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5-methylcytosine (m5C) is one of the most common and
abundant post-transcriptional modifications (PTCMs) in
RNA. Recent studies showed that m5C plays important roles
in many biological functions such as RNA metabolism and
cell fate decision. Because most experimental methods that
determine m5C sites across the transcriptome are time-
consuming and expensive, it is urgent to develop accurate
computational methods to identify m5C sites effectively. A
benchmark dataset is important for developing and evalu-
ating computational methods. In this work, we constructed
four different datasets according to the data redundancy
and imbalance. Based on these datasets, we generated three
different kinds of features, i.e., KNFs (K-nucleotide fre-
quencies), KSNPFs (K-spaced nucleotide pair frequencies),
and pseDNC (pseudo-dinucleotide composition), and then
used a support vector machine (SVM) to build our models.
Based on the imbalanced and nonredundant dataset,
Met935, we extensively studied the three kinds of features
and determined an optimal combination of the features.
Based on the feature combination, we built models on the
three different datasets and compared them with state-of-
the-art models. According to the predictive results of the
stringent jackknife test, the models based on the three fea-
tures, 4NF, 1SNPF, and pseDNC, are superior or comparable
to other methods. To determine the best model between the
models based on the imbalanced dataset Met935 and the
balanced dataset Met240, we further evaluated the two
models on an independent test set Test1157. Our results
demonstrate that the model based on the balanced dataset
Met240 achieved the highest recall (68.79%) and the highest
Matthews correlation coefficient (MCC) (0.154). In addition,
the model is also superior to other state-of-the-art methods
according to the integrated parameter MCC on the indepen-
dent test set. Thus, we selected the model based on Met240 as
our final model, which was named RNAm5CPred. In addi-
tion, a web server for RNAm5CPred (http://zhulab.ahu.edu.
cn/RNAm5CPred/) has been provided to facilitate experi-
mental research.

INTRODUCTION

5-methylcytosine (m5C) is a highly abundant post-transcriptional
modification (PTCM) of RNA, which has been discovered in various
organisms.' Under the catalysis of RNA methyltransferase, m5C oc-
curs on carbon atoms in the fifth position of cytosine. m5C has been
widely studied because of its crucial role in many different biological
processes, such as secondary structure stabilization of tRNA, amino-
acylation and codon identification, and stress response regulation,
among others.”” Therefore, it is of great importance to develop effi-
cient methods to locate m5C sites in RNA sequences for understand-
ing its mechanism and function.

Several experimental techniques such as bisulfite sequencing, m5C-
RNA immunoprecipitation (m5C-RIP), 5-azacytidine-mediated
RNA immunoprecipitation (Aza-IP), and N-methyladenosine
(m6A) individual-nucleotide-resolution cross-linking and immuno-
precipitation (miCLIP) have been developed to identify m5C
sites.”®'! However, these techniques are time-consuming and expen-
sive. Furthermore, the explosive increase of RNA sequences revealed
by the rapid development of sequencing technology will require faster
and more cost-efficient analyzing methods.

Thanks to their high speed and low cost, accurate computational
methods provide an alternative way to identify m5C sites in RNA se-
quences. To the best of our knowledge, at least three research groups
have made their efforts to predict m5C sites of RNA by the
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Table 1. Prediction Results of KNF with Different K Values on Met935 over
10-Fold Cross Validation

Feature
KNF Dimension Sen (%) Spe (%) Pre (%) Acc (%) MCC
INF 4 20.55 87.15 20.09 78.11 0.076
2NF 16 51.26 98.39 834 91.99 0.615
3NF 64 66.14 97.59 81.19 93.32 0.696
4NF 256 63.07 98.19 84.61 93.42 0.696

Sen, sensitivity; Spe, specificity; Pre, precision; Acc, accuracy.

submission time of our paper.'* '* Feng et al.'” developed a model to
predict m5C sites of RNA in Homo sapiens. The model was built
based on a balanced dataset with 120 positive and 120 negative exam-
ples. Support vector machine (SVM) was employed as the classifier,
and the pseudo-dinucleotide composition (PseDNC) that incorpo-
rates three RNA physicochemical properties was used as the feature
to encode the RNA sequences. Another model, iRNAm5C-PseDNC,
proposed by Qiu et al,'> was built based on an imbalanced dataset
with 475 positive and 1,425 negative examples. This model also
used SVM as the classifier but with a modified PseDNC with more
properties to encode the RNA sequences. More recently, Zhang
et al.'* proposed a method called M5C-HPCR (m5C-heuristic nucle-
otide physicochemical property reduction). In this method, a heuris-
tic algorithm was introduced to select a part of PseDNC features, and
then the model was built by an ensemble method. M5C-HPCR was
validated on both the balanced and imbalanced datasets used by
Feng et al. and Qiu et al., respectively.

Although the three methods mentioned above have achieved prom-
ising predictive results for m5C sites identification, the benchmark
datasets used to validate these methods contain crucial flaws. The
imbalanced dataset used by Qiu et al,”® which we denoted as
Met1900, is severely redundant, so that the generalization will be
overestimated based on the dataset.'* The balanced dataset used by
Feng et al,,'” which we denoted as Met240, is obtained by using a cull-
ing cutoff of 70% in CD-HIT.'® However, realistically, the number of
mb5C sites is substantially less than the number of normal cytosine res-
idues in RNA, which indicated that using a balanced dataset would
overestimate the sensitivity.

In addition, all three of these methods used only PseDNC to encode
the RNA sequences. Other types of features that have been used to
predict other kinds of modifications such as m6A,'>"” including K-
nucleotide frequencies (KNFs)'® and K-spaced nucleotide pair fre-
quencies (KSNPFs),'® have not been extensively tested and evaluated
in predicting m5C.

In this work, we first constructed a new benchmark dataset Met935.
Then, we encoded RNA segments by using KNF, KSNPF, and
PseDNC features, and the performances of these features were exten-
sively tested and compared. By combining these three different kinds
of features, we were able to build models on three different bench-
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Table 2. Prediction Results of 3NF and 4NF on Met935 over Jackknife Test

Feature
KNF Dimension Sen (%) Spe (%) Pre (%) Acc (%) MCC
3NF 64 65.35 97.52 80.58 93.16 0.688
4NF 256 63.78 98.02 83.51 93.37 0.694

Sen, sensitivity; Spe, specificity; Pre, precision; Acc, accuracy.

mark datasets, i.e., Met1900, Met240, and Met935. The cross-valida-
tion results of the models based on the three features are superior or
comparable to the existing methods. The two models based on
Met240 and Met935 were further tested on an independent dataset
Test1157, the results of which indicate that the model based on
Met240 outperforms the other methods according to the Matthews
correlation coefficient (MCC).

RESULTS AND DISCUSSION

Extensive Study of the Two Kinds of Sequence Features on
Met935

Dataset Met935

To overcome the shortcomings of the datasets (i.e., Met240 and
Met1900) proposed in previous works,'>”'* a new benchmark data-
set, Met935, was constructed in the present study. First, all RNA
segments with a center m5C site recorded in RMBase’ were
collected as positive samples. Second, the 1,425 negative samples
of Met1900 were collected as negative samples. Finally, the redun-
dancy among those samples was removed by using the CD-HIT"
program. The resulting 127 positive segments and 808 negative
segments constitute the dataset Met935. The details about the
benchmark datasets can be found in the Materials and Methods
section.

Performances of KNF with Different Ks

As a classical sequence-encoding feature, KNF (sometimes also called
NC), has been extensively used to build bioinformatics models.'*~%°
In this study, the performances of KNF in predicting m5C of RNAs
were evaluated with different K values on the dataset Met935.
Met935 is a nonredundant dataset consisting of 127 positive samples
and 808 negative samples.

The value of K was set from 1 to 4 to encode RNA segments of
Met935, respectively, to avoid the “dimension disaster.” Then, the
10-fold cross-validation test was performed to evaluate the perfor-
mance of each kind of KNF. For Met935 as an imbalanced dataset,
we used MCC as a fair index to compare different models.

As shown in Table 1, with the increasing of K value, the values of
MCQC are also increasing overall. More specifically, the models based
on 3NF and 4NF both achieved the highest MCC of 0.696. Then, strict
jackknife tests were employed to compare the performances between
3NF and 4NF in a more cautious way. Table 2 shows that the cross-
validation MCC (0.694) based on 4NF is slightly higher than the MCC
(0.688) based on 3NF.
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Table 3. Prediction Results of KSNPF with Different K Values on Met935
over 10-Fold Cross-Validation

KSNPF Dimension Sen (%) Spe (%) Pre (%) Acc (%) MCC
1SNPF 16 20.79 97.80 59.75 87.34 0.300
2SNPF 16 11.50 98.84 61.24 86.97 0.224
3SNPF 16 19.37 96.89 49.51 86.36 0.248
4SNPF 16 23.78 95.68 46.47 8591 0.262
5SNPF 16 21.26 92.44 30.59 82.77 0.160

Sen, sensitivity; Spe, specificity; Pre, precision; Acc, accuracy.
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Figure 1. The ROC Curves for Different Feature Combinations on Met935
Over Jackknife Test

To conclude, our experimental results showed that the performance
of KNF improved with an increasing K value. However, the difference
between 3NF and 4NF is small.

Performances of KSNPF with Different Ks

KSNPF provided another way to encode the nucleotide composition
of RNA segments, and it has been used to build models to predict the
m6A sites of RNA.'>*! In this study, we also evaluated the perfor-
mances of KSNPF in predicting m5C of RNAs with different K values.
Table 3 lists the corresponding prediction results. We found that the
results based on different K values did not differ much, among which
the best results came from 1SNPF, for which the MCC is 0.300.

The performances of PseDNC for predicting m5C of RNAs have been
evaluated in several works.'”'* Because we intended to compare our
models with these methods, in this study, we did not test the perfor-
mances of different forms of PseDNC. According to the results shown
in Tables 1 and 2, we found that the performance of KNF is generally
better than KSNPF, especially when K is set to 3 or 4.

The Optimal Feature Combination Based on Met935

Considering the complementarity between different kinds of features,
we combined the best KNF (4NF) and the best KSNPF (1SNPF) fea-
tures with the PseDNC feature. Table 4 summarizes the performances
of different combinations of these three different features on Met935
over the jackknife tests.

As shown in Table 4, for single feature-based models, the two features,
4NF and PseDNC, performed significantly better than 1SNPF. Then,
the performances of binary feature combinations were also evaluated.
Table 4 shows that the two combinations including 1SNPF exhibit
improved performances compared with single features, which proved

the complementarity between different features. Finally, the triple
feature combination 1SNPF + pseDNC + 4NF showed the highest
MCC (0.749) compared with the values of other combinations.

In addition, we plotted the receiver operating characteristic (ROC)
curves to provide an intuitive illustration of the performances of
different feature combinations. The area under the ROC curve
(AUC) is another useful index to evaluate different methods. Being
within the range of 0 and 1, the larger the AUC is, the better the mod-
el will be. As shown in Figure 1, The AUCs of models based
on 1SNPF + pseDNC + 4NF, pseDNC + 4NF, and 1SNPF + 4NF
are 0.935, 0.936, and 0.937, respectively, on Met935. All of these
values are close to 1, which indicates that all feature combinations
have good predictability. Finally, the feature combination of
1SNPF + pseDNC + 4NF was selected for building our model consid-
ering both MCC and AUC values.

Comparisons with Existing Predictors on Different Datasets

In this section, we compare our models with other existing methods
for m5C site prediction, including M5C-PseDNC,'? iRNAm5C-
PseDNC,"* M5C-HPCS, and M5C-HPCR.'* Note that our models
based on different benchmark datasets were all built using the selected
feature combination 1SNPF + pseDNC + 4NF to ensure fair compar-
ison with other methods.

Comparison on Met240

First, we compared different m5C site predictive models on the
Met240 dataset. Table 5 summarizes the results based on the jackknife
test. We found that the results of our model are on par with the best
performing model, M5C-HPCR. MCC and AUC of M5C-HPCR are
0.859 and 0.962, respectively, and the corresponding values of our
model are 0.850 and 0.957.

Comparison on Met1900

Then, we compared different models on dataset Met1900. As shown
in Table 6, the values of MCC and AUC of our model are the highest
among these five predictive models. The sensitivity, specificity,
accuracy, MCC, and AUC of our model are 91.58%, 99.51%,
97.53%, 0.934, and 0.991, respectively. The value of AUC is very close
to 1, and all other values are greater than 90% or 0.9, which demon-
strated that our model is superior to other methods in m5C site
prediction on this dataset.

Molecular Therapy: Nucleic Acids Vol. 18 December 2019 741
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Table 4. Prediction Performances of Different Feature Combinations on
Met935 over Jackknife Test

Table 5. Comparison between M5C-PseDNC, iRNAmM5C-PseDNC, M5C-
HPCR, M5C-HPCS, and Our Model on Met240 Dataset over Jackknife Test

Feature Sen (%)  Spe (%) Pre (%) Acc(%) MCC Predictor Sen (%) Spe (%) Acc (%) MCC AUC
1SNPF 20.47 97.90 60.47 87.38 0.300 M5C-PseDNC* 85.00 95.83 90.42 0.810 0.950
PseDNC 48.82 98.64 84.93 91.87 0.606 iRNAm5C-PseDNC* 81.70 95.00 88.33 0.774 0.934
4NF 63.78 98.02 83.51 93.37 0.694 M5C-HPCS® 90.83 92.50 91.67 0.833 0.956
1SNPF + pseDNC 52.76 98.76 87.01 92.51 0.642 M5C-HPCR 90.83 95.00 92.92 0.859 0.962
1SNPF + 4NF 64.57 99.13 92.13 94.44 0.744 Our model 90.83 94.17 92.50 0.850 0.957
pseDNC + 4NF 62.20 98.27 84.95 93.37 0.692 Sen, sensitivity; Spe, specificity; Acc, accuracy.

1SNPF + pseDNC + 4NF 6299 9950 9524 9455 0.749 ‘Results excerpted from Zhang et al.””

Sen, sensitivity; Spe, specificity; Pre, precision; Acc, accuracy.

Comparison on the Independent Test Test96

Table 4 shows the performances of our model on the new dataset
Met935. Our model achieved an MCC of 0.749 over the jackknife
test; however, it is not fair for other methods when we compared
the predictive results of our model with the predictive results of
other models directly on Met935, as our model was built on the data-
set. To have a fair comparison of our model with M5C-HPCR on this
dataset, two datasets derived from Met935, Train839 and Test96,
were used. Our model was first trained with the dataset Train839 us-
ing the three features and then tested with the independent test set
Test96. Because the test dataset Test96 was also an independent test
set of M5C-HPCR, it will be fair to compare our model with M5C-
HPCR on the dataset.

Table 7 and Figure 2 show the predictive performances of M5C-
HPCR and our model on the test dataset Test96. All of the metrics,
except sensitivity, of our model are superior to those of M5C-
HPCR, which means that our model has better generalization perfor-
mance than does M5C-HPCR. More specifically, the precision of our
model is 100%, which will be very helpful for experimental re-
searchers since they can have high confidence that the predicted
mb5C sites are actual m5C sites.

Evaluation of Different Models on the Independent Test
Test1157

To further compare our models based on the three kinds of nucleotide
compositions with other methods, we tested different models on a
new independent test set Test1157. The dataset contains 157 high-
threshold m5C sites and 1,000 non-m5C sites, which were collected
from the GEO database (GEO: GSE90963). All sequences of
Test1157 are nonredundant to the sequences in Met935. In Table 8,
four models were compared with each other. iRNA-m5C** is a
method that was published during the revision of this manuscript.
The results in Table 8 indicate that our model based on Met240
achieves the highest sensitivity (68.79%) and highest MCC
(0.154%), and our model based on Met935 achieves the highest spec-
ificity (93.00%), highest precision (19.54%), and highest accuracy
(81.85%). As Test1157 is an imbalanced dataset, MCC is a fair param-
eter for comparing different methods, and thus we selected the model
based on Met240 as our final model (RNAm5CPred).
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Effects of the Dataset Redundancy and Imbalance

With the same feature combination, 1SNPF+pseDNC+4NF, a
jackknife test has been implemented on the three different datasets:
Met240, Met1900, and Met935. The corresponding MCCs are
0.850, 0.934, and 0.749, respectively, and the corresponding
AUCGCs are 0.957, 0.991, and 0.935, respectively. Because Met1900
is a redundant dataset, it is expected that the model based on
this dataset would give a better performance. However, its perfor-
mance is actually overestimated. The performance differences
of the models based on Met240 and Met935 may be partially
affected by the composition of the datasets. The balanced dataset
Met240 achieved sensitivity and specificity of 90.83% and
94.17%, respectively, while the imbalanced dataset Met935
achieved sensitivity and specificity of 62.99% and 99.50%, respec-
tively. To further evaluate the effects of the dataset imbalance
on the generalization, the two models built on Met240 and
Met935 with the same feature combination 1SNPF+pseDNC+4NF
were tested on the independent dataset Test96 (note that the
model for Met935 was first trained on dataset Train839). For
the model M5C-HPCR, which was based on Met240, the sensitivity
and the specificity evaluated with Test96 are 92.31% and 56.63%,
which indicated that the generalization for negative examples
was not good, especially when compared with the sensitivity and
specificity of 90.83% and 94.17% achieved by the cross-validation
test. One possible reason is that the distribution of the negative
examples in Met240 deviates from the distribution of all negative
examples. On the contrary, the sensitivity and the specificity of
the model based on Met935 are 84.62% and 100%, indicating
that the generalization for the negative examples is good. Further
evaluation of different methods on a new independent test set
Test1157 shows the similar phenomenon.

Web Implementation

To facilitate the access of our model for the vast majority of experi-
mental researchers, a web server has been established online at
http://zhulab.ahu.edu.cn/RNAm5CPred/. Note that the final online
RNAm5CPred predictive model was trained on Met240, which con-
tains 240 RNA segments with a length of 41. The instructions for us-
ing the RNAm5CPred method online for the prediction of m5C sites
are discussed below.
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Table 6. Comparison Between M5C-PseDNC, iRNAmM5C-PseDNC, M5C-
HPCR, M5C-HPCS, and Our Model on Met1900 Dataset over Jackknife Test

Table 7. Prediction Results of M5C-HPCS and Our Model on Test96

Predictor Sen (%) Spe (%) Pre (%) Acc (%) MCC
1 0, L L
Predictor Sen (%)  Spe(®) Acc(%) MCC AUC M5C-HPCR®  100.00 62.65 29.55 67.71 0.430
a
M5C-PseDNC 84.21 94.88 92.21 0.792 0.960 Our model 84.62 100.00 100.00 97.92 0.909
iRNAm5C-PseDNC" 69.89 99.86 92.37 0.794 0.963 . . ..
Sen, sensitivity; Spe, spec1ﬁ::1ty; Pre, precision; Acc, accuracy.
M5C-HPCS® 83.37 96.84 93.47 0.823 0.968 “Results obtained by using M5C-HPCS web server'* on Test96.
M5C-HPCR* 88.42 97.33 95.11 0.868 0.977
Our model 91.58 99.51 97.53 0.934 0.991

Sen, sensitivity; Spe, specificity; Acc, accuracy.
*Results excerpted from Zhang et al.'*

First, the user can submit a query RNA sequence in FASTA
format, which should be longer than 41 bp. After the submission,
the user only needs to wait for the result, and the predictive
model will complete all of the prediction works. The first thing
that the predictive model does is to find the cytosine in the query
sequence. As mentioned earlier, we need a cytosine-centric RNA
fragment. If a cytosine is not in the center of the query sequence,
a corresponding length of the cytosine-centric RNA segment will
be constructed by placing a sliding window centered at the cyto-
sine, and the missing nucleotides will be filled by the previously
proposed “mirror image” technique.'” There may be many cyto-
sines in a sequence, and our predictive model will reconstruct
the sequence separately for each of them. Then, based on these re-
constructed 41-bp RNA segments, the feature vector will be ex-
tracted and fed to the SVM classification engine to complete the
prediction. Finally, the user will get the prediction results for every
cytosine in the query sequence that was submitted.

Conclusions

In this study, we established a novel predictive model
RNAm5CPred for accurate identification of the m5C sites in
RNA sequences. Considering the imbalance between the occur-
rences of m5C and normal cytosine sites in the realistic RNA se-
quences, we built a new imbalanced dataset Met935, and the per-
formances of two kinds of nucleotide composition features (KNF
and KSNPF) were extensively studied based on this dataset. Based
on three selected features (4NF, 1SNPF, and PseDNC), three
models were built on three benchmark datasets, i.e., Met1900,
Met240, and Met935, respectively. The three models were then
compared with other available m5C site predictive models by per-
forming stringent jackknife tests. The comparison results showed
that our models achieved better or comparable prediction perfor-
mance on different datasets. The models were further evaluated
on an independent test set Test1157, which showed that the model
based on Met240 (RNAm5CPred) achieved the best performances
according to MCC. More specifically, our model RNAm5CPred has
good generalization and can be a practically useful model for
experimental researchers. To facilitate the accessibility of our pre-
dictive model RNAm5CPred, a web server has been provided on-
line at http://zhulab.ahu.edu.cn/RNAmM5CPred/.

MATERIALS AND METHODS

Benchmark Datasets

In this study, we used three benchmark datasets, i.e., Met935, Met240,
and Met1900, to train and validate our models. In addition, two other
datasets, Train839 and Test96, which were derived from Met935,
were also used. All of these datasets consist of a positive subset and
a negative subset. The positive subset contains RNA sequences with
a center cytosine that can be modified as m5C, while the negative sub-
set contains RNA sequences with a center cytosine that cannot be
modified as m5C.

Met240 comes from the dataset Met1320 constructed by Feng et al.'”
The Met1320 consists of a positive subset (S*) and 10 negative subsets
(So~ ~ So ). Met240 was built by combining the positive subset (S*)
and the first negative subset (So ), which was also used by Feng et al.'”
and Zhang et al.'* in their works. Met240 contains 120 positive and
120 negative samples. Sequence similarity between any two segments
is less than 70%.

Met1900 was constructed by Qiu et al."* and contains 475 positive
samples and 1,425 negative samples. The sequence similarity between
sequences is greater than 90%. For more details on the building of
Met1900, please refer to Qiu et al.’?

Both Met240 and Met1900 have their own shortcomings. Although
the redundancy of Met240 is well under control, the size of this da-
taset is too small. In addition, realistically, there are fewer m5C sites
than normal C sites in RNA sequences. Using the balanced dataset
would make the model biased to the positive samples. As for
Met1900, it has a serious redundancy problem. To build a reliable
and practical predictive model, in this study, a new benchmark
dataset Met935 was constructed according to the following proced-
ures. (1) From RMBase,” we downloaded all m5C sequences. Impor-
tantly, note that the downloaded sequences are DNA fragments.
Therefore, we have to change the code T to U for all sequences
to convert them into RNA sequences. (2) For the data processed
in the first step, we used the CD-HIT' program to reduce their
redundancy and homologous bias, which resulted in a <70%
similarity between the sequences. In this way, 127 positive samples
were successfully obtained. (3) The 1,425 negative samples of
Met1900 were utilized for the acquisition of negative samples.
The CD-HIT program was used again to remove the redundancy
by setting the sequence similarity cutoff at 70%, and finally 808
negative samples were successfully obtained. Finally, these 127 pos-
itive samples and 808 negative samples were combined to form the
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Figure 2. The ROC Curve Shows the Performances of Our model and M5C-
HPCR on Test96

dataset Met935. Figure 3 shows the flowchart for generating the da-
taset Met935.

Two other datasets, i.e., Train839 and Test96 (an independent valida-
tion dataset), were derived from Met935 following the procedures
below. Among the 127 positive RNA segments in Met935, 13 seg-
ments that are not included in Met240 were selected as the positive
samples of Test96. Then, from all of the negative samples of
Met935 that are not included in Met240, 83 samples were randomly
selected and used as the negative subset of Test96. Then, the remain-
ing 114 (127 - 13) positive samples and 725 (808 - 83) negative sam-
ples in Met935 were combined to form Train839.

To further evaluate the performances of different methods, we also
built another dataset, Test1157. The dataset was constructed accord-
ing to the following steps. (1) We obtained the “high-threshold” m5C
sites information from “GSE90963_Table S1-m5C_candidate_si-
tes.xlsx,” which was downloaded from GEO (https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE90963). (2) According to the
high-threshold m5C sites>> information from the first step, we
collected all RNA segments of 41-tuple nt with the m5C sites at the
center position by sliding a flexible window along each RNA se-
quences transcribed from the human genome. This set of segments
was named P1. (3) All negative 41-tuple RNA segments were gener-
ated by excluding the possible m5C site recorded in the file
GSE90963_Table_S1-m5C_candidate_sites.xIsx. This set of segments
was named NI1. (4) CD-HIT-2D was used to remove similar se-
quences of P1 to the positive examples of Met935 and the similar se-
quences of N1 to the negative examples of Met935, respectively, with
a cutoff of 0.7. Thus, a positive dataset P2 and a negative dataset N2
were obtained. (5) The CD-HIT was used to remove redundant se-
quences in P2 and N2, respectively, with a cutoff of 0.7. In this
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Table 8. Prediction Results of Different Models on Test1157

Predictor Sen (%) Spe (%) Pre (%) Acc (%) MCC
M5C-HPCR® 62.42 51.10 16.70 52.64 0.093
iRNA-m5C° 43.95 49.20 11.96 48.49 —0.047
Model240° 68.79 53.70 18.91 55.75 0.154
Model935° 10.83 93.00 19.54 81.85 0.050

Sen, sensitivity; Spe, speciﬁcity; Pre, precision; Acc, accuracy.

*Results obtained by using M5C-HPCS web server'* on Test1157.

PResults obtained by using iRNA-m5C web server'* on Test1157.

“Model240 is our model based on Met240, and Model935 is our model based on Met935.

manner, we generated a positive dataset P3 and a negative dataset
N3. (6) A subset of N3 with 1,000 RNA segments was randomly
selected as N4. (7) P3 with 157 positive examples and N4 were com-
bined as the independent test set Test1157. Figure 4 shows the flow-
chart to generate Test1157.

Each of these RNA segments in all datasets is 41 bp long, according
to the sequential scheme by Chou.”**® We can express each RNA
sample (segment) that has a potential m5C site at the center as
follows:

RE(C) = N,gN,(E',])...N,lcN]...N+(g,1)N§7 (Equation 1)

where N_ represents the Eth upstream nucleotide from the central
cytosine and N, represents the &th downstream nucleotide.

To further simplify the description, Equation 1 can be rewritten in the
following form:

Rzo (C) = N1N2 .. .NzoCsz . .N40N41, (Equation 2)

whereN; (i=1,2, ... 20,21 ... 41) represents the nucleotide at the ith
position of the RNA segment and can be any one of the four nucleo-
tide bases in RNA, i.e., N; € {A (adenine), C (cytosine), G (guanine), U
(uracil)}. The detailed sequence information for all the aforemen-
tioned datasets is given in Table 9. All six datasets used in this study
are included in Data S1, S2, S3, $4, S5, and S6 or can be freely down-
loaded from http://zhulab.ahu.edu.cn/RNAmS5CPred/.

Feature Representation of the RNA Segments

Encoding RNA segments into feature vectors with highly discrimina-
tive information plays pivotal roles in the building of a machine
learning model to predict m5C sites. Among all of the existing fea-
tures, KNFs, KSNPFs, and PseDNC?” have been used to determine
whether a cytosine can be modified. In this study, we explored the
predictive power of these three features to predict the m5C sites. De-
tails about feature encoding are described as below.

KNFs

KNFs are a classical method to represent nucleotide sequence fea-
' For a given K value, KNF means the frequency of occurrence
for each K-mer nucleotide component in a nucleotide sequence. In

tures.
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by CD-HIT
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Figure 3. The Flowchart for Generating Dataset Met935

this way, an RNA segment can be represented as a 4<-dimensional
feature vector. The following formula was used to calculate KNF:

N(f’llnz...nK)

f(mny...ng) = L—K+1)

(Equation 3)
where nn, ... ng indicates a K-mer nucleotide component, and ng
can be any one of the four nucleotide bases in RNA, ie., nx €{A
(adenine), C (cytosine), G (guanine), U (uracil)}. N(nn, ... ng) rep-
resents the number of occurrences of nn, ...
sequence, and L indicates the length of the nucleotide segment (L =
41). For instance, when K = 2 there are 16 types of dinucleotide,
and the RNA segment can be encoded as:

ng in a nucleotide

R(2NF) = [fAA Sac fac fau fea fee fog fou foa
fGCfGGfGUfUAfUCfUGfUU} (42 =164d).
Clearly, as K increases, the dimension of the feature vector increases

exponentially. To avoid the dimension disaster, the maximum K used
in this study is set at 4.

(Equation 4)

KSNPFs

KSNPFs have also been used to encode RNA sequences.'® A K-spaced
nucleotide pair is a nucleotide pair separated by K arbitrary nucleo-
tides; e.g., UxxxG is a three-spaced nucleotide pair in which three
arbitrary nucleotides are between the nucleotides U and G. For the
sake of illustration, we use N1x{K}N2 (N1, N2, and xe{A, C, G,
U}) to express a K-spaced nucleotide pair. Clearly, for a nucleotide
pair consisting of N1 and N2, there will be 16 (i.e., 4 x 4) possible
combinations. In other words, there will be 16 K-spaced nucleotide
pairs for a fixed K. For example, when K = 3, NIx{K}N2 may be
AxxxA, AxxxC, ..., or UxxxU. Similar to KNF, we can use the
following formula to calculate KSNPF:

High threshold m5C
sites recorded in
GSE90963

All negative examples
of Human genome
obtained by excluding

Human reference
genome

Positive
dataset1 (P1)

Removing similar
segments to positive
samples of Met935 by
CD-HIT-2D

Positive
dataset2 (P2)

Redundancy removing
by CD-HIT

all possible m5C sites
recorded in
GSE90963 (N1)

Removing similar segments
to positive samples of
Met935 by CD-HIT-2D

Negative
dataset2 (N2)

Redundancy removing

by CD-HIT
Negative
dataset3 (N3)
Negative
dataset3 (N3)

Randomly select 1000
examples

157 positive
examples (P3)

Test1157

Figure 4. The Flowchart for Generating Dataset Test1157

N(N1x{K}N2)

F(NIX{K}N2 ) = ko1

(Equation 5)
where N(N1x{K}N2) represents the number of occurrences of N1x{K]
N2 in a nucleotide sequence, and L indicates the length of the nucle-
otide segment (L = 41). In this study, we tried different Ks (i.e., 1, 2, 3,
4,5). For example, when K = 1, the RNA segment can be encoded as:

R(1SNPF) = [f(AxA ) f(AxC)f(AxG) ......

F(UXC)f (UxC)f (UxU)] (16d). (Equation 6)

PseDNC

PseDNC is a feature that can incorporate both the local and global
sequence pattern information of the RNA segments.”” Each compo-
nent of PseDNC was derived from a physical-chemical matrix via a
series of auto-covariance and cross-covariance transformations. For
more details about PseDNC, please refer to Chen et al.”” As far as
we know, there are at least 23 kinds of physical-chemical properties
that can be used by PseDNC to encode RNA segments.*** >, I
this study, we chose 3 from these 23 kinds of physical-chemical
properties, i.e., free energy, hydrophilicity, and stacking energy.
Tables 10 lists the details.

n

SVM as Prediction Engine

SVM is a machine learning algorithm based on nonlinear mapping,
and it is widely used in various fields of bioinformatics.”*>” The
final decision function of SVM is only determined by a few support
vectors. The complexity of the calculation depends on the number
of support vectors, rather than the dimension of the sample space,
which in some sense is able to avoid the dimension disaster. In this
study, we used the MATLAB function FITCSVM to construct our
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Table 9. The Information of the Six Datasets

Table 10. List of Physicochemical Properties of Dinucleotides in RNA

Dataset Length (bp) Positive Subset Negative Subset Total Dinucleotide Free Energy Hydrophilicity Stacking Energy
Met240 41 120 120 240 GG ~3.260 0.170 ~11.100
Met1900 41 475 1425 1900 GA ~2.350 0.100 ~14.200
Met935 41 127 808 935 GC ~3.420 0.260 ~16.900
Train839 41 114 725 839 GU ~2.240 0270 ~13.800
Test96 41 13 83 96 AG ~2.080 0.080 ~14.000
Test1157 41 157 1000 1157 AA ~0.930 0.040 ~13.700
AC ~2.240 0.140 —13.800
AU ~1.100 0.140 —15.400
models. There are several issues of SVM to be aware of: (1) kernel CG —2.360 0.350 —15.600
function: the most widely used kernel function is the radial basis cA —2.110 0210 —14.400
kernel function (RBF), which is also used in this study; (2) param- cc —3.260 0.490 —11.100
eters: two parameters are considered here: one is the penalty coef- cU 2080 0.520 —14.000
ficient ¢, and the other is the radial basis kerne.l func.tlon s param- UG 10 0340 14400
eter ¢ (gamma), which represents the RBF width (in FITCSVM,
: . UA ~1.330 0210 —16.000
they are called BoxContraint and KernelScale respectively); and
. i uc ~2.350 0.480 —14.200
(3) optimization of parameters: we optimized these two parameters
by using a grid search based on the 10-fold cross-validation test. uu —0.930 0.440 —13700
The ranges of the two parameters in the grid search are:
S P
272 <C<2" with step of2 . en=
“10 ¢ 5 <96 i PO~ (Equation 7) TP +FN
277 <g<2" with step of2
S TN
e=———
P IN T P
. TP
Performance Evaluation Pre=——r )
L TP + FP
Cross-validation is widely used to evaluate the performance of pre- TP+ TN
dictive models. The jackknife test is a special case of cross-valida- Accm s N
tion, and its evaluation results are often considered to be accu- TP+ TN +FP+FN
rate’®. In the jackknife test, each sample in the original dataset is MCC = TP x TN — FP x EN
/(TP + FP)(TP+ FN)(TN + FP)(TN + FN)

rotated as a testing set, while the remaining samples are used as
a training set.”® In this way, the number of samples in the training
set is only one less than that of the original dataset, which makes
the model that is evaluated in the jackknife test similar to the
model that is trained by the original dataset. To ensure the quality
of the experimental results, we employed the jackknife test to assess
the accuracy of the model constructed with dataset Met935,
Met240, and Met1900. However, the complexity of the jackknife
test is proportional to the amount of data in the dataset. To reduce
the complexity, first a 10-fold cross-validation test was carried out
to optimize the SVM parameters and select the features. After that,
the jackknife test was implemented to get the unique result that
was not affected by the random partition of the samples. For a pre-
dictive model, its generalization performance is very important. In
this study, we used an independent test to demonstrate the excel-
lent generalization performance of our model.

In our experiment, we employed six frequently used evaluation in-
dexes to check the performance of our method: sensitivity (Sen), spec-
ificity (Spe), precision (Pre), accuracy (Acc), and the McCc.” They are
defined as follows:
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(Equation 8)

where TP, TN, FP, and FN represent the counts of true-positive, true-
negative, false-positive, and false-negative predictions, respectively.

Furthermore, to compare different models, the ROC curve and AUC
were employed.”” When a ROC curve is completely enveloped by
another ROC curve, the latter is regarded as dominant of the former,
which means that the latter’s performance is superior to that of the
former. However, it is difficult to judge the performance when the
two ROC curves cross over each other. In this case, the AUC will
be a better choice to judge the performance.
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