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Abstract

The melanocortin-4 receptor (MC4R) has been critically investigated for the past two

decades, and novel findings regarding MC4R signalling and its potential exploitation in

weight loss therapy have lately been emphasized. An association between MC4R and

obesity is well established, with disease-causing mutations affecting 1% to 6% of obese

patients. More than 200 MC4R variants have been reported, although conflicting results

as to their effects have been found in different cohorts. Most notably, some MC4R

gain-of-function variants seem to rescue obesity and related complications via specific

pathways such as beta-arrestin (ß-arrestin) recruitment. Broadly speaking, however, dys-

functional MC4R dysregulates satiety and induces hyperphagia. The picture at the mech-

anistic level is complicated as, in addition to the canonical G stimulatory pathway, the ß-

arrestin signalling pathway and ions (particularly calcium) seem to interact with MC4R

signalling to contribute to or alleviate obesity pathogenesis. Thus, the overall complexity

of the MC4R signalling spectra has broadened considerably, indicating there is great

potential for the development of new drugs to manage obesity and its related complica-

tions. Alpha-melanocyte-stimulating hormone is the major endogenous MC4R agonist,

but structure-based ligand discovery studies have identified possible superior and selec-

tive agonists that can improve MC4R function. However, some of these agonists charac-

terized in vitro and in vivo confer adverse effects in patients, as demonstrated in clinical

trials. In this review, we provide a comprehensive insight into the genetics, function and

regulation of MC4R and its contribution to obesity. We also outline new approaches in

drug development and emerging drug candidates to treat obesity.
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1 | INTRODUCTION

Obesity is characterized by excess fat mass, which affects physical

health and increases the complexity of many associated diseases and

conditions, including type 2 diabetes, cardiovascular complications and

cancer.1 The associated healthcare costs are huge, and obesity is

accompanied by significant morbidity and mortality. Obesity is defined

in terms of body mass index (BMI), that is, weight (kg)/height (m2);
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people with a BMI of more than 30 kg/m2 are considered obese, while

those with a BMI of 35 to 39.9 30 kg/m2 are severely obese.2–5 The

intake of high-calorie food and a lack of sufficient physical activity

leads to an increased positive energy balance and subsequent weight

gain. In addition, studies have suggested there is a strong genetic influ-

ence on obesity, involving a complex neurochemical system that regu-

lates appetite, energy expenditure and weight loss. There is an overall

synergistic relationship between genes, the environment and lifestyle.6

The identification of genes involved in regulating body weight

and maintaining energy homeostasis is crucial. Major genes associated

with obesity include leptin, leptin receptor, proopiomelanocortin

(POMC), proprotein convertase subtilin/kexin (PCSK1), adenylate

cyclase 3, single-minded 1 (SIM-1), tyrosine kinase receptor

tropomycin-related kinase B (TRKB), brain-derived neurotropic factor

(BDNF), and melanocortin-4 receptor (MC4R).7,8 PCSK1 and POMC are

critical in children with obesity, while MC4R is the most significant

gene for obesity overall and the most widely investigated so far.9–13

MC4R is localized at chromosome 18q22 and primarily expressed in

the hypothalamus, encoding a 332-amino acid transmembrane pro-

tein.14 MC4R is a member of the heterotrimeric G-protein-coupled

receptor (GPCR) family, and its primary functions are in regulating the

intake of food, energy homeostasis and body weight.15,16

The genetic basis of obesity was first discovered when disruption

of the mouse MC4R was found to cause the accumulation of excess

weight.17 Several reports of frameshift mutations in human MC4Rs and

their association with obesity were subsequently confirmed,18–22 with

17, 58 and more than 200 human MC4R mutations identified by the

years 2000,23,24 200625 and 2021,26–28 respectively. These mutations

can cause partial or complete loss of function depending on the nature

of the mutation and function of the mutated receptor.25 Heterozygous

MC4R variants alone are found in 1% to 6% of the obese population,

and are particularly common in early-onset or childhood obesity, with

variable penetrance and expressivity resulting in mild to severe manifes-

tations of obesity and associated complications.7,16,29,30 Homozygous

variants are reported less frequently but result in more severe manifes-

tations of obesity.31,32 In recent studies, MC4R signalling has been

implicated as a viable target for antiobesity treatment.10,13,33–36 For

example, certain human MC4R variants are protective against obesity,

and drugs targeting the receptor have shown efficacy for weight loss.

We discuss in the subsequent sections how MC4R, as a GPCR,

relates to obesity. We begin with a brief introduction to GPCRs to

promote a general understanding of the receptors. Then, MC4R-sig-

nalling pathways, including the broader, centrally regulated

melanocortinergic system, the canonical G-stimulatory (Gs)-signalling

pathway, and the newly proposed roles of the ß-arrestin and calcium

(Ca2+) pathways, are detailed. We also discuss the loss of function/

gain of function (GoF) caused by mutations of the MC4R and how this

affects or alleviates disease pathology. The crystal structure of MC4R,

the importance of ion-binding sites, and the differences between

MC4R and other GPCRs are discussed while focusing on the unique

features of the receptor. Finally, we discuss in detail the development

of MC4R agonist drugs and the current status of existing obesity

drugs.

2 | MELANOCORTIN-4 RECEPTOR AS
A GPCR

G-protein-coupled receptors are involved in most physiological func-

tions in the body and in the manifestation of numerous diseases.37

They represent the largest family of cell surface and transmembrane

receptors, with more than 825 genes (~2% of the human genome) and

corresponding gene products.38,39 The structure of GPCRs, which is

largely conserved, comprises seven transmembrane glycoproteins

spanning the plasma membrane,40 with additional extracellular N-

terminal and intracellular C-terminal domains. The overall structure of

GPCRs enables them to receive extracellular stimuli (eg, ions or pep-

tides), to communicate via the otherwise impermeable plasma mem-

brane, and to transfer stimuli to the interior of cells to induce

functional changes. These processes involve a series of protein inter-

actions and changes in the expression levels of biochemical mediators

to ultimately effect physiological or even behavioural changes. GPCRs

are considered very clinically significant protein targets; of the 1500

drugs approved by the US Food and Drug Administration (FDA) by

2020, 460 targeted GPCRs.39,41 Among them, Class A GPCRs (rho-

dopsin-like receptors) are major drug targets (94%), followed by Class

B (secretin family, 4%), Class C (metabotropic glutamate receptors,

2%), and Class F (frizzled and smoothened receptors, 2%).39

The MC4R is a rhodopsin-like Class A GPCR, expressed in the par-

aventricular nucleus of the hypothalamus, and is a key component of

the leptin-melanocortin pathway.17 MC4R is activated by POMC-

derived polypeptides obtained by the posttranslational processing of

POMC that yields alpha (α)-, beta (ß)- and gamma (γ)-melanocyte-

stimulating hormone (MSH) and adrenocorticotropic hormone (ACTH).

α-MSH is very effective in regulating eating behaviour and energy

homeostasis, and in addition to its primary function in melanogenesis,

it also activates all (MC5R, MC4R, MC3R and MC1R) but one (MC2R)

melanocortin receptors. Of these, MC4R is the most crucial, as muta-

tions in this receptor cause different forms of obesity in humans.15,42

The role of MC3R in energy homeostasis and in regulating satiety is

also known and is under active investigation.6,43–45 It is a key compo-

nent of the central melanocortin pathway.46 MC5R is involved in fatty

acid and lipid metabolism as well as exocrine secretion.6

3 | MELANOCORTIN-4 RECEPTOR
SIGNALLING PATHWAYS

The next sections comprise an overview of the MC4R-signalling path-

ways, including the leptin-melanocortin pathway, followed by a more

focused discussion of the specific details of G-protein-signalling path-

ways and, finally, a review of the latest proposed changes, particularly

regarding the mechanisms of energy regulation via the ß-arrestin and

Ca2+-regulated pathways. The leptin-melanocortin pathway includes

the overall, centrally (central nervous system) regulated pathway

responses to anorectic/orectic signals. The canonical Gs pathway and

the generation of cyclic adenosine monophosphate (cAMP) have been

widely investigated for obesity-related/energy balance issues, and the
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mechanisms have been fairly understood.16,47–49 However, the

recently proposed involvement of ß-arrestin in the regulation of

MC4R, often referred to as ß-arrestin bias, is a bias or shift toward

recruiting ß-arrestin as the mode of action,10,13 rather than canonical

cAMP production via the Gs pathway. The role of Ca2+, another new

discovery,35 is also detailed below.

3.1 | LEPTIN-MELANOCORTIN PATHWAY

Under a fed state, adipose tissues secrete the hormone leptin. Binding

of leptin to the leptin receptor stimulates POMC neurons to secrete

α-MSH, which binds to the MC4R, resulting in a satiety signal and

hence reduced appetite and a signal to increase energy expenditure to

achieve a reduced energy balance.50–52 MC4R, however, can be

blocked by the inhibitor, agouti-related peptide (AgRP), expressed by

neuropeptide Y (NPY) neurons in the arcuate nucleus.5 Lack of food

induces the increased expression of NYP/AgRP, resulting in hunger

signals. A balance between these two hormones is, therefore, critical

in regulating food intake and energy metabolism. A few other mole-

cules included in this pathway that are not yet fully elucidated include

SIM-1, TRKB and BDNF. In brief, SIM-1 is a transcription factor that

causes hyperphagia and a reduction of the periventricular nucleus,

resulting in severe obesity.53 Mutations in BDNF, which is involved in

downstream MC4R signalling, and its receptor, TRKB, also contribute

to hyperphagia and obesity.54

3.2 | G-PROTEIN SIGNALLING PATHWAY

G-proteins are complex heterotrimeric guanine-binding proteins with

G-alpha (Gα), G-beta (Gß), and G-gamma (Gγ) subunits. G-proteins are

also classified into four distinct groups according to the Gα subunits,

Gαs, Gαi/o, Gαq/11 and Gα12/13.
34,53 In G-protein-signalling pathways

(Figure 1), an exchange of guanosine triphosphate (GTP) for guanosine

diphosphate (GDP) induces the dissociation of the α subunit from the

ßγ dimer following communication with effectors.55

Alpha melanocyte stimulating hormone activates MC4R and

catalyses the exchange of GDP for GTP on the stimulatory G-protein

(Gαs), resulting in the activation of adenylyl cyclase (AC) and the gen-

eration of intracellular cAMP.56 cAMP, which may also be triggered by

Gßγ subunits to increase AC activity via certain isozymes,57,58 binds

to protein kinase A (PKA) regulatory subunits, causing its dissociation

and distribution to different cellular compartments. Activated PKA

further affects numerous physiological processes by activating subse-

quent effector proteins (mostly via phosphorylation), including

kinases, ion channels, and other signalling proteins/enzymes.13,49

cAMP-mediated transcriptional regulation is achieved via the binding

of active PKA to the cAMP response element binding protein, causing

PKA phosphorylation and the downstream transcription and transla-

tion of target genes and proteins. Coupling to Gαi/o deactivates or

reduces AC activity, lowering cAMP levels.56 Gαq/11 and Gα12/13 are

mostly associated with functions other than obesity/energy homeo-

stasis, such as the activation of phospholipase C.59

In addition, MC4R also activates mitogen-activated protein

kinases (MAPK) and extracellular signal-regulated kinases 1 and 2

(ERK1/2). Mo et al60 reported various MC4R ligands, including AgRP

and Ipsen 5i inverse agonists, at the Gs-cAMP signalling pathway, to

regulate ERK activation in wild-type and six naturally occurring con-

stitutively active mutant (CAM) MC4R. A significant increase in the

phosphorylation of ERK was reported in some of them, suggesting

that these MC4R inverse agonists could act as agonists in the MAPK

pathway.60 This study proposed the prevalence of multiple activa-

tion states of MC4R with ligand as well as mutant-specific conforma-

tions that could couple differentially to the MC4R, giving rise to

distinct signalling pathways or its constitutive activity.60 This sug-

gests abundant potential for future investigations into new novel

mechanisms.

F IGURE 1 G-protein signalling pathway. Schematic showing the canonical stimulatory G-protein (Gs) pathway for melanocortin 4-receptor
(MC4R) signalling and gene expression. Binding of α-melanocyte-stimulating hormone (MSH) to the MC4R causes the activation of the G-protein,
with αßγ-subunits dissociating into α-/ßγ-subunits. The dissociated Gαs causes the activation of adenylyl cyclase (AC), leading to the conversion
of ATP to cyclic adenosine monophosphate (cAMP). cAMP activates inactive protein kinase A (PKA) which is translocated into the nucleus,
activating the transcription factor cAMP response element binding protein (CREB) via phosphorylation of CREB, which regulates transcription.
GTP, guanosine triphosphate
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3.3 | ß-ARRESTIN PATHWAY

The knowledge of constitutive MC4R activity is not new, as described

above and also detailed in the GoF section. This constitutive activity

leads to a GoF effect, which can alleviate obesity pathology. However,

the underlying molecular mechanism has only recently been postu-

lated.10,13 Mutations causing GoF may employ ß-arrestin signalling,

particularly those that are associated with a reduced risk of obesity-

associated diseases such as type 2 diabetes and cardiac ailments.

There is strong evidence that mutations, particularly Valine 103 Isoleu-

cine (V103I) and Isoleucine 251 Leucine (I251L), help to effectively

recruit ß-arrestin.10,13 The binding of agonists, for example, α-MSH

and [Nle4, DPhe7]-α-MSH (NDP-MSH; a synthetic analogue of

α-MSH), to these mutant MC4Rs may induce changes in the confor-

mation of the receptor, affecting ligand receptor-binding and either

making the interaction strong enough to prevent internalization,

resulting in longer retention of the MC4Rs on the plasma membrane,

or allowing very rapid or much improved recycling so they are avail-

able in increased numbers on the plasma membrane compared with

the wild type (Figure 2). This effect has yet to be investigated in detail,

but research has been initiated by some groups10,13 and will be dis-

cussed later in this review.

3.4 | CA2+-REGULATED PATHWAYS

Ca2+ is recognized to be a cofactor for ligand-MC4R binding. The

recent elucidation of the crystal structure of MC4R complexed with

SHU9119, a potent cyclic peptide agonist, highlighted the role of

Ca2+-binding in the receptor's downstream signal regulation.35,61

Briefly, both the ligand agonist and Ca2+ ions complementarily acti-

vate MC4R, which induces closure of the inwardly rectifying

potassium channel (KIR7.1) to retain intracellular potassium levels

(Figure 3). This leads to an overall anorexigenic effect with a negative

energy balance and increased heart rate.62 However, the antagonist

AgRP has inhibitory effects that open KIR7.1, causing K+ to be

pumped out of the cell. This promotes orexigenic effects by

dysregulating energy homeostasis and ultimately creating a positive

energy balance (Figure 3).

4 | LOSS-OF-FUNCTION MUTATIONS,
DISEASE PATHOLOGY AND RESCUE

Evidence has shown that mutations in MC4R are largely associated

with severe obesity. These mutations cause either partial or complete

loss of function, depending on the nature and function of the

mutation,16,27,48,63–65 and appear throughout the coding sequence.25

A mutation-based classification scheme was proposed as early as

2003.25,66

Most loss-of-function mutations are heterozygous, exhibiting a

phenotype intermediate between wild-type and homozygous MC4R

mutations.15,63 The extent of the functional defect is sometimes

conflicting, owing to the complexity of gene-environment interac-

tions and the varying expression of the dominant gene. Homozygous

mutations, however, show pronounced effects on obesity, and

patients carrying these mutations are characterized by high BMI,

hyperphagia,67 linear growth,31 increased bone mineral density,68

and hyperinsulinaemia.32

In the functional characterization of most MC4R loss-of-function

mutants, their intracellular retention suggests they undergo impaired

receptor trafficking to the plasma membrane. This reduces the num-

ber of MC4Rs available on the cell surface, ultimately diminishing

cAMP generation and all effector responses and downstream

F IGURE 2 β-arrestin signalling pathway. Schematic elucidating the mechanism of gain-of-function induced by a mutation (yellow diamond) in
the melanocortin 4-receptor (MC4R). The mutation causes an increase in the cell-surface expression of MC4R, possibly via reduced
internalization or rapid recycling, causing increased cyclic adenosine monophosphate (cAMP) production, as well as increased production of
protein kinase A (PKA) and cAMP-regulated guanine nucleotide exchange factors (Epac). AC, adenylyl cyclase; GDP, guanosine diphosphate; GTP,
guanosine triphosphate; MSH, melanocyte-stimulating hormone;
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signalling, which leads to enhanced manifestation of disease. Changes

in amino acid residue(s) as a result of mutation may also weaken

ligand-binding interactions, possibly because of changes in the protein

conformation or reduced binding affinity, thus impairing or reducing

downstream agonist-stimulated signalling.

The intracellular retention of MC4R, which is a major cause of its

functional defectiveness, results when it remains in the endoplasmic

reticulum as a misfolded/ubiquitinated protein. Therapeutic rescue

mechanisms, such as using pharmacological or chemical chaperones,

could aid proper folding and enhance receptor expression at the cell

surface or prevent ubiquitination and degradation of the protein by

proteasomes.69 Granell et al70,71 first reported the rescuing potential

of the chemical chaperone sodium 4-phenylbutyrate and the

ubiquitin-activating enzyme inhibitor on MC4R in increasing the cell-

surface expression of mutant MC4R associated with severe obesity.

The clinical utility of chemical chaperones has, however, been chal-

lenging to elucidate. Various pharmacological chaperones have been

developed as antagonists of MC4R.69,72 These return several

misfolded MC4R mutants to the surface of the plasma membrane.69

NBP (1-(1-(4-fluorophenyl)- 2-(4-(4-[naphthalene-1-yl] butyl)

piperazin-1-yl)ethyl)-4-methylpiperazine) showed potential to rescue

many MC4R mutants but failed to restore their NDP-MSH binding

responses, possibly due to the presence of a protracted binding, high-

affinity antagonist of inhibition constant (Ki) 2.4 nM.72 ML00253764

(2-[2-[2-[5-Bromo-2-methoxyphenyl]ethyl]-3-fluorophenyl]-4,5-

dihydro-2-1H-imidazole) and DCPMP (N-((2R)-3(2,4-dichlorophenyl)-

1-(4-(2-([1-methoxypropan2 ylamino]methyl)phenyl)piperazin-1-yl)-1-

oxopropan2-yl) propionamide) are efficient rescuers but have rela-

tively low binding affinities, at Ki 0.17 μM and 0.02 μM, respectively,

necessitating a high effective concentration (EC50 10 μM).69,72

Encouragingly, Ipsen 5i and Ipsen 17 have wider rescue spectra and

lower potency, facilitating rapid dissociation, thus they can rescue the

mutant receptor at the plasma membrane at a low concentration yet

still allow binding of endogenous ligands.73,74 THIQ (N-[(3R)-1,2,3,4-

Tetrahydroisoquinolinium-3-ylcarbonyl]-(1R)-1-(4-chlorobenzyl)-2-[4-

cyclohexyl-4-(1H-1,2,4-triazol-1-ylmethyl) piperidin-1-yl]-2-oxoethylamine)

was reported to rescue seven of the 10 mutants investigated in neu-

ronal cell lines but only three in human embyonic kidney 293 cells,

suggesting it has effective chaperone activity in neuronal cells.75 The

structures and Ki, half maximum inhibitory concentration (IC50) or

effective concentration at a stable state inducing half of the maximum

effect (EC50) values of important chemical/pharmacological chaper-

ones are shown in Table 1.

5 | GAIN-OF-FUNCTION MUTATIONS AND
CONSTITUTIVE MC4R ACTIVITY

Interestingly, not all MC4R variants are associated with an increase

in obesity pathology. A subset of variants has been reported to pro-

vide GoF, offering protection from obesity and associated complica-

tions.24,64,76 In vitro assays developed to determine ligand binding,

cell-surface expression, and cAMP measurement as a function of Gs

activation in wild-type and variant MC4Rs have been successfully

developed over the past two decades. The mutations S127L,64

P230L64 and L250Q24 augment the constitutive activity of MC4R in

heterologous expression systems. A new addition to this knowledge

has been the quantification of ß-arrestin recruitment, which was

proposed as the mechanism of action of GoF variants associated

with a considerable decrease in the risk of obesity and associated

disorders. Lotta et al13 screened UK Biobank data of 0.5 million peo-

ple and characterized the variants to study their function as well as

their association with BMI, type 2 diabetes and cardiometabolic dis-

eases. Twelve of the 61 mutations identified in the UK population

were nonsense/frameshift mutations, while 49 variants were func-

tionally characterized and shown to be involved in the quantification

of Gs-mediated cAMP production and the recruitment of ß-arrestin

to MC4R. Of the 49 variants, 11 exhibited GoF: T11S, T101N,

F201L, G231S, R236C, V103I, I251L, I289L, I317V, L304F and

Y332C.13 The first five exhibited bias toward cAMP production, the

F IGURE 3 Ca2+ regulated pathway. The endogenous melanocortin 4-receptor (MC4R) pathway is regulated by agonist α-melanocyte-
stimulating hormone (MSH) and antagonist agouti-related peptide (AgRP). Ca2+ ions are also important in the regulation of the MC4R pathway.
α-MSH, along with Ca2+, induces satiety and reduces food intake. This is regulated partly by closure of the potassium inward rectifying channel
KIR7.1. Conversely, AgRP regulates orexigenic signals, also via the opening of the KIR7.1, in addition to other possible mechanisms
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TABLE 1 Chemical structures of potent melanocortin-4 receptor (MC4R) drug candidate examples with MC4R-specific Ki/IC50/EC50 values

Name Type Structure
Ki/IC50/EC50

value for MC4R
Reference

Sodium 4-phenylbutyrate

(4-PBA)

Chemical chaperone — 70,71

THIQ Pharmacological

chaperone

agonist

IC50 1.2 nM 75

NPB Pharmacological

chaperone

antagonist

Ki 2.4 nM 72

Ipsen 17 Pharmacological

chaperone

antagonist

Ki 0.96 nM 73

RO-273225 (Butyr-His-D-

Phe-Arg-Trp-Sar-NH2)

Linear peptide EC50 1 ± 0.3 113

PL-8905 Cyclic peptide High affinity 49

Setmelanotide Cyclic peptide EC50

0.27 nM

36
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next four for ß-arrestin recruitment, and the last two did not exhibit

any bias for signalling. The frequency of reported heterozygous ß-

arrestin-biased GoF alleles in the UK Biobank was 6.1% and that of

homozygous alleles was 0.1%. Compared with noncarriers, heterozy-

gous carriers had an intermediate risk of obesity, type 2 diabetes,

and coronary artery disease, while homozygous carriers had a 50%

lower risk of these conditions.13 No change in protection from obe-

sity was observed in carriers of the GoF variants with a preference

toward cAMP production.13

A detailed examination of the molecular mechanisms may

explain the observed effects. The GoF variants that showed bias for

ß-arrestin alone (V103I, I251L, I289L and I317V) exhibited enhanced

signalling via the MAPK pathway,13 as confirmed by the over-

expression of phosphorylated ERK 1/2, whereas no increase in the

expression of this protein was observed in cAMP GoF variants. As

expected, wild-type MC4Rs translocated from the membrane to the

cytoplasm upon agonist stimulation reduced the surface expression

of MC4R, by 23%. The most frequently observed GoF variant,

V103I, remained at the cell surface and showed no change in cell-

surface expression,13 which could be because of impaired internali-

zation or improved recycling.

6 | MELANOCORTIN-4 RECEPTOR
CRYSTAL STRUCTURE FOCUSING ON THE
ROLE OF Ca2+ : A COMPARISON WITH
OTHER GPCRS AND THEIR IONIC BINDING

An in-depth understanding of the function and pharmacological roles

of ions and ion-binding sites in GPCRs has also become possible in

the past decade, with advances in their biophysical, structural and

functional characterization, marking the beginning of new avenues for

TABLE 1 (Continued)

Name Type Structure
Ki/IC50/EC50

value for MC4R
Reference

2Me-2H tetrazole

derivative

Nonpeptide agonists High affinity 101

Piperazine benzenes Nonpeptide agonists Ki 11 nM 103

1,3,4-trisubstituted-

2-oxopiperazine

Nonpeptide agonists Ki 5.7 nM 104

Abbreviations: EC50, half maximum effective concentration; IC50, half maximum inhibitory concentration; Ki, inhibition constant; MC4R, melanocortin-4

receptor; THIQ, N-[(3R)-1,2,3,4-Tetrahydroisoquinolinium-3-ylcarbonyl]-(1R)-1-(4-chlorobenzyl)-2-[4-cyclohexyl-4-(1H-1,2,4-triazol-1-ylmethyl) piperidin-

1-yl]-2-oxoethylamine.
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the discovery of potentially safer and more efficient drugs. Briefly,

monovalent and divalent cations can act selectively and nonselectively

at various sites of different GPCRs. Physiological concentrations of

these ions can act as allosteric modulators in some cases.77 Some

GPCRs are selectively modulated by inorganic ions that facilitate the

receptor's physiological function.78,79 Some unique or highly con-

served sites for specific ions have also been reported; for example,

Class A GPCRs have a Na+-binding site that functions as a near-

universal allosteric modulator for GPCR structure and function, and

the origin of this site can be traced as far back as prokaryotic rhodop-

sin channels.80,81 Fifteen residues in this highly conserved sodium

pocket are conserved in 45 diverse receptors, with minor variants

occurring in the majority of Class A GPCR members. Receptors lacking

this Na+ pocket exhibit extremely compromised ligand-induced signal-

ling.82 Also, structural changes that effect a shift in the position of the

sodium pocket might result in changing the overall coordination and

conservation pattern.83 Crucial zinc (Zn2+)-binding sites have also

been reported, for example, in the Class A GPCR, platelet-activating

factor receptor.84

With MC4R being an important drug target for obesity, gaining

knowledge of its crystal structure is extremely beneficial. Yu et al35

first reported the structure of human MC4R with the antagonist

SHU9119 (a cyclic peptide) at 2.8 Å resolution. Analysis of the MC4R-

SHU9119 complex revealed the classic seven-transmembrane helical

structure in addition to details of the interactions involving the trans-

membrane and loop domains. Calcium was identified as a cofactor for

ligand binding35 and was complexed with amino acid residues of the

receptor as well as the ligand (SHU9119). Intriguingly, extracellular

calcium increased the affinity of endogenous α-MSH by 37 times and

the potency of α-MSH more than 600-fold, while showing no selec-

tive effect on AgRP binding or the antagonist SUH9119.35 The Ca2+-

binding site in MC4R is distinct from the Na+- and Zn2+-binding sites

in other GPCRs. Although MC4R is a member of Class A, it has been

reported to differ from other Class A GPCRs in many respects, includ-

ing its ion/ion-binding site, which confers its different functionality.

MC4R shows more structural divergence as a GPCR, exhibiting a

greater likeness to lipidic GPCRs than homologous peptidic GPCRs.35

The structure of MC4R is in fact different from all other reported

GPCRs. A comparison of the MC4R structure with other Class A

GPCRs was carried out using the root-mean-square deviation of Cα

atoms in the inactive state in the transmembrane regions. MC4R

exceeded 2.2 Å,35 which is closer to that of lysophosphatidic acid

receptor 1 and is more than the 2.0 Å calculated for other GPCRs.

The reason for the higher Cα value in MC4R could include the follow-

ing: (a) the very short extracellular loop (ECL) 2; (b) the absence of the

conserved disulphide bond that connects ECL2 to helix III in other

Class A GPCRs85; (c) the distinct outward position of the helix V; or

(d) the presence of nonconserved residues, such as H5.5, D3.25 and

G2.58.35 It is interesting that Ca2+ binding only affects α-MSH and has

no effect on AgRP binding. The relatively unexplored selectivity of the

ionic cofactors should be investigated further with respect to trans-

ducer coupling and downstream signalling, to boost drug discovery

prospects.86

7 | ANTIOBESITY DRUG DEVELOPMENT
WITH MC4R AS A TARGET

Melanocortin-4 receptor, the key monogenic cause of obesity, is

befitting as a strategic target for antiobesity drugs. The ligands of this

receptor, including ACTH and α-, ß- and γ-MSH, are derived from the

precursor POMC peptide.87 ACTH [SYS MEHFRWGKPV

GKKRRPVKVY PNGAEDESAE AFPLEF] is further processed to yield

α-MSH [SYS MEHFRWGKPV].87,88 α-MSH adopts a ß-turn conforma-

tion that presents histidine-phenylalanine-arginine-tryptophan

(HFRW) for receptor binding, interacting with the ionic and aromatic

amino acids in the upper second and third transmembrane domains.89

MSHs lack selectivity in humans, and they have additional roles in pig-

mentation, hormone regulation and antiinflammation, which limit their

use in drug development. The hunt for a safe, potentially active, and

highly specific drug continues.

The criteria for a good agonist include safety, selectivity, effi-

ciency and bioavailability49; the agonist must be harmless and incapa-

ble of causing any untoward effects in the body. The potency/

efficiency relates to its capacity to induce the desired response at the

minimum possible concentration. Its selectivity refers to its ability to

activate a single desired pathway, while an agonist's bioavailability

depends on its degree of solubility in body fluid and ease of assimila-

tion in the body. Most synthetic MC4R agonists fall into one of three

categories: linear peptides, cyclic peptides and nonpeptides. The

structure and Ki/IC50/EC50 values of important peptides/nonpeptides

are shown in Table 1.

7.1 | Linear peptides

Linear peptides are commonly between five and seven amino acid res-

idues long, but may vary from four to 16 residues, and are held

together by simple amide bonds. Most synthesis procedures are based

on the substitution of amino acid residues in α-MSH

[S1Y2S3MEHFRWGKPV13],49 particularly those in the core motif

HFRW and/or two or three flanking sequences on either side. The

core aim behind inducing and screening the various substitutions is to

find novel potent ligand moieties with good selectivity and overall

efficiency. A suitable agonist should have high potency

(EC50 < 10 nm), high selectivity (>50 times EC50 for MC4R),49 and bet-

ter stability and safety compared with the unsubstituted parent pep-

tide. The first step is the synthesis, which includes designing and

inducing changes that might be useful, followed by a series of in vitro

validation steps, including quantification of the functional activity of

the proposed new peptide. For example, D-Phe (synthetic dextro iso-

mer of Phenylalanine)/D-Phe analogues, the first substitutions

reported, considerably increased the agonist's activity and ligand sta-

bility.90 Haslach et al91 reported that the use of a D-Phe analogue

with a halogen at the para position provided higher agonist activity

and better ligand stability compared with that of D-Phe. Histidine has

been substituted with Tyrosine, Atc (2-aminotetralin-2-carboxylic

acid), Apc (1-amino-4-phenylcyclohexane-1-carboxylic acid), and other

590 FATIMA ET AL.



residues to achieve more potent and selective peptides. Later, argi-

nine was also proposed as a replacement for histidine.91 Trptophan

provides a better substitute than the Phe analogue, as it has an

electron-withdrawing group at its para position that enhances ligand-

receptor interactions. In addition to glutamine/glycine at the fifth

position (first left of H), butyl and pentyl groups also act as effective

ligands. Active ligands are formed by replacing glycine, first right of

W, with acidic or neutral amino acids. However, in general, obtaining

a potent/selective linear ligand for MC4R has been a challenge that

has met with limited success.

Interestingly, the constitutive activity of MC4R is induced by its

N-terminal domain [HLWNRSS] and its transmembrane domain, which

undergo spontaneous conformational transformations to change inac-

tive MC4R to active MC4R.92 The amino acid residues that take part

in binding in case of constitutive activity differ from those involved in

regular ligand binding, suggesting there is room for additional positive

allosteric modulation and the potential to develop alternative thera-

peutic candidates.93–95

7.2 | Cyclic peptides

These are typically amino acids or amino acid analogues that are

cyclized by disulphide bonds. The established core motif (HFRW)

remains the same as in linear peptides; however, the potential substi-

tutions and analogue designs differ to best fit the receptor, with the

aim of conferring maximum efficiency and potency. Examples of the

most effective substitutions include Phe to D-Phe and/or

D-2-naphthyalanine and His to either polar or nonpolar moieties.

Acidic amino acids (glutamate, aspartate, or D-alanine) are preferable

at position 5, while alanine, lysine and cystine are optimum at position

10. In general, the replacement of Met at position 4 with lipophilic

residues, such as norleucine or acidic residues, is favoured. Neutral or

acidic compounds with short side chains at position 5 improve the

potency of the ligand, while a change in chirality results in higher

potency at position 7.

Multivalency can increase ligand-receptor affinity, and introduc-

ing bivalent agonists reportedly increases potency.96 The mela-

nocortin bivalent agonist CJL-1-87, with two repeats in the structure

that are linked by an oligomer, shows approximately seven times the

potency of the monovalent structure.97 Fernandes et al98 examined

the effect of homo/hetero bivalency, combining a linear, truncated

NDP-MSH with cyclic SHU9119 separated by a series of linkers of

varying flexibility, for example, PEGO (19-amino-5-oxo-3,-

10,13,16-tetraoxa-6-azanonadecan-1-oic acid) linkers. The

heterobivalent ligand was five times more active against MC4R com-

pared with the monovalent equivalents, indicating a cooperative

effect upon binding, promoted by the flexible linker.98

An example of an extremely efficient and safe cyclic peptide is

setmelanotide. In addition to the tremendous (100-fold) increase in

downstream signalling on MC4R activation, it also reduces the unde-

sirable side effects. This is suggested to be the result of biased signal-

ling of setmelanotide at the MC4R. Compared with other tested

drugs, setmelanotide is unique in that it is reported to activate nuclear

factor of activated T cell (NFAT) signalling and restore the function of

many MC4R variants.26,99 Setmelanotide is more effective in stimulat-

ing cAMP accrual in the presence of AgRP compared with α-MSH and

LY2112688 (a first generation MC4R agonist). AgRP competes with

α-MSH and LY2112688 in the MC4R binding pocket but fails to dis-

place setmelanotide owing to the superior binding affinity of

setmelanotide.26,99

7.3 | Nonpeptide ligands

Substitutions within nonpeptide ligands are generally more effective

than those in peptide ligands because the former have a compact,

rigid structure.49 Additionally, as nonpeptide ligands are resistant to

proteolysis, they tend to be more stable compared with peptide

ligands. Various nonpeptide agonists based on the ß-turn motif were

investigated by Haskell-Luevano et al100 using cyclic lactam templates

of the, then leading, structures melanotan-II and SHU9119. Sebhat

et al101 used a piperidine core and introduced triazoles/tetrazoles to

develop the first potent and selective nonpeptide MC4R agonist.

Fotsch et al102 introduced tryptamine conjugated with cyclohexane

1,4-diamine or butyl guanidine to mimic tryptophan and arginine,

respectively. The resulting agonist was potent yet lacked specificity

for MC4R; however, introducing piperazine as the principal scaffold

yielded the required selectivity.103 Following this, Tian et al104 synthe-

sized various 1,3,4-trisubstituted 2-oxopiperazines and further capped

the ligand with a tetrapeptide core. The designed dipeptide and

tripeptide analogues showed excellent binding affinity (nanomole

scale), potency and selectivity for MC4R compared with MC1R.104

8 | DRUGS AT THE APPROVAL OR
CLINICAL TRIAL STAGE

Structure-based ligand discovery has provided superior and selective

agonists to promote MC4R function. Some of the drugs in clinical tri-

als include LY2112688, melanotan-II, bremelanotide, PL-8905 and

setmelanotide. Although well characterized in vitro and in vivo, unde-

sirable side effects have been reported for many of these drugs in

clinical trials. LY2112688 caused increased blood pressure.26,105

Melenotan-II, a super-potent cyclic MC4R agonist, caused penile erec-

tion in males and darkening of the skin.49,106 Bremelanotide was more

closely linked to sexual dysfunction than weight reduction in both

men and women and failed as an antiobesity drug in clinical tri-

als.49,107 PL-8905 is in clinical trials after exhibiting minimal side

effects, such as changes in blood pressure, in preclinical studies.49,108

Setmelanotide showed considerable promise with no observed side

effects in phase III clinical trials36 and has now been approved by the

FDA.108 Liraglutide, a glucagon-like peptide-1 receptor agonist (GLP-

1RA), also causes weight loss by reducing appetite. It has been

reported to be effective in many cases of monogenic obesity.109

Liraglutide treatment is reported to increase bone mass in common
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TABLE 2 List of antiobesity drugs

Drug Target Mechanism of action Usage Side-effects Clinical status Reference

Section I

Setmelanotide MC4R Decreased food intake and

increased energy

expenditure via MC4R

binding

LT Reported safe Approved 36,108

PL-8905 MC4R -do-* — Reported safe Clinical studies 49

LY2112688 MC4R -do- — Increased systolic blood

pressure

Failed in clinical

studies

26,105

Melanotan-II MC4R -do- — Spontaneous penile

erection; skin darkening

Failed for obesity 49,106

Bremelanotide MC4R -do- — Increase blood pressure

and sexual activity

Failed for obesity 49,107

4-PBA MC4R Acts as chemical chaperone

and helps rescue

intracellular retention of

variant MC4Rs

— Lacks specificity Preclinical 69–71

UBE-41 MC4R -do- — Lacks specificity Preclinical 70,71

THIQ MC4R Acts as pharmacological

chaperone and helps

rescuing intracellular

retention of variant

MC4Rs

— Prolonged exposure

decreases cell surface

expression and signalling

Preclinical 75

NBP MC4R -do- — -do- Preclinical 72

ML00253764 MC4R -do- — High EC50 Preclinical 69,72

DCPMP MC4R -do- — High EC50 Preclinical 69,72

Ipsen 5i MC4R -do- — Reported efficient Preclinical 75

Ipsen 17 MC4R -do- — Reported efficient Preclinical 73

Section II

Orlistat Pancreatic/

stomach lipases

Decreases fat absorption LT Abdominal pain, diarrhea Approved 114

Liraglutide GLP-1R Centrally (CNS) mediated LT Adverse GI effects Approved 115,116

Semaglutide GLP-1R -do- LT -do- Approved 117

Naltrexone-

Buproprion

α-MSH/ß-

endorphin

Possible modulation of

melanocortin system

LT Adverse GI effects;

dizziness/insomnia

Approved 118

Lorcaserin Serotonin/5HT

receptor

Modulates melanocortin

system

LT Headache, weakness,

bradycardia, cognitive

impairment

Approved 119,120

Leptin POMC/NPY

neurons

Modulates the

melanocortin system

LT Exogenous administration

largely ineffective

Approved as

combinatorial

therapy

121,122

Section III

Amphetamine

compounds

POMC/NPY

neurons

High metabolic rate;

stimulation of anorectic/

inhibition of orectic

signals

Short-

term

Addictive in nature Approved (less

addictive analogues

now available)

122–124

Methamphetamine

desoxyephedrine

-do- -do- -do- -do- Approved 123,125

Deoxyphedrine -do- -do- -do- -do- Approved 126

Amphetamine

congeners (AC)

-do- -do- -do- Additive in general Approved 127

Diethylpropion

(AC)

-do- -do- -do- Limited drug efficiency Approved 128

-do- -do- -do- Approved 129
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TABLE 2 (Continued)

Drug Target Mechanism of action Usage Side-effects Clinical status Reference

Phendimetrazine

(AC)

Insomnia, dry mouth,

constipation

Benzphetamine

(AC)

-do- -do- -do- Insomnia, dry mouth, mood

swings

Approved 130

Phentermine -do- Increased energy

consumption and

anorexia

-do- Insomnia, dry mouth, mood

swings

Approved 131,132

Phentermine/

topiramate

(Qsymia)

Glutamate and

GABA

receptors

Weight loss and decrease

in CNS neuronal activity

via Ca2+ channels

-do- Insomnia, dry mouth,

dizziness

Approved 108,120,133

Section IV

MEDI0382 GLP-1R/GCGR Bi-agonist targeting — — Phase II 134

NNC0090-2746

(RG7697)

GLP-1R/GIPR Bi-agonist targeting — — Phase IIa 135

LY3298176 GLP-1R/GIPR Bi-agonist targeting — — Phase II complete 136

HM15211 GLP-1R/GCGR/

GIPR

Tri-agonist targeting — — Preclinical 137

NN9423/

NNC9204-1706

GLP-1R/GCGR/

GIPR

Tri-agonist targeting — — Phase I 138

Section V

GLP-1 delivering

Estrogen

Peptide mediated

hormone

delivery

Peripheral/central

regulation by modulation

of energy sensors

Long-

term

Risk of breast cancer, heart

ailments, stroke,

dementia

Preclinical 139

17ß-estradiol (E2) -do- -do- Long-

term

-do- Preclinical 140

Glucagon/T3 -do- Modulation of energy

expenditure via BAT

thermogenesis

— — Preclinical 141

GLP-1 delivering

dexamethasone

-do- Energy balance and weight

loss via hypothalamic

neurocircuits

— — Preclinical 142

Section VI

Dinitrophenol Mitochondrial

uncoupling

High metabolic rate — Hyperthermia, tachycardia,

nausea, vomiting

Withdrawn 143

Serotonergics Seratonin/5HT Seratonergic/

Melanocortinergic

system

— Pulmonary hypertension;

valvular heart disease

Withdrawn 128,131

Fenfluramine -do- -do- — -do- Withdrawn 144,145

Dexfenfluramine -do- -do- — -do- Withdrawn 144,145

Sibutramine Serotonin/

norepinephrine

inhibitor

-do- — High BP, cardiac

arrhythmia

Withdrawn 146

Rimonabant Type I CB1R Weight loss by modulating

hemostatic and hedonic

feeding circuits

— Adverse psychiatric effects Withdrawn 147

Section I: Antiobesity drugs targeting MC4R; Section II: General antiobesity drugs; Section III: Drugs approved for short-term use only because of potential

side effects and addictive nature. Section IV: Bi- and tri-agonist drug targets (in developmental stage); Section V: Peptide-hormone based drugs (in

developmental stage); Section VI: Drugs that have been withdrawn as a result of extreme side effects.

Note: *-do- Refers to repeat the exact words/content of the row above, in that specified column, to avoid writing the same information multiple times in

the table.

Abbreviations: 4-PBA, sodium 4-phenylbutyrate; AC, adenylyl cyclase; ACTH, adrenocorticotropic hormone; BP, blood pressure; DCPMP, N-((2R)-3

(2,4-dichlorophenyl)-1-(4-(2-([1-methoxypropan2-ylamino] methyl) phenyl) piperazin-1-yl)-1-oxopropan2-yl) propionamide; ECL, extracellular loop; GABA,

gamma-aminobutyric acid; GCGR, glucagon receptor; GI, gastrointestinal; GIPR, glucose-dependent insulinotropic polypeptide; GLP-1R, glucagon-like

peptide-1 receptor; MC4R, melanocortin 4-receptor; NBP, 1-(1-(4-fluorophenyl)- 2-(4-(4-[naphthalene-1-yl] butyl) piperazin-1-yl) ethyl)-4-

methylpiperazine; NPY, neuropeptide Y; POMC, proopiomelanocortin; THIQ, N-[(3R)-1,2,3,4-Tetrahydroisoquinolinium-3-ylcarbonyl]-(1R)-1-(4-

chlorobenzyl)-2-[4-cyclohexyl-4-(1H-1,2,4-triazol-1-ylmethyl) piperidin-1-yl]-2-oxoethylamine; UBE-41, ubiquitin activating enzyme inhibitor.
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obesity, however, no change in bone metabolism was seen in obesity

caused due to mutations in MC4R.110 A combination of liraglutide

therapy and exercise improves maintenance of weight loss (as weight

regain after a weight loss is a common problem) compared to either

exercise or drug treatment alone.111 Sun et al112 have proposed a gut-

intrinsic melanocortin signalling complex involving α-MSH release and

MC4R activation on L cells secretion in humans. This could directly

target mucosal MC4R to treat human metabolic disorders including

obesity. A comprehensive summary of all drugs developed thus far as

agents to treat obesity, including MC4R agonists, and their targets,

mode of action, potential side effects, and status with regards to FDA

approval, is shown in Table 2.

9 | CONCLUDING REMARKS

The dramatic increase in obesity, its associated disorders, and related

mortality is alarming. Most drugs approved so far to treat obesity cause

considerable side effects, especially to the nervous and gastrointestinal

systems. Some have been withdrawn or are only prescribed for short-

term use as a part of combination therapies. Overall, the development of

effective drugs to treat obesity has been challenging. Encouragingly,

however, our understanding of the genetics, molecular mechanisms, and

structure of MC4R and other GPCRs, some of which are likely to contrib-

ute to the pathology of obesity, has increased tremendously.

Setmelanotide, the latest FDA-approved drug for use against obesity,

reportedly induced no side effects in clinical trials, which gives us hope

for its sustained and efficient use in the future. The biased NFAT signal-

ling of setmelanotide, in addition to its efficient ligand binding, is probably

the reason behind its success as a drug candidate, emphasizing the impor-

tance of designing effective ligand substitutes and investigating novel

molecular pathways. ß-arrestin-biased signalling in the case of GoF vari-

ants, which provide protection against obesity and associated disorders,

is another crucial example suggesting potential therapeutic approaches in

the future would benefit from smart drug design and investigation of

unconventional pathways as well as canonical ones. Thus, designing spe-

cific drugs that can selectively activate or block specific targets such as

arrestin as well as improve ligand-receptor interactions may be a promis-

ing therapeutic direction. All these advancements that elucidate the finer

details of obesity pathology will undoubtedly provide useful insights into

how to effectively target specific receptors, leading to the design of safe

and efficient drugs with which to treat obesity and other diseases.
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