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Deep neural network (DNN) models for computer vision
are capable of human-level object recognition.
Consequently, similarities between DNN and human
vision are of interest. Here, we characterize DNN
representations of Scintillating grid visual illusion images
in which white disks are perceived to be partially black.
Specifically, we use VGG-19 and ResNet-101 DNNmodels
that were trained for image classification and consider
the representational dissimilarity (L1 distance in the
penultimate layer) between pairs of images: one with
white Scintillating grid disks and the other with disks of
decreasing luminance levels. Results showed a
nonmonotonic relation, such that decreasing disk
luminance led to an increase and subsequently a
decrease in representational dissimilarity. That is, the
Scintillating grid image with white disks was closer, in
terms of the representation, to images with black disks
than images with gray disks. In control nonillusion
images, such nonmonotonicity was rare. These results
suggest that nonmonotonicity in a deep computational
representation is a potential test for illusion-like
response geometry in DNN models.

Introduction

Given sufficient training data, deep neural network
(DNN) models are capable of matching human
accuracy in challenging image classification tasks
(Krizhevsky et al., 2012; He et al., 2015; LeCun et al.,
2015; Schmidhuber, 2015; Serre, 2019). Motivated by
this recent progress in the field of computer vision,
DNN models trained for image classification have
started to receive significant attention in neuroscience
research (Majaj & Pelli, 2018; Turner et al., 2019). For
example, some DNNs have been proposed as models
of human shape recognition (Kubilius et al., 2016;
Jozwik et al., 2017), visual perceptual learning (Cohen
& Weinshall, 2017; Wenliang & Seitz, 2018), and visual
crowding (Volokitin et al., 2017) among other aspects
of human visual perception (Dekel, 2017; Geirhos et al.,

2018; Gruber et al., 2018; Zhang et al., 2018; Kim et al.,
2019; Ward, 2019; Lotter et al., 2020), possibly with
the exception of more “global” Gestalt effects (Baker
et al., 2020). In addition, multiple studies observed
that image representation in different stages of the
DNN computational hierarchy (i.e., the “features”)
have unprecedentedly strong correlation with neural
activity at different visual areas in primate cortex
(Cadieu et al., 2014; Khaligh-Razavi & Kriegeskorte,
2014; Yamins et al., 2014; Güçlü & van Gerven, 2015;
Kriegeskorte, 2015; Yamins & DiCarlo, 2016; Martin
Cichy et al., 2017; Grossman et al., 2019). Although the
matter is still under debate (Majaj & Pelli, 2018; Doerig
et al., 2019, 2020), some aspects of biological vision
appear to be well-explained by DNN models trained
for image classification despite the two computational
architectures being only partially similar (Richards
et al., 2019).

Of particular interest in the study of both biological
and computer vision is an investigation of the inputs
for which the system produces incorrect results. In
humans, cases where perception deviates from physical
reality, often referred to as visual illusions, have been
investigated since antiquity (Gregory, 1968, 1991;
Eagleman, 2001). Among other discoveries, research of
visual illusions has led to the widespread notion that
perception is the consequence of a statistical inference
process, and consequently, that many visual illusions
reflect statistical assumptions about the visual input
(Gregory, 1980; Howe & Purves, 2005; Clark, 2013;
Summerfield & Lange, 2014). A natural question is
whether visual illusions are shared between biological
and computer vision. A few recent studies suggest that
there are indeed similarities. Adversarial examples
designed to transfer across DNN models were shown to
have partial transfer to time-limited human observers
(Elsayed et al., 2018; Zhou & Firestone, 2019). Also,
biases consistent with classic visual illusions were found
in the learned representation of standard DNN models
trained for image classification (Ward, 2019), video
and motion prediction (Watanabe et al., 2018; Lotter
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Figure 1. Scintillating grid stimulus and experimental methods. (a) The Scintillating grid visual illusion exhibits illusory scintillation of
black smudges within the white grid disks. (b) Schematic representation of the experimental setup. Representational dissimilarity,
denoted as R, was calculated as the mean-normalized L1 distance of the VGG-19 representation (layer fc8) between two images. One
image had a masking region of varying luminance (from μ = 1.00 through μ = 0.00 by �μ = −0.05) and the other image was
constant with a white-masked region (μ = 1.00 throughout). For the Scintillating grid (panel a), the masking region was the grid disks.
(c) The magnitude of deviation from a monotonic relation between R(μ) and μ (“deviation magnitude”), d(μ), is calculated as the
difference between R(μ) and the maximum R for all luminance values greater than (to the left of) the current value of μ
(see Methods).

et al., 2020), image denoising (Gomez-Villa et al.,
2019), and in orientation representation (Benjamin
et al., 2019; Henderson & Serences, 2021); and deep
learning has been used to model natural image patch
statistics in visual illusions (Hirsch & Tal, 2020).
Of course, in humans, bias in a task or a change
in neural activity are not necessarily indicative of a
change in the perceptual experience (Crick & Koch,
1995; Morgan, 2014; Witt et al., 2015; Linares et al.,
2019; Borowski et al., 2019). Human visual experience
provides internal representations that can be quantified,
and these quantifications may be comparable with
those of DNNs. For this reason, we refer to the DNN
effect considered in this work as a test of illusion-like
response geometry.

Here, we focus on a single visual illusion: the
Scintillating grid (Figure 1a). In the Scintillating grid,
scintillating illusory smudges are perceived within
disks located at the intersections of a grid of bars
(Bergen et al., 1985; Schrauf et al., 1997). In the classic
variant used here (Figure 1a), the disks are white, the
bars are gray and the background is black, leading
to scintillating illusory smudges that appear black.

We investigated the representation of Scintillating
grid images for two DNN models trained in image
classification: VGG-19 and ResNet-101. Since the
Scintillating grid illusion manifests as illusory black
smudges inside of white disks, we took Scintillating
grid images (as well as control images with reduced
or no illusion), and manipulated the luminance
inside the disks (or inside a relevant masking region)
from white to black (Figure 1b). For an illusion-like
DNN representation, the white disk image would be
more “similar” to the black disk image than some
intermediate gray disk images (Figure 1c) exclusively
for the Scintillating grid stimuli. Formally, this means
that the representational dissimilarity (L1 distance in
representation), as a function of luminance, would
be nonmonotonic mostly in the Scintillating grid
images. The results agreed with this hypothesis,
showing significant nonmonotonic trends between
representational dissimilarity and luminance in the
Scintillating grid images as compared to control images.
The nonmonotonic representational dissimilarity
also correlated with Scintillating grid perception data
obtained from human observers across several setups.
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Methods

DNN models

We considered two standard ImageNet-trained DNN
models in this work: VGG-19 (Simonyan & Zisserman,
2014) and ResNet-101 (He et al., 2016). We used the
standard versions of both models, accessed through
the Deep Learning Toolbox of MATLAB. The models
were trained for classification on 1,000 image classes
containing approximately 1.3 million images from
ImageNet (Deng et al., 2009). We selected VGG-19 and
Resnet-101 because, despite being designed for object
recognition tasks, both are top models on Brain-Score
(seventh and ninth out of 148 models, respectively,
as of July 28, 2021), which ranks computer vision
models by their similarity to the brain across several
standardized benchmarks (Schrimpf et al., 2018, 2020).
In Brain-Score, VGG-19 had higher scores for V1
and V4 while Resnet-101 had the higher score for
behavior. The two models are structurally different in
that Resnet-101 has a deeper architecture facilitated
by residual blocks with identity-like mappings (He
et al., 2016). In this work, we mainly focused on
the VGG-19 model. Although VGG-19 achieves
a lower classification performance compared with
newer models such as ResNet-101, it is consistently
found to be a promising model correlate of human
perception (Kubilius et al., 2016; Dekel, 2017; Gruber
et al., 2018). Most analyses were performed on the
output representation of the penultimate layer (i.e.,
the last fully connected layer, such as fc8 in VGG-19),
because this computational stage seems to be frequently
found as the most similar to different aspects of visual
perception (Kubilius et al., 2016; Jozwik et al., 2017),
although not always (Dekel, 2017; Grossman et al.,
2019).

Image stimuli

We used several sets of images, each corresponding
with a different illusion or control condition (examples
shown in Supplementary Figure S1). For each image,
a masking region is defined, whose luminance is
manipulated as described in the next section. All image
sets have been made available on the public Github
repository: https://github.com/sunericd/dnn-illusion.
Images were created using a canvas size of
768 × 768 pixels, and then resized to 224 × 224 pixels
to conform to the VGG-19 and ResNet-101 input
requirements. Element sizes are reported for the
224 × 224 pixels image.

Scintillating grid (illusion)
Images were defined by variations on three

components: bars, disks, and global translation. Bars

had a width of 5 pixels and a luminance of 0.5 (on
a scale of 0 to 1). The number of bars was the same
for horizontal and vertical bars and between 2 and 6
(N × N where N ∈ [2, 3, 4, 5, 6]; overall 5 selections).
Disks were positioned at the intersections of the bars
and had diameters of 9, 11, or 13 pixels (3 selections).
The disks defined the masked region where luminance
is manipulated (see Sinusoid bars (reduced illusion)).
Bar positions had a fixed separation and a varying
offset from center of −90, −45, 0, +45, or +90 pixels,
separately for vertical and horizontal translations, which
amounted to 25 unique translation variations. The
background was black (luminance of 0). Overall, 375
variants were used. In the main experiments, we used a
1-pixel disk border with luminance 0.8 for the purpose
of preserving disk shape when the disk luminance
changes. Using an edge of 1 pixel is reasonable under
the assumption that the black smudges are slightly
smaller than the disks (e.g., have a radius of 90%
of the disks; current behavioral estimates suggest
80% with exact values depending on parameters;
Matsuno & Sato, 2019). As evident by inspecting
Figure 1a, introducing the 1-pixel disk border preserves
illusion perception (the standard Scintillating grid has
unbordered disks). In fact, all 375 variants had intact
illusion perception under standard viewing conditions.
In addition to the 1-pixel disk border experiments, we
considered additional experiments with disk borders of
0 pixels (“unbordered”), 2 pixels, or 3 pixels (Results in
Supplementary Figure S10).

Sinusoid bars (reduced illusion)
When grid bars are not straight, the illusory effect is

reduced for both the Hermann grid (Schiller & Carvey,
2005; Geier et al., 2008) and the Scintillating grid
(Levine & McAnany, 2008). Here, we used bars with
a sinusoidal curvature, having a sine amplitude of 3.5
pixels, and a wavelength matched to the bar separation
(see Supplementary Figure S1). Each sinusoid bars
reduced illusion image was matched with an image from
the Scintillating grid image set, with the exception of
the grid bars being sinusoidal instead of straight.

Large disks (reduced illusion)
The stimuli were identical to the Scintillating grid

condition, but with double disk size variants (i.e., 18,
22, or 26 pixels). It is evident that, under standard
viewing conditions, illusion perception is significantly
reduced, if not entirely absent (see Supplementary
Figure S1) (Schrauf et al., 1997; Sun, 2019). Each
image in the large disks set had the same parameters
as a corresponding Scintillating grid image, with the
exception of larger grid disks.

Offset bars (control)
Illusion perception is decreased and possibly

eliminated when the grid bars are translated such

https://github.com/sunericd/dnn-illusion
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that their intersections do not align at the disks
(Supplementary Figure S1) (Schrauf et al., 1997).
We used such images as an additional control. Each
image in the offset bars decreased illusion set had the
same parameters as a corresponding Scintillating grid
image, with the exception of the grid bars, which were
translated such that every disk was equidistant from its
four neighboring bars.

No bars (control)
Removal of the grid bars decreases and possibly

eliminates perception of the scintillating illusion
(Supplementary Figure S1) (Schrauf et al., 1997). As
such, we used a no bars control image set that was
matched with the illusion image set. Each no bars image
had the same image parameters as its corresponding
Scintillating grid image with the exception of the grid
bars, which were removed.

Disk-masked natural (control)
To investigate the consequence of our disk masking

procedure in a more natural setting, we used 375 images
randomly selected from the first 1,000 validation images
of ImageNet ISLVRC. We applied the same disk
masking as in the Scintillating grid. The number and
position of disks were selected using the same set of
variants as used for the Scintillating grid.

Pixel-masked natural (control)
Because the white regions in natural images are

typically not organized as a perfect grid, we considered
a control whereby the 10% highest luminance pixels
in the natural image were used as the masking pattern
instead of the disk mask in other image sets. We
applied this image-specific masking to each of the 375
aforementioned natural images.

Number of disks (control)
Stimuli were identical to the Scintillating grid set

with a 5 × 5 grid (providing 75 variants, unlike the
other image sets each having 375 variants), but having
the number of the white disks decreasing from 25 to 0
instead of the disk luminance decreasing from 1 to 0.

Gray background (control)
To control for contrast effects, we designed images

with Scintillating grid disks on a gray (luminance 0.5)
background with no bars. Each gray background image
had the same image parameters as its corresponding
Scintillating grid image. Results and discussion for the
gray background control is included in Supplementary
Figures S9, S10, S11, and Appendices B and C.

DNN experimental setup

We used two experimental setups. In the luminance
setup, a masking region was defined for each image
of each set. With the exception of the pixel-masked
natural image set (described elsewhere in this article),
the masking region corresponded with the inner
region of the disks. The luminance of the masking
region was changed between white (μ = 1.00) and
black (μ = 0.00) along 21 uniformly spaced luminance
levels (�μ = −0.05). These differently masked images
were compared using representational dissimilarity
(described elsewhere in this article) defined with respect
to the “reference” image with a white mask (μ = 1.00).

In the “number of disks” setup, the number of white
disks was changed instead of disk luminance. Images
with a different number of white disks were compared
using representational dissimilarity to the reference
image, which had all white disks. Note that the reference
images in the “number of disks” setup are identical to
the reference images in the luminance setup for the
Scintillating grid image set (i.e., the original illusion;
Figure 1a).

Representational dissimilarity quantifies how
dissimilar two images are in terms of the DNN
representation. Specifically, to compare an image A(q)
with the reference image Aref , we first record the values
in a given computational stage for the two images,
resulting in two tensors a(q) and aref , each having
dimensions of M × N × K values (rows, columns, and
convolution kernels, respectively). The computational
stage considered in most analyses is the post-ReLU
penultimate layer (i.e., fc8 in VGG19). Next, we
compute the L1 distance between these tensors:

rL1(q) =
M∑

m=1

N∑

n=1

K∑

k=1

|a(q)mnk − arefmnk| (1)

Finally, we normalize rL1 by its mean across different
values of q (where q is the luminance level or the
number of disks):

R(q) = rL1(q)
rL1

(2)

We verified that using the L2 metric instead of
the L1 metric for representational distances led to
very similar results (Supplementary Figure S3). We
decided to not use the cosine distance as a metric
for representational dissimilarity, because it would
be insensitive to differences in absolute magnitudes
between the two representations, which are of interest
here.
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Proposed test of illusion-like response
geometry: Deviation magnitude

We suggest the magnitude of deviation from
monotonicity in the DNN representation as a model
correlate of illusion perception. Specifically, we compute
the deviation frommonotonicity at each disk luminance
as the non-negative difference between a given R
and the maximal value of R in all higher luminance
levels (Figure 1c). We refer to this measurement as
the deviation magnitude. The motivation for this
metric is that, in the absence of illusion perception,
loss of contrast, or changes in shape contours, the
representational dissimilarity, R, may be speculated to
increase monotonically for decreasing luminance levels
since the pixel difference between the two images would
increase. In the presence of illusion, the black disks
are “similar” to the white disks, which implies that R
should be nonmonotonic (R between white and some
intermediate luminance to be larger than R between
white and black).

Human experimental setup

Both authors scored the magnitude of the
scintillating illusion in random images over all
luminance levels for one variant of the Scintillating
grid, one variant of the no bars control, and one
disk-masked natural image. Each image variant was
scored five times by each observer. The observers
used a scale of 0 to 5 to indicate increasing illusion
magnitude, which is similar to previous scoring
methods for Scintillating grid illusion strength (Schrauf
et al., 1997). Observers were seated approximately
50 cm from the display, in an otherwise uncalibrated
setting. Image dimensions were displayed at 10 ×
10 cm (approximately 11.4 visual degrees) on a gray
background (luminance of 0.5). The stimuli were
presented on a display monitor from a Dell XPS 13
9360 computer. The illuminance of the screen during
the experiment ranged from 140 to 160 lux when the
stimuli was presented and from 20 to 50 lux without
stimuli. The illuminance of the room ranged from 10 to
80 lux.

Results

Disk luminance experiment

When the Scintillating grid disk luminance is
decreased from white to black, the pixel distance,
relative to a reference image with white disks, increases.
However, in human vision, the white disks in the
intersections of the Scintillating grid are perceived

as black regions superimposed on the disks and are
therefore more visually similar to black disks than
to gray disks. Here, we hypothesized that the DNN
models would exhibit illusion-like response geometry,
characterized by white being more “similar” to black
than to gray in the DNN representation for disks
positioned in the bar-intersections of Scintillating grid
images. To test this, we considered one illusion image
set, three sets of images with reduced illusions, and
three nonillusion control image sets (see Methods).
According to our hypothesis, the illusion images
would produce the greatest nonmonotonic relationship
between representational dissimilarity (R) and disk
luminance (μ) (Figure 1c). In the control image sets, we
hypothesized that the representational dissimilarity R
would monotonically increase from R = 0 at μ = 1 to
Rmax at μ = 0, mainly owing to linear increases in the
pixel distance between the input images.

Consistent with our hypothesis, in the Scintillating
grid images, there were significant deviations from the
monotonic relation with decreasing disk luminance
(Figure 2a). The representational dissimilarity increased
in a monotonic fashion to a maximum at μ = 0.45
before decreasing and leveling off for lower luminance
levels (μ < 0.45). Variants of the Scintillating grid with
reduced illusion perception in humans (e.g., sinusoid
bars, large disks) (Schiller & Carvey, 2005) exhibited
a lesser degree of non-monotonicity (Figure 2b–d).
This trend was noticeably different from the completely
monotonic behavior observed in control images
(Figure 2e–g). On average, the Scintillating grid
images produced a more nonmonotonic relation
between R and μ than either reduced illusion or
nonillusion control images (Figure 3a). These trends
were observed for different grid sizes, different numbers
of disks, and different combinations of vertical and
horizontal translations (see Methods). Results using the
non-normalized L1 representational dissimilarity are
shown in Supplementary Figure S2.

To quantify the magnitude of this illusion-like,
nonmonotonic effect in VGG-19 representational
dissimilarity, we computed the deviation magnitude d at
each experimental interval (see Methods for details). In
the Scintillating grid images, low deviation magnitudes
were observed for high luminance (μ > 0.45), but
significantly increased for lower luminance (μ < 0.45)
(Figure 3b). In comparison, the reduced illusion
and non-illusion control images produced minimal
deviation magnitude throughout most disk luminance
levels (Figure 2b). Compared with every other class of
images, the Scintillating grid illusion images observed
significantly higher average deviation magnitude at
μ = 0 (Figure 3c, p < 10−54 for all Mann–Whitney
U tests between mean Scintillating grid d (μ = 0)
and the mean d (μ = 0) of reduced illusion images
and of nonillusion control images). Similar results
were observed for the Resnet-101 DNN (p < 10−110;
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Figure 2. Nonmonotonicity of representational dissimilarity in Scintillating grid and controls. (a–g) Shown is the mean
representational dissimilarity, R, for decreasing disk luminance, μ, calculated as described in Figure 1. Shaded regions correspond to
the interquartile range. (a) For Scintillating grid illusion images. (b–c) For variants of the Scintillating grid with reduced illusory
perception in human: (b) sinusoid bars and (c) large disks. (d–g) For controls having virtually no illusion perception in human:
(d) offset bars, (e) no bars, (f) disk-masked natural images, and (g) pixel-masked natural images (see Methods). Here, the example
natural image is represented by a public-domain image instead of ImageNet images. (h) For a control setup in which the number of
the white disks is decreased instead of the disk luminance. Grids with progressively fewer white disks were compared with the full
white-disk grid. Overall, results showed that the non-monotonicity in the relation between R and μ was strong for Scintillating grid
images (a), weak for reduced illusion images (panels b–d), and absent, on average, for nonillusion controls (e–h). Note that the y-axis
scaling is different in the different panels.

Figure 3. Deviation from monotonicity in the relation between representational dissimilarity R and disk luminance μ.
(a) Representational dissimilarity averaged across all 375 image variants in four stimuli sets: Scintillating grid, sinusoid bars, no bars,
and disk-masked natural images (reproduced from Figure 2a,b,e,f). Shaded region represents the interquartile range. (b) The mean
deviation magnitude d (see Figure 1c), as a function of disk luminance, for Scintillating grid, sinusoid bars, no bars, and disk-masked
natural images. Deviation magnitude is measured as the difference between R(μ) and the maximum R for all disk luminance greater
than the current μ; it is a measure of the deviation from a monotonic relation between R(μ) and μ. Solid lines show 20 randomly
selected individual measurements. (c) Deviation magnitudes, d, at disk luminance μ = 0 for all image variants. Results showed that
deviations for Scintillating grid images were significantly greater than those of other images. On average, reduced illusion images
(sinusoid bars, large disks) produced larger deviations than nonillusion images (offset bars, no bars, and natural images).
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Figure 4. Deviation magnitudes across the network hierarchy. Shown, for each computational stage of the (a) VGG-19 model and
(b) ResNet-101 model, is the mean deviation magnitude at μ = 0. Deviation magnitudes were averaged over all relevant images and
the shaded region represents the interquartile range. By “computational stage,” we refer to intermediate computational stages that
compose the network layers (e.g., VGG-19 has 19 layers, composed of 45 computational stages that we show). Results for both
models show gradual increase in deviation magnitudes in intermediate computational stages.

Supplementary Figure S5), and for VGG-19 when using
L2 representational distances instead of the L1 metric
(p < 10−55; Supplementary Figure S3). Compared
with VGG-19, ResNet-101 produced a slightly larger
difference between Scintillating grid and sinusoid bar
deviation magnitudes and a lower deviation magnitude
for disk-masked natural images (Supplementary Figure
S5). We also explored disk parameterizations from
white to black through color space, which although
less intuitive, produced similar results (Supplementary
Figure S6). Moreover, in Appendix B, we consider
manipulations of background luminance and disk
border width, which suggest that the nonmonotonicity
observed here is better explained by illusion perception
than by loss of contrast or shape, which occurs when
the disks are the same luminance as the bars.

Number of black disks experiment

Instead of manipulating the disk luminance, we
considered manipulating the number of white disks.
In this setup, the white disks in the Scintillating grid
were progressively replaced with black disks, and
compared with the original Scintillating grid image (the
reference) (Figure 2h). Note that, similar to increasing
disk luminance in the previous section, increasing
the number of white disks should linearly increase
the pixel distance between the two compared images.
However, unlike the previous setup, the number of
white disks is also proportional to the magnitude of
the perceived illusion for human observers given that
each white disk contributes equally to the illusion
effect, which is localized at the disks. Therefore, if the
observed nonmonotonicity indicates an illusion-like
response, then varying the number of white disks in the
Scintillating grid should result in a linear relation with
representational dissimilarity (R), which was indeed
observed (Figure 2h). Given that this control relies on a

linearity assumption, we separately manipulated each
disk from white to middle grey (μ = 0.5) and finally to
black and recovered a nonmonotonic relation between
the number of changes and the representational
dissimilarity (see Supplementary Figure S8).

Origin and propagation of illusion-like deviation

Thus far, we have been concerned with deviation
magnitude measurements in the penultimate layer
(e.g., fc8 in VGG-19). We next considered all
intermediate computational stages, a term we use to
refer to layer outputs as well as intermediate layer
computations (e.g., before and after ReLUs). This
analysis provided a foundation to speculate which
computational stages are responsible for the origin of
the non-monotonicity. Results, in both VGG-19 and
ResNet-101 (Figure 4), show close to zero deviation
magnitude in the early layers, a gradual increase in
deviation magnitudes in the intermediate layers, and a
plateau in subsequent layers. These measurements are
consistent with an origin of the nonmonotonicity in
multiple intermediate layers followed by propagation
of nonmonotonicity to the penultimate layer.
Specifically, in VGG-19 (Figure 4a), the Scintillating
grid results showed induction of nonzero deviation
magnitude at conv3_2, an increase in deviation
magnitudes over subsequent stages until relu5_2, and
no further increase until the penultimate fc8 layer. In
ResNet-101, the Scintillating grid showed nonzero
deviation magnitudes as early as res3b2_branch2b,
with generally increasing deviation magnitude starting
at res4a and stopping around res4b11_branch2c,
the computational stage with maximum deviation
magnitude. After res4b11_branch2c, the deviation
magnitude approximately plateaus until the penultimate
layer (Figure 4b). The maximum deviation magnitude
occurred at res4b11_branch2c. The sinusoid bars
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Figure 5. Comparison with human perception. (a) VGG-19 representational dissimilarity R as a function of disk luminance μ for one
stimulus (see panel b) in the Scintillating grid image set. The red dot denotes the point of maximum R, which roughly corresponds
with the transition from illusion-absent to illusion-present grid images around μ ≈ 0.45. This is apparent by inspection of the
Scintillating grid images under standard viewing conditions. (b) Displayed is a Scintillating grid image variant used for analysis in a and
c for a range of disk luminance values. (c) Mean illusion scores (0–5) of two human observers (ES and RD), and VGG-19 and
ResNet-101 deviation magnitudes for a single variant (depicted in b) from the Scintillating grid image set. Error bars in human illusion
scores represent the standard error of the mean (5 samples per disk luminance level).

image set, for both VGG-19 and ResNet-101, showed
deviation magnitudes similar to the Scintillating grid
but weaker in magnitude, consistent with reduced
but nonabsent illusion perception (Figure 4a,b).
The no bars and disk-masked natural nonillusion
controls showed almost zero deviation magnitudes
in all computational stages, consistent with absence
of illusion perception. Overall, the results suggest
that intermediate computational stages are primarily
responsible for the illusion-like response in VGG-19
and ResNet-101. This observation is perhaps in
line with an intermediate (postretinal) origin of the
Scintillating grid illusion in humans (see Discussion).
There were also significant differences between the
deviation magnitudes of the Scintillating grid and
gray background control images across both DNN
hierarchies, which support an illusion-specific DNN
representation for the Scintillating grid that is not fully
explained by contrast or shape loss (see Supplementary
Figure S11 and Appendix B).

Comparison with human vision

Because correlations between human and DNN
models of vision are of great interest, we sought
to directly compare human perception of the
Scintillating grid with the DNN representational
dissimilarity and deviation magnitude measurements.
The standard Scintillating grid stimulus induced a
significant illusion-like response in VGG-19 for low
to intermediate disk luminance, μ < 0.45 (Figure 2a),
corroborating loss of illusion perception in humans
at intermediate disk luminance (Schrauf et al., 1997;
Sun, 2019). This similarity in perceptual ranges can
be readily verified by visual inspection of Figure 5a.
To strengthen this observation, two observers scored
illusion magnitude for the image set shown in Figure 5a.
Human-scored illusion magnitudes were similar to the

VGG-19 deviation magnitudes for the Scintillating
grid in that both values generally increased past an
intermediate disk luminance threshold (Figure 5b).
A similar consistency was observed in nonillusion
control images and reduced illusion control images
(see Supplementary). Compared with DNNs, human
perception of the Scintillating grid illusion seems
to span a slightly broader range of disk luminance
values. Mean disk luminance values at half-maximum
illusion score or deviation magnitude were μ = 0.45
for human observers, μ = 0.3 for VGG-19, and
μ = 0.2 for ResNet-101. Together, these results suggest
correlations between VGG-19 representation and
human perception of the Scintillating grid illusion. In a
second experiment, we directly measured response times
in discrimination tasks (as a proxy for representational
dissimilarity) between the Scintillating grid and
nonwhite disk luminance versions. The results of this
second experiment are discussed in Appendix C and
provide further support of nonmonotonic or close to
nonmonotonic responses to the Scintillating grid in
human observers.

Discussion

Here we report nonmonotonicity in representational
dissimilarity as an indicator for illusion-like response
geometries of the Scintillating grid in DNNs trained
for image classification. Specifically, we found that
the DNN image representation is nonmonotonic with
respect to disk luminance of Scintillating grid images
(Figures 1, 2a, 3). Such nonmonotonicity was much
weaker, usually absent, in several controls (Figures
2b–h, 3). For example, the nonmonotonicity was
mostly abolished when using large disks or sinusoidal,
offset, or absent bars (Figures 2b–e, 3), which have
also been shown to reduce illusion perception in
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human (Schrauf et al., 1997; Levine & McAnany,
2008). Also, the nonmonotonicity was typically absent
when manipulating luminance in natural images
(Figures 2f–g, 3), which typically do not provide strong
illusion perception for human. There were some image
stimuli that did not produce an illusion under human
observation but had significant nonmonotonicity in
DNN representational dissimilarity (see Figure 3b,
Supplementary Figure S10). These outlier images may
be of interest in dissecting the differences between
human and DNN perception of the Scintillating grid.
Finally, manipulating the number of white versus black
disks instead of luminance led to a linear, monotonic
relation between representational dissimilarity and the
number of white disks (Figure 2h), suggesting that the
nonmonotonicity from manipulating luminance was
not the result of pixel differences. We also found an
alternative explanation, in terms of loss of contrast
or shape, to be less consistent with results from
manipulations of background luminance and disk
border width (see Appendix B). Overall, these results
suggest that nonmonotonicity in DNN representational
dissimilarity may indicate an illusion-like response
geometry to the Scintillating grid.

A crucial question raised by this work is why
nonmonotonicity in DNN processing exhibits a
response pattern that, to some extent, is similar to
human illusion perception. This question is particularly
relevant since illusory perception in the Scintillating grid
necessitates eye movements (Schrauf et al., 1997) that
are obviously absent from the DNN. Perhaps an answer
is given by considering the link between competition in a
visual representation (Blake & Logothetis, 2002; Gruber
et al., 2018) and nonmonotonicity of representational
distances. If representational distances are similar in
DNNs and in biological vision (Kriegeskorte, 2015),
then the DNN nonmonotonicity indicates that the
“white disks” version of the Scintillating grid neural
representation is similar to the “black disks” version.
Hence, Scintillating grid stimuli can be represented by
two alternative brain representations, with somewhat
higher affinity to the correct “white” version. Such
competition, especially in the visual periphery, may
lead to alternating periods of perceptual dominance for
each alternative (Blake & Logothetis, 2002), resulting
in the Scintillating grid illusion. According to this
view, the Scintillating grid illusion is explained by
the geometry of a learned visual representation. This
explanation is thus orthogonal (i.e., at a different level
of explanation) to neuronal-level mechanistic accounts
(Yu & Choe, 2006). Furthermore, the Scintillating
grid has important time-series characteristics that
cannot be captured by the DNN models, which use still
images as input. Perhaps, the DNN model captures
an average characteristic of the time-varying effect:
instead of scintillation between illusion-present and
illusion-absent time frames in human, the DNN

might exhibit the middle-ground of a weak (but fixed)
effect. An interesting future direction is to extend
the experiments to video-based DNNs (Watanabe
et al., 2018; Lotter et al., 2020), which, we suspect,
might not be mature enough at present. It would also
be interesting to extend this work by applying an
adversarial setup (Szegedy et al., 2014; Kurakin et al.,
2017; Elsayed et al., 2018; Zhou & Firestone, 2019) to
discover images in which manipulations of luminance
show nonmonotonic representational distances. Would
these images also exhibit a scintillating illusion?

Our findingsmay be relevant to existing research since
the computational and anatomical substrates of the
Scintillating grid and other grid illusions are not fully
understood (Spillmann & Levine, 1971; Wolfe, 1984;
Spillmann, 1994; Schrauf et al., 1997). The Scintillating
grid can be regarded as a stronger variant of the
classic Hermann grid illusion, in which a somewhat
similar effect is evident at the intersections of the bars
in absence of any disks (Hermann, 1870; Spillmann,
1994; Schrauf et al., 1997). The classical explanation
of the Hermann grid by Baumgartner posits that
the illusion is mediated by neurons in the retina
with center-surround receptive fields (Baumgartner,
1960, 1990). Baumgartner’s theory can, at least
partially, apply to the Scintillating grid (Thomson &
Macpherson, 2018). However, more recent work using
variants of the Hermann grid and the Scintillating
grid stimuli suggest that Baumgartner theory alone is
not sufficient to explain all grid illusions (Spillmann &
Levine, 1971; Wolfe, 1984; Spillmann, 1994; Schrauf
et al., 1997). For example, when the bars are distorted,
the illusory perception is largely diminished for the
Hermann grid and the Scintillating grid (Schiller &
Carvey, 2005; Geier et al., 2008; Levine & McAnany,
2008). Such results suggest the involvement of visual
processing stages that are downstream to the retina,
such as V1. To our knowledge, there is no direct
electrophysiological evidence of this claim, which,
indeed, may be nontrivial to obtain. Unlike the brain,
the DNN models considered here permit easy access
to the entire computation hierarchy. Analyzing the
deviation magnitude along the computational hierarchy
showed the largest deviations from monotonicity in
the deep stages of computation, in both VGG-19 and
ResNet-101 (Figure 4). Although the computation
in human and DNN is not immediately comparable,
studies have suggested similarities between early
DNN computation and human opponent-color and
frequency-selective representations (in retina and in
V1), while deeper DNN stages seem to be similar
to deeper brain areas, such as V4 or IT (Yamins
et al., 2014; Güçlü & van Gerven, 2015; Kriegeskorte,
2015; Cichy et al., 2016; Eickenberg et al., 2017).
Consequently, the results using the DNN metrics
offered here are more consistent with a cortical
(post-V1) origin of the Scintillating grid than an origin
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earlier in human visual processing, with the later stages
of the DNN corresponding most closely to high-level
cortical areas. We observed relatively higher layer
deviation magnitudes for the sinusoid bars and no
bars images in VGG-19 than ResNet-101 (Figure 4),
which both have some level of illusion under human
observation (Supplementary Figure S7). This difference
between the two models may be reflective of VGG-19
generally being regarded as a better approximation for
brain cortical processing than ResNet-101 (Schrimpf
et al., 2018).

As for extensions of this work to other illusions,
note that our approach exploits the non-continuity in
the perceptual phenomena (i.e., white disks becoming
black, not gray), which is presumably absent in the
Hermann grid and some of its analogues. The general
framework of identifying an image parameterization
corresponding to the illusion effect and then testing
for non-monotonicity in DNN representational
dissimilarity may be extendable to some other classes
of illusions, but in each of these cases, modifications to
our current approach will likely be needed.

Keywords: visual illusion, Scintillating grid illusion,
deep neural network, computer vision
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