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Fusarium wilt of banana caused by Fusarium oxysporum f. sp. cubense (Foc) is
a disastrous soil-borne fungal disease. Foc tropical race 4 (Foc TR4) can infect
almost all banana cultivars. Until now, there is a shortage of safety and effective
control methods and commercial banana cultivars with a resistance against Foc TR4.
Biocontrol using environmentally friendly microbes is a promising strategy for the
management of Foc TR4. Here, a strain 5–10, newly isolated from a medicinal plant
(Curculigo capitulata), exhibited a high antifungal activity against Foc TR4. Combing the
morphological characteristics and molecular identification, strain 5–10 was classified
as a Streptomyces genus. The sequenced genome revealed that more than 39 gene
clusters were involved in the biosynthesis of secondary metabolites. Some multidrug
resistance gene clusters were also identified such as mdtD, vatB, and vgaE. To
improve the anti-Foc TR4 activity of the strain 5–10 extracts, an optimization method of
fermentation broth was established. Antifungal activity increased by 72.13% under the
fermentation system containing 2.86 g/L of NaCl and 11.57% of inoculation amount.
After being treated with the strain 5–10 extracts, the Foc TR4 hyphae shrinked,
deformed, and ruptured. The membrane integrity and cell ultrastructure incurred
irreversible damage. Streptomyces sp. 5–10 extracts play a fungicidal role in Foc TR4.
Hence, Streptomyces sp. 5–10 will be a potential biocontrol agent to manage fungal
diseases by exploring the microbial fertilizer.

Keywords: Streptomyces, banana wilt disease, antimicrobial activity, fermentation optimization, genome
sequencing

INTRODUCTION

Banana is the fourth major crop among the world’s developing countries (Shen et al., 2019).
Fusarium wilt of banana caused by Fusarium oxysporum f. sp. cubense (Foc) seriously inhibited
the development of banana industry (Ploetz, 2015). In particular, Foc tropical race 4 (Foc TR4) can
infect almost all banana cultivars (Ghag et al., 2015). The disastrous disease had been found in major
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banana production areas of tropical and subtropical regions
(Ghag et al., 2015; Ploetz, 2015). Until now, there are no
commercial banana cultivars with an effective resistance against
Foc TR4 (Shen et al., 2019). Compared with different prevention
strategies, biocontrol using environmentally friendly microbes
is considered as a promising strategy for management of the
banana wilt disease (Bubici et al., 2019). Several reports have
demonstrated the successful use of biocontrol agents against Foc
TR4 (Ho et al., 2014).

Medicinal plants and their endophytes are important sources
of bioactive compounds and secondary metabolites (Nimnoi
et al., 2010). To date, only a few medicinal plants are investigated
for their endophytic diversity and bioactive metabolites
(Gouda et al., 2016). Especially, endophytic actinomycetes
from medicinal plants can produce several novel compounds,
including antibacterial, antifungal, antiviral, and antitumor drugs
(Ahmad et al., 2017). These metabolites are widely applied in
pharmaceutical and agricultural industries (Passari et al., 2015).
Previous studies also showed that antifungal metabolites from
Streptomyces sp. strain g10 and S. noursei Da07210 exhibited a
strong antifungal activity against Foc TR4 (Getha et al., 2005;
Wu et al., 2009).

In our present study, Streptomyces sp. 5–10 with a high
antagonistic activity against Foc TR4 was newly isolated
from the medicinal plant Curculigo capitulata. Its whole
genome was sequenced to identify some key and novel
gene clusters associated with the biosynthesis of secondary
metabolites. To improve the production of bioactive metabolites
of strain 5–10, the fermentation condition was optimized
using a response surface method (RSM). After treatment
with strain 5–10 extracts, morphology and ultrastructure of
Foc TR4 mycelia were observed through scanning electron
microscopy (SEM) and transmission electron microscopy
(TEM), respectively. Hence, Streptomyces sp. 5–10 will be a
potential bioresource for controlling banana wilt disease in
future applications.

MATERIALS AND METHODS

Sample Collection and Endophytic
Actinomycetes Isolation
Roots, stems, and leaves of C. capitulata were collected from
the “Wuzhishan” nature reserve (Latitude: 18◦54′26′′ N,
Longitude: 109◦40′37′′ E) in Hainan, China. The selected
samples were placed in sterile plastic bags and stored
at 4◦C.

To isolate the endophytic actinomycetes, the plant tissues
were sterilized and thoroughly ground in a sterile mortar. Two
hundred microliters of homogenate was added to a petri dish
containing 50 mg/L of starch casein agar (SCA) actidione,
nystatin antibiotic, nalidixic acid, and potassium dichromate (Lee
et al., 2014). After incubation at 28◦C for 30 days, colonies
were isolated and identified according to the morphological
characteristics, such as colonial morphology, color, and growth
time. These isolates were kept at 4◦C and sub-cultured on the
yeast malt extract agar (ISP2) medium at intervals of 15 days.

Phytopathogenic Fungi
Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4,
ATCC 76255) was conserved in our lab. A modified Foc TR4
strain overexpressing a green fluorescence protein (Foc-GFP)
was provided by the Chinese Academy of Tropical Agricultural
Sciences, Haikou, China. The pathogens were cultured on the
potato dextrose agar (PDA) medium at 28◦C for 3–5 days.

Screening of Actinomycetes With
Antifungal Activity
Antifungal activity of isolates against Foc TR4 were analyzed
in vitro using the dual culture assay method (Yang et al.,
2019). A circular piece of fungal agar, already grown (5 mm
diameter), was placed in the center of a plate. A circular piece
of actinomycetes agar, already grown (5 mm diameter), was
inoculated on one side at about 2.5 cm from the plate center.
A fungal piece of Foc TR4 alone was used as a control. Antifungal
activity was recorded after 7 days of cocultivation at 28◦C.
The growth diameters of Foc TR4 were measured by a cross
method (Sadeghian et al., 2016). The inhibition rate of mycelial
growth was calculated using the following formula: (diameter
of untreated colony - diameter of treated colony)/diameter of
untreated colony× 100%.

Morphological and Biochemical
Characteristics of Strain 5–10
The morphological, biochemical, and physiological
characteristics of strain 5–10 were determined by the
classification status of the selected actinomycetes strain (Ahmad
et al., 2017). The growth profiles were recorded on six different
media (Shirling and Gottlieb, 1966). The morphology of the
isolate was detected by a scanning electron microscopy (SEM,
model S-4800, Hitachi Limited, Japan). After 8 days of growth
on the ISP2 medium, mycelial structure and spore surface were
observed by SEM. Some indices including cellulose, starch, and
gelatine of hydrolysis, production of H2S, nitrate reduction,
and urease activity were measured according to the description
of Shirling and Gottlieb (1966). Effects of pH (4–10), carbon
utilization, nitrogen utilization, and NaCl tolerance on the strain
growth were also assayed (Ahmad et al., 2017).

Genome Sequencing and Functional
Annotation
The whole genome of the selected actinomycete was sequenced
using Illumina Hiseq × 10 platform by the Majorbio Bio-
pharm Technology Co., Ltd, China. Genomic DNA library was
constructed by the TruSeqTM DNA Sample Prep Kit (Illumina).
Reads were assembled using the SOAP de novo software v2.04.
Reads with >10% Ns and/or 25–35 bases of low quality
(<Q20) were filtered out. Adapter sequence and duplication
contamination were also removed (Cao et al., 2017). Encoding
genes, tRNAs, and rRNAs were predicted by the Glimmer v3.021,

1http://trna.ucsc.edu/software/
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tRNAscan-SE v2.02, and Barrnap v0.83 softwares, respectively.
The sequence similarity of actinomycete genome was aligned
using blastp (BLAST+, v2.3.0). A circular map of pairwise
genome was generated and visualized by the Circos v0.69-6
and CGview v2. The 16S rRNA sequence obtained from the
strain genome was used for performing a phylogenetic analysis.
The sequence was aligned against a public database using the
EzBioCloud tool4. A phylogenetic tree was constructed using
the neighbor-joining method of MEGA 7.0. Gene prediction
and annotation were carried out by the prokaryotic genome
annotation pipeline of NCBI (Paungfoolonhienne et al., 2014).
The anti-SMASH program was used to search putative gene
clusters responsible for biosynthesis of secondary metabolites in
the selected actinomycete genome (Olano et al., 2014).

Fermentation Condition Optimization of
Actinomycete
Fermentation Optimization Design
In order to obtain a high antifungal activity of actinomycete
extracts, a response surface methodology (RSM) was used to
optimize the reaction condition, including the Plackett–Burman
design, the path of steepest ascent design, and the Box–Behnken
design (Kumari et al., 2016). Actinomycete was inoculated
with 100 ml of sterilized liquid medium of soybean at 28◦C.
The fermentation broth was extracted with ethanol (filtrate:
ethanol = 1:1, v/v). The solvent was removed using a rotary
vacuum evaporator R 206D (SENCO, Shanghai, China). A brown
residue was obtained and stored at 4◦C. Antifungal activity was
determined by an agar well diffusion method.

Plackett–Burman Design
A set of 12 experimental runs with different combinations
of independent variables was generated using a Design-
Expert software (Version 10.0, Stat-Ease Inc., Minneapolis,
United States). Nine parameters with two different levels (−1,
1) included soluble starch (g/L) (X1) (20, 25), soy flour (g/L)
(X2) (15, 18.75), yeast extract (g/L) (X3) (5, 6.25), peptone (g/L)
(X4) (2, 2.5), NaCl (g/L) (X5) (4, 5), initial pH (X6) (8, 10),
fermentation time (d) (X7) (8, 10), shaker speed (rpm) (X8) (200,
250), and inoculation amount (%) (X9) (6, 7.5). All experiments
were performed in triplicate. The Plackett–Burman experiment
was designed in the light of the first-order polynomial model
(Surwase et al., 2012):

Y = β0 + βixi

where Y was the response, β0 was the model intercept,
βi was the regression coefficient, and Xi was the level of
independent variable.

Path of Steepest Ascent Design and Box–Behnken
Design
Based on the above results obtained from the Plackett–Burman
experiment, the step length and direction were calculated in the

2http://trna.ucsc.edu/software/
3https://github.com/tseemann/barrnap
4https://www.ezbiocloud.net/identify

path of the steepest ascent design (Yang et al., 2017). The Box–
Behnken design (BBD) was performed to enhance the active
production of metabolites and determine the optimal value of
significant variable (Surwase et al., 2012). NaCl (2.7, 2.9, 3.1 g/L)
and inoculation amount (11.0, 11.9, and 12.8%) were set at
three different levels (−1, 0, +1). Nine experiments were carried
out to optimize these key factors. A multiple regression was
calculated for obtaining a model of the most significant factor.
Each response was fitted with an independent second-order
polynomial model (Kumari et al., 2016):

Y = β0 + βi xi +βii xi xj +βij xi xj

where Y was the antifungal activity (predicted response), xi and
Xi represented the independent variables, β0 was an intercept, βi
was a linear coefficient, and βii was a quadratic term coefficient.
The relationship between coded value and actual value was
calculated as follows:

xi =
Xi − Xo

δX

where X0 was the natural variable at the center point, and δX was
the value of step change.

The fitness of data in the equation was validated with a
coefficient variation (R2) in the statistical analysis of variance
(ANOVA). The authenticity of the model was evaluated by
the predicted value for active metabolites under the optimized
condition (Arora et al., 2015). Data were statistically analyzed
using the Design-Expert version 8.0 (Stat-Ease Inc., Minneapolis,
MN, United States) (Arora et al., 2015). Results of BBD
were verified by performing an experiment according to the
predicted conditions (Kumari et al., 2016). All experiments were
performed in triplicate.

Effect of Actinomycete Extracts on
Spore Germination of Foc RT4
Inhibitory efficiency of actinomycete extracts on spore
germination of Foc TR4 was determined according to the
description of Huang et al. (2011). Equal volume of fungal
spore suspension (105 cfu/ml) and actinomycete extracts was
mixed and co-incubated at 28◦C. The extracts were replaced
with sterile water and was used as a control. After incubation
for 6 h, 10 µl of the mixture was dropped on a sterile glass slide.
Among the detected 200 conidia, the number of germinated
spores was counted by a light microscope (model Axio Scope A1,
Carl Zeiss AG, Germany). The inhibition percentage of spore
germination (I) was calculated using the following formula:
I(%) = [(Nc − Nt)/Nc] × 100, where Nc and Nt represented
the number of germinated spores in the control and treatment
groups, respectively (Alijani et al., 2019). Three replicates were
performed for each treatment.

Antagonistic Effects of Actinomycete
Extracts on Mycelial Growth of Foc-GFP
in vitro
Inhibition ability of extracts to mycelial growth of Foc-
GFP was detected using a modified “cross-plug” method
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(Getha et al., 2005). Briefly, strain 5–10 extracts were added to a
sterilized cover slip (1 cm × 1 cm) with the growing Foc-GFP
mycelia. After incubation at 28◦C for 2–3 days in the dark, the
mycelial samples were observed using a light microscope (model
Axio Scope A1, Carl Zeiss AG, Germany) every 2 days.

Effect of Actinomycete Extracts on
Mycelial Morphology of Foc TR4
Actinomycete extracts were added to the PDA medium with a
final concentration of 500 µg/ml. Foc TR4 was inoculated and
cultured on the plate at 28◦C for 5 days. The plate without extracts
was used as a negative control. Foc TR4 mycelia were collected
and fixed overnight at 4◦C with 2.5% (v/v) of glutaraldehyde.
After rinsing twice using 0.1 mol/L of phosphate buffer saline
(PBS, pH 7.4), the mycelial sections were dehydrated with a
gradient of ethanol solution (30, 50, 70, 80, 90, 95, and 100%)
for 20 min, and then, ethanol was replaced with isoamyl acetate.
The dried samples were coated with a gold-covered method (Xing
et al., 2014). Mycelial morphology of Foc TR4 was observed by
SEM (model S-4800, Hitachi Limited, Japan).

Effect of Actinomycete Extracts on
Ultrastructure of Foc TR4 Cells
Foc TR4 was inoculated on the PDA medium with 500 µg/ml
of strain 5–10 extracts at 28◦C for 5 days. The Foc TR4 mycelia
were fixed with glutaraldehyde (2.5%, v/v) overnight at 4◦C and
postfixed using osmium tetroxide (1%, v/v). After washing three
times with PBS (0.1 mol/L, pH 7.0), the samples were dehydrated
with different gradients of ethanol solution and embedded in the
Epon 812 resin at 37◦C for 12 h, 45◦C for 12 h, and 60◦C for 24 h,
respectively (Xing et al., 2014). The Foc TR4 mycelia were sliced
by an ultra microtome (Leica, UC6 CM1950, Germany) and
stained with uranyl acetate and citric acid for 30 min, respectively.
The ultrastructure of transverse Foc TR4 mycelia was detected by
TEM (JEM-1400 Flash, Hitachi Limited, Japan).

Effect of Actinomycete Extracts on
Cellular Electrolyte Leakage of Foc RT4
Electrolyte leakage of Foc RT4 cells was used to evaluate the
effects of actinomycete extracts on cellular leakage of Foc RT4
according to the description of Xu et al. (2019). It was calculated
by the formula [(J1 − J0/J2 − J0)] × 100%. J1 represented the
value of extracellular conductivity at 1, 2, 4, 6, 12, or 24 h
after extract treatment. The conductivity values of boiled and
untreated samples were taken as J2 and J0, respectively. The
electrical conductivity was measured using a conductivity meter
(DDS-307, Hanghai Yueping Scientific Instrument Co. Ltd.,
Shanghai, China).

Effect of Actinomycete Extracts on
Plasma Membrane Integrity of Foc RT4
Propidium iodide (PI) of cell membrane impermeable fluorescent
dye was applied to investigate plasma membrane integrity of
Foc RT4 cells treated with actinomycete extracts (Zhang et al.,
2020). Spore suspension of Foc RT4 (1 × 105 cfu/ml) was mixed
with different concentration (250 µg/ml, 500 µg/ml) extracts and

co-incubated at 28◦C for 4 h (Xu et al., 2019). The untreated
sample was used as a control. The treated cells were washed
twice with PBS, stained with PI for 5 min at 28◦C in the dark,
and finally detected by a laser confocal scanning microscope
(Olympus corporation, FV1000, Tokyo, Japan).

RESULTS

Isolation and Identification of
Actinomycetes With a Strong Antifungal
Activity Against Foc TR4
A total of 16 different endophytic actinomycetes based on their
antifungal activities against Foc TR4 were isolated from different
tissues of C. capitulate. Out of them, 25% of these isolates
displayed above 49.25% of antifungal activity. Especially, an
isolate labeled with 5–10 had 73.18% of growth inhibition rate
against Foc TR4 (Figure 1A). By contrast, strain 5–10 can grow
well on the ISP2 or ISP3 medium, and no pigment was observed
on all the tested media (Supplementary Table 1). The spiral spore
chain and fold spore surface was detected by SEM (Figure 1B).
The physiological and biochemical characteristics of strain 5–10
were evaluated by analyzing different enzyme products, nitrogen
and carbon utilization, and growth ability on different pH
media (Supplementary Table 2). It cannot only utilize cellobiose,
soluble starch, sorbitol, and melibiose as carbon source, but
also use valine, serine, histidine, and phenylalanine as nitrogen
source. Based on morphological, biochemical, and physiological
analyses, strain 5–10 has a typical profile of Streptomyces genus
(Williams et al., 1983).

Genome Sequencing and Annotation of
Strain 5–10
Genome Sequence Data of Strain 5–10
To assess the production potential of secondary metabolites
of Streptomyces sp. 5–10, the genome mining method was
efficient for identifying biosynthetic gene clusters and predicting
bioactive compounds (Arn et al., 2020). The sequenced genome
of strain 5–10 produced a total base pair of 1,612,997,704 bp.
After removing the Illumina PCR adapter reads and low-
quality reads, a total of 4,759,815 mate pair reads (total
1,433,113,234 bp) were obtained. The size of the complete
genome was 9,528,477 bp, and the G + C content was 71.63%.
There were 273,308 bp of the repeat sequences predicted by the
Tandem Repeats Finder tool. The sequences of strain 5–10 were
deposited in the GenBank database with an accession number
JACVYG000000000. A total of 9,971 genes were predicted
with a total length of 9,528,477 bp, constituting 84.62% of
the entire assembled genome (Figure 2A). Seventy-five tRNA
genes and four rRNA genes were identified. A 16S rDNA
sequence of 1,493 bp was deposited in the GenBank database
of NCBI with an accession number MK356358. After the
phylogenetic analysis, the 16S rDNA sequence exhibited a high
similarity with S. albiflaviniger NRRL B-1356 (Figure 1C).
However, the genome sequence of S. albiflaviniger was not
found in the GenBank database, so the average nucleotide
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FIGURE 1 | Isolation and identification of strain 5–10. (A) Isolation of strain 5–10 with a high antifungal activity against Fusarium oxysporum f. sp. cubense tropical
race 4 (Foc TR4). (B) Morphological characteristics of strain 5–10 spores using scanning electron microscopy (SEM). (C) Construction of phylogenetic tree using the
16S rRNA sequences from different Streptomyces.

identity (ANI) value cannot be calculated to evaluate the
genetic relatedness.

Functional Annotation of Strain 5–10 Genome
The encoding gene sequences were aligned with the COG
and KEGG databases to predict the putative gene functions
and the metabolic pathways. Among them, 7,155 genes were
successfully annotated with COG (Figure 2B), accounting for
71.76% of all genes. Annotation analysis showed that these
genes were mainly involved in secondary metabolite biosynthesis,
transport and catabolism (389 genes), amino acid transport
and metabolism (553 genes), carbohydrate transport and
metabolism (582 genes), energy production and conversion (442
genes), coenzyme transport and metabolism (181 genes), lipid
transport and metabolism (252 genes), translation, ribosomal
structure, and biogenesis (184 genes), transcription (818 genes),
defense mechanisms (118 Genes), etc. The KEGG annotation
indicated that 3,174 genes were involved in the metabolism of
terpenoids and polyketides (112 Genes), biosynthesis of other
secondary metabolites (93 genes), xenobiotic biodegradation and

metabolism (127 genes), glycan biosynthesis and metabolism (67
genes), carbohydrate metabolism (412 genes), and amino acid
metabolism (387 genes) (Figure 2C). Notably, a large number
of unknown functional genes identified may be involved in the
biosynthesis regulation of secondary metabolites.

Gene Clusters of Secondary Metabolite Biosynthesis
A total of 60 gene clusters responsible for secondary metabolites
were predicted using the Anti-SMASH program (Supplementary
Table 3). Especially, 19 gene clusters exhibited more than 70%
of similarity with the known sequences, including five non-
ribosomal peptide synthase (NRPS) gene clusters, four NRPS-
like gene clusters, six polyketide synthase gene clusters (five
PKS-T1 and one PKS-T2), one siderophore gene cluster, two
terpene gene clusters, and one ectoine gene cluster (Figure 3A).
Especially, other gene clusters showed 100% of similarities
with NRPS, including luminmide of Photorhabdus laumondii
TTO1, xenotetrapeptide of Xenorhabdus nematophila ATCC
19061, bicornutin A1 of Xenorhabdus budapestensis, NRPS-like
(rhizomide A of Paraburkholderia rhizoxinica HKI 454 and
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FIGURE 2 | Genomic information of strain 5–10 and functional annotation of predicted genes. (A) Genomic map of strain 5–10 by sequencing. (B) COG functional
classification. (C) KEGG classification of metabolic pathways.

2-methylisoborneol of S. griseus NBRC 13350). Compared with
other genomes of Streptomyces, 100% of similarity was also
observed in two terpene gene clusters (geosmin of Streptomyces
coelicolor A3 and pristinol of Streptomyces pristinaespiralis
ATCC 25486), one ectoine gene cluster (ectoine of Streptomyces
anulatus), and one siderophore gene cluster (desferrioxamin B
of Streptomyces griseus NBRC 13350). Two gene clusters had
83% of similarity with one PKS-T1 gene cluster (nigericin of
Streptomyces violaceusniger) and one PKS-T2 gene cluster (spore
pigment of Streptomyces avermitilis).

Core Structures of Biosynthetic Gene Clusters
By contrast, the predicted core structures of five gene clusters
exhibited more than 70% of similarity with the known gene
clusters (Figure 3B). The strain 5–10 genome contained
three potential PKS-T1 clusters (cluster 3, cluster 5, and
cluster 27). Cluster 3 had 78% of similarity with PKS-
T1 of Streptomyces sp. 211726 known as the production of
antimicrobial azalomycin F3a (Xu et al., 2017). Cluster 15 showed
86% of similarity with PKS-T1 of Streptomyces novoguineensis
responsible for producing antimicrobial amipurimycin (Kang
et al., 2019). Cluster 27 had 83% of similarity with PKS-T1
from S. violaceusniger, which participated in the biosynthesis of
antibacterial compounds such as nigericin (Harvey et al., 2007).
The PKS module consisted of ketosynthase (KS), acyltransferase
(AT), ketoreductase (KR), enoylreductase (ER), or dehydratase
(DH) domain. Three PKS clusters demonstrated a distinct
difference of core structures. Similar results were also observed
in the number and type of other biosynthetic, transport, and
regulatory genes (Figure 3B). These results suggested that the
novel and diverse compounds were potentially produced by
strain 5–10. Further experiments need to be performed to

identify the biosynthetic gene clusters producing the antifungal
compounds of strain 5–10.

Optimization of Fermentation Conditions
Using RSM
Determination of Key Factors in the Growth Medium
of Stain 5–10
The medium composition and culture conditions were optimized
by RSM to improve the production of bioactive metabolites
and discover some important active compounds. The Plackett–
Burman design was applied to evaluate the effects of some
growth factors (such as soluble starch, soy flour, yeast extract,
peptone, NaCl, initial pH, shaker speed, fermentation time,
and inoculation amount) on antifungal activity of strain 5–
10 (Figure 4A and Supplementary Table 4). The limited
variables and the variance (ANOVA) analysis are demonstrated
in Supplementary Table 5. Based on these data, a regression
equation was obtained as follows:

Y = 35.50917+ 5.36417X1+2.99917X2−3.1575X3+5.83917X4
−8.17583X5+0.8575X6+4.6625X7+3.68917X8+10.65083X9

A coefficient determination (R2 = 97.67%) suggested that
the regression equation was suitable for predicting antifungal
activity of strain 5–10 extracts during fermentation. The t-test
and p-value were used to evaluate the effects of different
growth factors on metabolite production. By contrast, the
NaCl concentration and inoculation amount were considered
as two key factors (p < 0.05). The inoculation amount had
a positive relationship with antifungal activity of fermentation
products, while the NaCl concentration exhibited a negative
relationship. Therefore, NaCl and inoculation amount were
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FIGURE 3 | Biosynthetic gene clusters and core structures predicted by AntiSMASH. (A) The putative biosynthetic gene clusters responsible for synthesis of
antimicrobial compounds. (B) The core structure characteristics of azalomycin F3a, amipurimycin, nigericin, spore pigment, and echoside A in the strain 5–10
genome.

selected for further optimization to obtain a maximal production
of active metabolites.

Analysis of Significant Variables Using the Path of
Steepest Ascent Design and Box–Behnken Design
According to the results of the Placket–Burman design, these key
factors were further identified by the path of the steepest ascent.
The greatest antifungal activity was observed in the fifth group
(Figure 4B and Supplementary Table 6). The BBD was used to
determine the optimal levels of NaCl and inoculation amount.
According to antifungal activities of strain 5–10 extracts under
different fermentation conditions, an equation was predicted as
follows:

Y = 71.70− 5.92X1− 2.92X2− 5.13X1X2− 10.74X12
− 9.746X22

where Y was the antifungal activity, and X1 and X2 represented
the NaCl concentration and the inoculation amount, respectively.

The actual and predicted values of antifungal activities
are shown in Supplementary Table 7 and Figure 4C. The
predicted values were consistent with the observed values in
the operating range of variables (Figure 4D). The residual
plots and linear patterns represented normality in the error
term (Figure 4E) (Wang et al., 2008). The elliptical contours
showed that a significant interaction existed between NaCl
and inoculation amount in the three-dimensional response
plot (Figures 4F,G). A statistical significance was analyzed to
evaluate the feasibility of the model equation (Supplementary
Table 8). Based on p-value (0.0007), F-value (164.68), coefficient

of determination (R2 = 0.99903), and coefficient of variation
(1.74%), the model was suitable for predicting antifungal activity
of strain 5–10 extracts (Surwase et al., 2012). In comparison
with the interaction of NaCl and inoculation amount, the
binomial coefficients (X1

2 and X2
2) of regression equation

were obviously different, suggesting that the effect of these
two factors on antifungal activity was not only a simple
linear relationship.

According to the predicted model, the maximal antifungal
activity (74.03%) was obtained under the fermentation condition
with 2.838 g/L of NaCl and 11.706% of inoculation amount,
and then, an experiment was performed to test the reliability
of the predicted model. Under the optimized condition, strain
5–10 extracts had a higher antifungal activity (72.13%) than
that before optimization (47.82%) (Figure 4H). Although the
observed value was a minor difference with the predicted
result, less than 10% of difference can be considered as
the validity of the model (Levin et al., 2008). Hence,
the constructed model was reliable and reproducible in
the present study.

Effect of Strain 5–10 Extracts on Spore
Germination, Mycelial Morphology, and
Ultrastructure of Foc TR4 in vitro
Strain 5–10 extracts significantly decreased spore germination
of Foc RT4 compared to 80% of germinated spores detected

Frontiers in Microbiology | www.frontiersin.org 7 January 2021 | Volume 11 | Article 610698

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-610698 January 18, 2021 Time: 17:37 # 8

Yun et al. Anti-Foc RT4 Activity of Streptomyces sp. 5–10

FIGURE 4 | Fermentation condition optimization of strain 5–10 by RSM. (A) The Placket–Burman design; (B) the steepest ascent of path; (C) the Box–Behnken
design (BBD). (D) Diagnostic plots of the observed values and predicted values showing the model reliability. (E) Normal probability of internally studentized
residuals. (F) Response surface plots of antifungal activity. (G) Contour plots of antifungal activity. (H) Comparison of antifungal activity before and after optimization.

after 6 h in the control group. Only 27.35% of the germination
rate was observed after treatment with the strain 5–10 extracts
(Supplementary Figure 1). Moreover, the cell wall of untreated
Foc TR4 had a linear and smooth structure (Figure 5A). Intact
mitochondria (M), vesicles (V), and lipid bodies in Foc TR4 cells
were clearly observed in the control group (Figure 5B). After
treatment with 500 µg/ml of extracts, the hyphae became wizened
and ruptured. A large number of vacuoles and disintegrated
cytoplasm were found in the cell matrix. Obvious vacuolization
was also detected. Additionally, Foc TR4 overexpressing a
GFP gene was used to further analyze the effect of extracts
on the mycelial morphology by the fluorescence microscope.
Most of GFP-Foc4 hyphae became dissolved, and fluorescence

signals disappeared (Supplementary Figure 2). Therefore, this
interference was sporistatic by inhibiting the formation of germ
tubes and hyphal growth.

Effect of Extracts on Membrane
Permeability of Foc RT4 Cells
The electric conductivity of Foc TR4 cells was increased by
24 and 29% after treatment with 250 and 500 µg/ml−1 of
extracts for 12 h, respectively (Figure 6A). The PI staining
was used to further detect the plasma membrane integrity
of cells. As shown in Figure 6B, Foc TR4 spores cannot
be stained by PI, or low red fluorescence was observed
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FIGURE 5 | Effect of strain 5–10 extracts on structural characteristics of Foc TR4. Strain 5–10 extracts were mixed with the potato dextrose agar (PDA) medium and
inoculated at 28◦C for 5 days. (A) Morphological characteristics of Foc TR4 hyphae treated with 500 µg/ml of extracts by SEM. The red arrows showed the wizened
hyphae of Foc TR4, the yellow boxes represented the ruptured hyphae of Foc TR4 and the white boxes exhibited the deformed hyphae. (B) Ultrastructure of the
transverse Foc TR4 hyphae treated with 500 µg/ml of extracts by transmission electron microscopy (TEM). M, mitochondria; *, thickened and irregular cell walls; P,
plasmolysis; V, matrix loss in vesicles; #, vacuolization.

FIGURE 6 | Effect of strain 5–10 extracts on cell membrane integrity of Foc TR4. (A) Measurement of Foc TR4 extracellular conductivity after treated with strain 5–10
extracts. (B) Red fluorescence signal showing the disrupted plasma membranes of Foc TR4 spores stained with PI. Scale bars = 200 µm.

in the control group. In the treatment group, obvious
fluorescence signals of PI were observed. Along with the
increase in the extract concentrations, the spores with red
fluorescence signal were gradually increased, suggesting that
Foc TR4 plasma membrane was seriously broken by strain 5–
10 extracts.

DISCUSSION

Fusarium wilt of banana was prevalent in most of major
banana production areas in tropical and subtropical regions
(Ghag et al., 2015; Ploetz, 2015). Some beneficial microbes
such as Trichoderma spp., Pseudomonas spp., and Bacillus
spp. had been used to biocontrol banana wilt disease (Bubici
et al., 2019). However, a large variation of biocontrol efficiency

was frequently observed due to the selected microbes (Zhu
et al., 2020). Until now, very few studies are reported for
the biocontrol of banana fusarium wilt using Streptomyces
species (Bubici et al., 2019; Zhu et al., 2020). In our
recent study, an endophytic actinomycete 5–10 with a high
antifungal activity against Foc RT4 was isolated from roots of
C. capitulata. Previous studies showed that actinomycetes from
different medicinal plants produced more bioactive metabolites
with a potential application value in the agricultural and
medical fields (Gouda et al., 2016). It might be because
that actinomycete metabolites may be related with medicinal
properties of host plants. For example, some compounds
isolated from C. capitulata showed activities of antitumor and
immunosuppression (Nie et al., 2013). Some isolates from
Streptomyces genus were also prolific producers of antimicrobial
compounds (Seipke et al., 2012). These results suggested that
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strain 5–10 will be a promising biocontrol agent against
banana wilt disease.

Antifungal activity of the strain 5–10 extracts was supported
by the gene clusters responsible for secondary metabolites
within the strain 5–10 genome. In the strain 5–10 genome,
the identified 60 biosynthetic gene clusters proved a high
potential for producing diverse chemical compounds. Notably,
47 gene clusters encoding PKS and NRPS were identified
based on functional active domains, which were important
members for contributing to the biosynthesis of major secondary
metabolites (Moolhuijzen et al., 2020). The prevalence of
NRPS and PKS clusters of strain 5–10 is distinguished from
other Streptomyces strains. Previous studies indicated that
PKS and NRPS were large multifunctional enzymes with
various catalytic domains, which were responsible for the
production of some active metabolites in actinomycetes (Minowa
et al., 2007). PKS can utilize a variety of bioavailable acyl
to build blocks (for example, acetate, propionate, butyrate,
etc.) and iterative decarboxylative claisen condensation to
generate stereoenriched enzyme-bound polyketide chains, which
can be further enzymatically tailored to yield the final
bioactive products (Riva et al., 2014). We also found that
the NRPS-like echoside A belonging to the ANL superfamily
of adenylating enzymes participated in catalyzing the partial
adenylation half reaction (Singh et al., 2017). Interestingly, some
identified gene clusters of NRPS and PKS lacked homologs
against the anti-SMASH database. For example, telomycin
(BGC0001406) and daptomycin (BGC0000336) demonstrated
less than 5 and 10% of similarity in comparison with the
known function genes. It suggested that these biosynthetic gene
clusters might lead to the production of novel compounds
(Siupka et al., 2020).

Additionally, other bioactive metabolites were also identified
in the strain 5–10 genome, including antibiotics, toxins,
siderophores, and immunosuppressive agents such as coelichelin,
rhizomide A, meridamycin, amipurimycin, nystatin, azalomycin
F3a, etc. Miharamycin was a peptidyl nucleoside antibiotic,
showing a remarkable activity against the rice blast disease
(Kang et al., 2019). As a ferric-iron-chelating peptide, coelichelin
effectively harnessed the microbe’s own cellular machinery
to improve cellular uptake and delivery of the antimicrobial
compounds (Williams et al., 2019). Nigericin showed strong
antibacterial and anticancer activities by moving sodium and
potassium ions, resulting in changes in the ion gradient in
the energetic metabolism (Ortega et al., 2019). Moreover, genes
responsible for indole biosynthesis and ion acquisition in the
strain 5–10 genome might also play important roles in the
biocontrol of Foc TR4. A previous study showed that the indole
skeleton displayed a broad spectrum of antimicrobial bioactivity
(Qin et al., 2015). Siderophores produced by Streptomyces
were involved in the growth inhibition of phytopathogen by
depriving some essential ions (Zhu et al., 2019). Actually,
the biosynthetic pathways of strain 5–10, which most likely
originated from Proteobacteria, were more complicated due to
some unknown biosynthetic genes and regulatory genes (Paulus
et al., 2017). The high number of biosynthetic gene clusters
influences the metabolic potential of microbes for improving

the competition for nutrients in the environment (Chevrette
et al., 2019). Hence, Streptomyces sp. 5–10 was an excellent
candidate for the biocontrol of phytopathogenic fungi based on
its genome profile.

Biosynthesis of multifarious compounds in bacteria was
closely related to the fermentation condition (Bretschneider et al.,
2013). Due to a complex and non-linear growth process of
a microbe, a minor variation in the fermentation media can
significantly influence the active compound yield and metabolic
profile (Kaur et al., 2014). In our study, the medium composition
and culture conditions were optimized by RSM. By contrast,
NaCl and inoculation amount were two key factors. Accumulated
evidence indicated that an appropriate concentration of NaCl
can increase production of microbial antibiotics by mediating
the osmotic pressure of the medium (Pelczar et al., 1993).
When osmolarity in the medium was reduced by the decrease
in NaCl, strain 5–10 might drastically promote the production
of secondary metabolites. It was supported by the fact that
strain 5–10 cultured on the medium with 2.84 g/L of NaCl
had the highest antifungal activity (72.13%). In addition,
inoculation amount was approved to be related closely with
metabolite production in our study. Insufficient inoculation
amount may lead to low biomass of active metabolites, while
a higher inoculation amount caused accumulation of toxic
substances (Wang et al., 2008; Noura et al., 2013). Therefore,
the antifungal activity increase of strain 5–10 fermentation broth
might be related to the improvement of active compounds or
the change in metabolic profiles in the optimized medium.
Chiani et al. (2010) improved the production of a bioactive
desferrioxamine B of microbe by slight addition of NaCl. Jiang
and Huang (2004) reported that the increase in inoculation
amount resulted in the significant decrease in antimicrobial and
antifungal azamycin. So it is significant to improve the antifungal
activity of strain 5–10 extracts with a short-cycle and low-cost
fermentation method.

Compared with Streptomyces sp. strain g10 (Getha et al.,
2005) and S. noursei Da07210 (Wu et al., 2009), Streptomyces
sp. 5–10 extracts decreased conidial germination and destroyed
mycelium structures of Foc TR4. It was due to the rupture of
cell membrane and the degradation of cell walls. A previous
study showed that chitinase synthesized by Streptomyces lydicus
WYEC108 could hydrolyze components of fungal cell wall in vivo
(Mahadevan and Crawford, 1997). In addition, the degenerated
cell organelles and large vacuoles were observed in Foc TR4
cells treated with the extracts. The red fluorescence signal of
PI was visibly enhanced with the increase in extract amount,
suggesting that the phenomenon of cell death occurred in a
large number of Foc TR4 cells (Xu et al., 2019). It was further
supported by the result that extracellular conductivity of fungal
cells increased rapidly after treated with strain 5–10 extracts.
Similarly, Streptomyces ma. FS-4 caused the plasma membrane
destruction and cell apoptosis of Foc TR4 (Duan et al., 2020).
Actually, the integrity of cytoplasmic membrane is one of crucial
factors for various essential functions of microbes (Huang et al.,
2003). Thus, strain 5–10 may exert its antifungal activity against
Foc TR4 by dissolving the cell wall and damaging cytoplasmic
membrane and cell ultrastructure.
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CONCLUSION

A strain Streptomyces sp. 5–10 with a high antifungal activity of
Foc TR4 was newly isolated from roots of C. capitulata. A total of
60 putative gene clusters responsible for antimicrobial metabolite
biosynthesis were predicted in the sequenced genome of strain 5–
10. Some antimicrobial genes were also identified by alignment
with databases. Furthermore, the RSM was applied to optimize
the fermentation condition to enhance antifungal activity of
strain 5–10 extracts. By contrast, the NaCl concentration and
inoculation amount were considered as two-key fermentation
parameters. The strain 5–10 extracts caused a shrunken and
ruptured morphology of Foc TR4 hyphae and the membrane
permeability. Hence, Streptomyces sp. 5–10 will be a promising
biocontrol agent against banana wilt.
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