 (default), 0.5
Increasing (default, Hughes et al. 2012); plateauing
(Fraser et al. 2007)

A full list of parameters held constant across scenarios, as well as further information on the derivation of these values, can be found in the Supplementary data. References
to Goodreau et al. (2017) entail re-analyses of the data included in that article, calculating single overall means instead of separate values by race and relationship type, in
some cases rounded to make the subsequent sensitivity analysis more interpretable. Mean relational duration presented includes those relationships for which duration is de-
fined (i.e. that involved more than a single contact). Including one-time contacts as duration of 1 day yields a mean duration of 54 days, similar to the 50 days explored in the
sensitivity analysis. Actual relational durations in the model follow a geometric distribution. Concurrency prevalence reflects the mean proportion of actors with at least two
ongoing relationships at a given time point. The acute relative risk reflects the added transmissibility of acute-stage viruses beyond elevated VL, following evidence that re-
cently transmitted viruses might be preferentially transmitted (Gnanakaran et al. 2011; Redd et al. 2012; Parrish et al. 2013).

in a wider range of populations, but we note that results for inci-
dence were qualitatively similar (data not shown). We used inci-
dent MSPVL in the final 10 years to ensure sufficient data to
make comparisons meaningful. We also tracked the percentage
of transmissions occurring during the donor’s acute infection
stage. We conduct statistical tests on outcomes (Kruskal-Wallis
test, multiple linear regression), but note that the use of statisti-
cal tests in the context of simulation is debated. Any difference
can become significant with large enough sample size, and con-
ducting more simulations is typically easier than generating
larger samples in empirical research. Thus, for modeling re-
search significance tests are best conducted when number of
simulations is pre-determined, and is within a typical range, as
is the case here (100 replicates). Although such tests should not
be over-interpreted, they can still provide a useful roadmap for
distinguishing the most salient patterns within the data.

Table 1 lists the set of parameters that were systematically
varied across at least one set of simulations to isolate the impact
on SPVL evolution. We include default and explored values for
each varied parameter; default values reflect those derived from
our Atlanta data, in some cases rounded to make the subsequent
sensitivity analysis more interpretable. Default values were used
for each experiment in which that parameter was not experi-
mentally varied. All other model parameters were fixed across all
runs, and are listed and derived in the Supplementary data.

We present one set of runs as a time series, to identify the
time frame and pattern over which evolution is predicted. We
then analyze results in two forms. In the first, the relationship be-
tween predictors and evolved MSPVL is considered; in the second,
predictors are described in relation to both prevalence and evolved
MSPVL. We conduct a Kruskal-Wallis test to determine if scenarios
are significantly different from each other given within-scenario
variability across runs when considering one predictor, and multi-
ple linear regression with interactions when considering multiple
predictors. All analyses were conducted in R.

3. Results

We first consider the run that reflects our best estimate for ev-
ery behavioral parameter (scenario in Fig. 2a with mean sex acts
per day=0.20). This model predicts that incident MSPVL should

evolve to ~4.7, which is consistent with two different papers by
Herbeck et al. (2014, 2016) that each share some similarities to
this model and some differences. HIV prevalence for this run
(panel b) increases to a mean of 25.3% (95% range: 22.6-27.9%)
over the course of the simulation; the actual race-reweighted
prevalence in the source study was 27%, providing one measure
of our model’s overall validity.

We next explore variation in overall coital frequency (Fig. 2),
since it represents a behavioral change occurring all across the
duration of infection, and thus provides a convenient baseline
against which to compare features like concurrency whose
effects are more concentrated at specific time points.
Considering the time series (Fig. 2a and b), MSPVL evolutionary
divergence among scenarios has become clear within a decade,
and shows minimal additional evolution (reduced slope) after
about 20 years. Prevalence, however, is still diverging after 40
years. Panel ¢ plots the same scenarios, with final HIV preva-
lence (x-axis) against incident MSPVL (y-axis). The choice of axes
is arbitrary, since these quantities exist in a feedback loop with
no simple direction of causality; our primary interest is to un-
derstand the emergent functional relationship between the two.
Despite large variation within each scenario, MSPVL varies sig-
nificantly across scenarios (Kruskal-Wallis, P < 2.2e-16) covering
nearly 0.2 log;o units, with evidence for a plateau at higher lev-
els. Scenarios yield a range of MSPVL values (4.54-4.71) that lies
entirely between the 4.52 in one modeling work (Fraser et al.
2014) and the 4.75 in another (4.75, Herbeck et al. 2014), although
some scenarios contain one or the other previous value within
their simulation range. Coital frequency has a strong, non-linear
effect on prevalence, as one might expect. Over the modeled
range, higher prevalence was associated with higher MSPVL.

We next vary two behavioral determinants jointly: level of
concurrency and relational duration. Both of these might be
expected to provide disproportionate impact on the opportunity
for an individual to expose a partner during acute infection,
since they impact the probability that someone might contact
two individuals in quick succession—one transmitting to them,
and one who they can then transmit to. As noted in Section 2,
all of these runs preserved the same total expected relationship
time and mean number of relationships per person at any time.
Given the complexity of the scenario combinations, we present
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Table 2. Multiple linear regression results for impact of predictors on

MSPVL.

Estimate SE P-value
(A) Concurrency and relational duration
Intercept 4.734 0.007 <0.0001
Relational duration® —0.039 0.001 <0.0001
Concurrency 0.282 0.061 <0.0001
Rel. duration x concurrency® 0.057 0.012 <0.0001
Adjusted R 0.920
(B) Concurrency and acute relative risk of transmission
Intercept 4.643 0.008 <0.0001
Acute relative risk 0.003 0.001 0.0312
Concurrency 0.537 0.065 <0.0001
Acute rel. risk x concurrency 0.032 0.011 0.0056
Adjusted R 0.837
(C) Concurrency and coital cessation
Intercept 4.550 0.015 <0.0001
Coital cessation 0.193 0.046 0.0001
Concurrency 0.767 0.124 <0.0001
Coital cessation x concurrency —0.562 0.372 0.1403

Adjusted R% 0.670

relational duration coefficients are expressed per 100 days.

both the results with one input (concurrency) plotted against
MSPVL (Fig. 3a) and with the two outcomes (prevalence and
MSPVL) plotted against one another (Fig. 3b). For simplicity, we
suppress the individual runs and plot only means, noting that
variation for these and subsequent runs followed similar pat-
terns as for coital frequency. We analyze the results in Fig. 3a
using linear regression (Table 2), which indicated that greater
concurrency has a significant positive effect on incident MSPVL,
relational duration has a significant negative effect, and the in-
teraction is also significant and positive. Prevalence is strongly
(but again non-linearly) associated with MSPVL across these
runs (Fig. 3b). We see larger variations in MSPVL across scenar-
ios here (~0.4 logjo units) than for coital frequency, concen-
trated in the low-prevalence scenarios. Runs with ~5%
prevalence or lower yielded MSPVL numbers near Fraser’s evo-
lutionary optimum (4.52) and similar to some observed popula-
tions not captured by earlier scenarios. Although prevalence
was strongly associated with MSPVL, it did not explain the en-
tire effect of network factors on MSPVL; otherwise the lines in
Fig. 3b would be superimposed, not stacked.

Figure 4 helps demonstrate why. Although both concurrency
and relational duration impacted the percentage of transmis-
sions occurring during the donor’s acute stage, concurrency had
a much stronger influence. This is particularly dramatic at
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Figure 5. HIV prevalence by incident MSPVL, for different levels of heightened
infectiousness during acute infection (above and beyond heightened VL) and
varying concurrency.

longer relational durations, where concurrency was the main
mechanism allowing an individual to transmit to one partner
shortly after acquisition from another. This disproportionate ef-
fect of concurrency during acute infection appears to shift the
evolutionary trade-off in ways that are not fully captured by dif-
ferences in prevalence among scenarios. Note that the propor-
tion of transmissions attributable to acute infections is <7% for
all of these scenarios; these numbers are in line with some esti-
mates from the literature but lower than others, as described in
one review (Goodreau et al. 2012b).

To consider how behavioral and virological determinants
may compare or interact, we jointly considered one type of
each phenomenon that impacts acute-phase transmission:
concurrency, and the relative risk of transmission per acute-
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Figure 6. HIV prevalence by incident MSPVL, for scenarios varying timing of coi-
tal cessation during AIDS stage, and concurrency.

phase serodiscordant coital act, beyond elevated VL (Wawer
et al. 2005). This latter measure is subject to debate, and in-
deed is the source for some of the variation previously men-
tioned among estimates for the proportion of transmissions
attributable to acute infection. Here (and henceforth), we pre-
sent only the multiple linear regression with MSPVL as out-
come (Table 2[B]), and the figure panel with prevalence and
MSPVL plotted against one another (Fig. 5). Boosting viral
transmissibility during acute infection had effectively no im-
pact when concurrency was absent, since there were few
instances of serodiscordant contacts during acute infection.
As concurrency increased, however, higher acute relative
transmission rates increased both prevalence and MSPVL, but
the latter faster than the former, relative to the scenarios in
Fig. 3. This is reflected in Table 2, where the main effect of the
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acute transmission rate is only marginally significant, but the
interaction effect with concurrency is highly so. Note that in
these scenarios the proportion of incident infections attribut-
able to acute infection rose as high as 13.4, 18.2, and 25.6% for
the highest concurrency level for acute relative transmission
rates of 3, 5, and 10, respectively.

We next shifted to the timing of coital cessation in AIDS
(Table 2[C]; Fig. 6); we again included different levels of concur-
rency for comparison. We see a dramatic reduction in HIV prev-
alence, but much less change in MSPVL than in previous
scenarios across the same range of prevalence values. For in-
stance, comparing across the two runs with 15% concurrency,
we see large differences in prevalence (1.3 and 25% for earlier
and later coital cessation, respectively), but relatively little dif-
ference in MSPVL (4.66, 4.71). This is the first model where we
do not see a significant interaction between our two predictors
(Table 2[C]); this makes sense, given that concurrency primarily
impacts transmission during acute infection and coital cessa-
tion during late infection.

Figure 7 displays a sensitivity analysis using a plateauing VL
transmission function (Fraser et al. 2007), rather than a continu-
ally increasing one. The plateauing scenario that used default
parameters led to higher prevalence values than that for the
continually increasing model, largely because the former as-
sumed higher transmissibility than the latter at moderate VLs,
where most HIV-infected persons are found. To facilitate com-
parisons across a similar range of prevalence values, we thus
considered a broad range of coital frequencies. The plateauing
function always led to lower incident MSPVL than the increas-
ing function, whether comparing across identical coital fre-
quency or identical prevalence. The plateauing function’s
predicted MSPVL was most commonly ~4.4-4.5, similar to the
prediction of Fraser et al. (2007). At lower prevalence levels, inci-
dent MSPVL values dropped to 4.3, making this parametrization
the first to generate MSPVL values consistent with certain em-
pirical populations—e.g. Amsterdam MSM cohort (Fraser et al.
2007), US military cohort (Crum-Cianflone et al. 2010)—while no
longer consistent with others, including a heterosexual cohort
in Zambia (Fideli et al. 2001; Fraser et al. 2007), and a mixed pre-
dominantly European cohort (Dorrucci et al. 2007).
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Figure 8. HIV prevalence by MSPVL, varying heritability and concurrency.

Finally, we conducted a sensitivity analysis on the level of
heritability, given differences on this metric in the literature
and, likely, in real populations (Fig. 8). We included a higher
level (0.5) that is more similar to estimates derived using phylo-
genetic methods (Alizon et al. 2010), and a lower level of 0% as
an extreme case and as a means of confirming that no evolution
should be enabled here. If SPVL heritability truly equaled 0.5,
our model could explain MSPVLs in individual populations as
high as 4.8. As expected, with 0% heritability the virus was un-
able to evolve away from initial MSPVL (4.5). Prevalence in the
no-evolution runs was 8-16% lower than in comparable
scenarios with default heritability; incidence (not shown) was
15-24% lower. The divergence in incidence tended to be higher
with higher concurrency. This potential excess epidemic burden
of behavioral phenomena like concurrency made possible by vi-
ral evolution would be missed by traditional epidemic models
that do not account for this possibility.

4. Discussion

For reasons that are not fully explained, the distribution of SPVL
varies across populations. Beginning with a network model pa-
rameterized from published data and then varying key parame-
ters, we identified multiple aspects of sexual networks that
could influence the evolution of MSPVL in different populations.
These include relational concurrency, which has received con-
siderable attention in the literature on population disparities in
HIV burden (Mah and Halperin 2010; Morris et al. 2010; Kenyon
et al. 2016), along with behaviors that impact transmission po-
tential at different stages, such as the timing of coital cessation
during AIDS. Our base model, using only data-derived parame-
ters, generated incident MSPVL of 4.7, consistent with previous
models that share some similarities (Herbeck et al. 2018). By
varying these features in models using our baseline transmis-
sion function (transmission probability continually increases
with increasing VL), we were able to generate epidemics in
which incident MSPVL varied systematically between scenarios
from ~4.4 to 4.8 logio copies/ml. This range in magnitude is
greater than the traditional threshold for clinical significance
(0.3 1og10 copies/ml, Modjarrad et al. 2008), and is as wide as the
variation among the majority of populations in a recent meta-
analysis of SPVL evolution (Herbeck et al. 2012).

Much of this effect was mediated by impacts on overall HIV
burden as measured by HIV prevalence. For prevalence values
up to at least about 30-40%, ceteris paribus models with higher
HIV prevalence had higher MSPVL. Presumably the increase in
MSPVL with prevalence is because the greater overall transmis-
sion opportunity shifts the virus’s evolutionary landscape, with
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the shortened lifespans generated by increased virulence more
than compensated for by higher transmission opportunities. At
most prevalence levels, our models overall yielded higher
MSPVL estimates than that predicted by Fraser et al. (4.52 logio
copies/ml). Only for a handful of scenarios at low prevalence
(~5%) did we obtain expected MSPVL values that low. We also
saw that the level of heritability of HIV, which may vary among
populations or through time (Fraser et al. 2014), could shift
these results up or down. Likewise, they were sensitive to the
assumption we made about the nature of infectiousness at high
VLs, with a plateauing relationship between VL and transmis-
sion probability such as that used in Fraser et al. yielding lower
predicted MSPVLs.

The elements of sexual behaviors and networks considered
had additional impacts on SPVL beyond those mediated by
prevalence. Specifically, factors that disproportionately im-
pacted transmission opportunities during early infection—
especially the prevalence of relational concurrency—more
strongly affected MSPVL evolution than did factors whose
impacts were spread throughout the course of infection, and
much more strongly than those whose effects appeared during
AIDS. This makes sense from an evolutionary perspective—the
earlier in an infected lifespan that a phenomenon increases
transmission opportunities, the less crucial it is for a pathogen
to delay host death. However, these effects were not straightfor-
ward, instead interacting in complex ways. For instance, con-
currency’s impact on MSPVL varied depending on mean
relational duration, since the two jointly determine infection
opportunities during acute infection.

We saw large stochastic variation within scenarios; for ex-
ample, individual simulations in a scenario with 0.1 coital acts/
day in ongoing relationships varied over nearly 0.3 log;o SPVL
units, from ~4.5 to 4.8. Some of the observed MSPVL variation
seen among real populations is undoubtedly due to stochastic-
ity; however, we caution against interpreting the level of sto-
chasticity in our runs as a measure of the expected stochastic
variation among real populations, which vary in size and inter-
connectedness. We reiterate that our analyses demonstrated
significant systematic differences for most comparisons be-
tween scenarios despite this stochasticity.

We parametrized our model using MSM transmission proba-
bilities and related parameters. Notably, this model generated
HIV prevalence consistent with that in the source population
for the behavioral parameters, and an expected log;o MSPVL of
4.7, consistent with two previous papers using variations on
this model (Herbeck et al. 2014, 2016). We anticipate that a
model focused on heterosexuals and penile-vaginal sex would
yield qualitatively similar phenomena across scenarios. Such
an analysis would allow for comparisons between MSM and
heterosexual epidemics, and is underway. Notably, however,
one large meta-analysis (Herbeck et al. 2012) did not find trans-
mission group to be a significant predictor of VL. Moreover,
cohorts that contained MSM exclusively or predominantly, and
MSM subsamples of larger studies, cover the full range of ob-
served SPVL values (Miiller et al. 2006; Troude et al. 2009).

That lack of difference in MSPVL between heterosexuals and
MSM is surprising for multiple reasons, including the fact that
one might expect these two groups to differ on some of the key
factors found in this paper to influence SPVL, noticeably concur-
rency and mean degree. However, there remain many addi-
tional network effects that could further impact SPVL and its
relationship to prevalence, and it may be that these roughly
cancel out in the pooled populations in Herbeck et al. (2012). For
example, one can imagine a highly heterogeneous population
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containing some people with high risk and many isolated from
any meaningful HIV risk; this is similar to structures commonly
modeled in HIV epidemiology in order to calibrate to observed
HIV prevalence. This population should exhibit lower overall
HIV prevalence relative to a population in which those without
risk were simply absent, while having no impact on viral evolu-
tion, since this larger population is invisible to the virus. Many
other features—anything from the functional form of new arriv-
als in the population to the rise of antiretroviral treatment and
PrEP—may further complicate these relationships (Herbeck
et al. 2016). We are exploring some of these additional effects in
ongoing work, including risk heterogeneity in the form of both
partner numbers and sexual role (insertive vs. receptive), in
both MSM and heterosexual populations.

Our models considered HIV prevalence and SPVL in a mature
epidemic, i.e. after the effects of initial spread had passed.
Theoretical work shows that short-term virulence evolution can
differ from longer-term dynamics (Day and Proulx 2004; Andre
and Hochberg 2005). Considering HIV, e.g. one might expect that
a larger proportion of the population is in acute infection during
initial rapid spread than later, providing a different fitness land-
scape at that point. Our results did suggest that SPVL evolution
within a stable behavioral regime is most concentrated in the
first two decades of spread, even as prevalence continues to
change beyond that. However, without deeper analysis of time
trends, it is difficult for us to determine how much of observed
heterogeneity on MSPVL among populations is due to the differ-
ent times since epidemic initiation. Nonetheless, we have dem-
onstrated that observed ranges are at least plausible from
variation in sexual network structure alone. Analysis of time
trends, and comparison to observed data, are part of the exten-
sions we are currently conducting.

All models require decisions about the levels of forms of
complexity and specificity to include. General models allow for
basic insights, while more complex models allow for knowledge
specific to a given case. We opted for a detailed model contain-
ing many features specific to HIV since one of our primary goals
was to determine the extent to which observed variation in HIV
MSPVL among populations could be captured by variation in a
few key parameters. However, this limits our ability to extrapo-
late our findings to pathogens with features different than HIV,
e.g. with recovery, or where transmission is density-dependent.
We believe that such detailed models have an important place
in understanding the dynamics of specific pathogens under dif-
ferent conditions, in line with previous calls in the virulence
evolution literature (Ebert and Bull 2003; Alizon et al. 2009; Bull
and Lauring 2014). Although we cannot prove it, our assumption
is that a simpler model would find qualitatively similar findings
as long as it contained a core set of features—i.e. heritability of
SPVL, background births and deaths, dynamic partnerships, VL
impacts on transmission and survival, acute infection with ele-
vated VL, and rising VL and mortality with AIDS. Given our focus
on relational concurrency, such a model would of course also
need to be able to represent this phenomenon. Although explicit
models of networks can do so, various methods have also been
developed to consider relational concurrency within a compart-
mental modeling or analytical framework (Powers et al. 2011,
Leung, Kretzschmar, and Diekmann 2012; Miller and Slim 2017).
Key features that we believe any framework needs to include to
model this phenomenon faithfully to empirical data and repli-
cate our results include allowing for ongoing (not just one-time)
concurrent relationships, allowing some but not all people to
have concurrent partners, and somehow assessing epidemic po-
tential along the reachable path of infection multiple steps out
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from currently infected individuals, as these paths can vary dra-
matically with small changes in concurrency prevalence (Morris
et al. 2007). Determining for certain the ability for different
model approximations to identify the impact of concurrency on
SPVL evolution would require a full comparative investigation.
This study suggests that the observed range of variation in
MSPVL across populations could in theory be explained by vari-
ation in underlying sexual behaviors and sexual network char-
acteristics. Many, but not all, of those underlying behavioral
factors also predict higher prevalence populations having
higher MSPVL, suggesting a correlation across populations in
prevalence and MSPVL. However, the relationships between
these network factors, prevalence, and SPVL can be quite com-
plex. Previous work to explain SPVL evolution and variation,
whether empirical or model-based, has not fully considered
these relationships (Fraser et al. 2007; Herbeck et al. 2012).
Future efforts to understand the empirical variation in SPVL
among populations should consider the magnitude of local HIV
burden and features of network structure and sexual behavior.

Supplementary data

Supplementary data are available at Virus Evolution online.

Data availability

Data (in the form of parameter values derived from the literature)
can be found in the Supplementary data. Model code can be found
at https://github.com/EvoNetHIV/Goodreau_et_al Behavior -_SPVL.
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