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Recent advances in RNA engineering have enabled the development of RNA-based therapeutics for a
broad spectrum of applications. Developing RNA therapeutics start with targeted RNA screening and
move to the drug design and optimization. However, existing target screening tools ignore noncoding
RNAs and their disease-relevant regulatory relationships. And designing therapeutic RNAs encounters
high computational complexity of multi-objective optimization to overcome the immunogenicity, insta-
bility and inefficient translational production. To unlock the therapeutic potential of noncoding RNAs and
enable one-stop screening and design of therapeutic RNAs, we have built the platform TREAT. It incorpo-
rates 43,087,953 regulatory relationships between coding and noncoding genes from 81 biological net-
works under different physiological conditions. TREAT introduces graph representation learning with
Random Walk Diffusions to perform disease-relevant target screening, in addition to the commonly uti-
lized Topological Degree and PageRank algorithms. Design and optimization of large RNAs or interfering
RNAs are both available. To reduce the computational complexity of multi-objective optimization for
large RNA, we stratified the features into local and global features. The local features are evaluated on
the fixed-length or dynamic-length local bins, whereas the latter are inspired by AI language models
of protein sequence. Then the global assessment is performed on refined candidates, thus reducing the
enormous search space. Overall, TREAT is a one-stop platform for the screening and designing of thera-
peutic RNAs, with particular attention to noncoding RNAs and cutting-edge AI technology embedded,
leading the progress of innovative therapeutics for challenging diseases. TREAT is freely accessible at
https://rna.org.cn/treat.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Over 95 % of the currently known drugs act by targeting pro-
teins in the human body and affect their activity [1]. However,
recent advances in RNA engineering have enabled the development
of RNA-based therapeutics for a broad spectrum of applications [2].
These novel drugs are of rapid and cost-effective development [3],
relatively simple to manufacture, and can act on previously
undruggable targets [4]. In 2016, The U.S. Food and Drug Adminis-
tration (FDA) approved Spinraza (nusinersen), one type of RNA
drug approved to treat children and adults with spinal muscular
atrophy (SMA) [5]. In 2018, the FDA approved patisiran, the first
siRNA drug, to treat hereditary transthyretin amyloidosis [6]. In
2020 and 2021, mRNA vaccines have been developed globally at
the forefront of efforts to combat the coronavirus disease
(COVID-19 pandemic) [7]. The unprecedented efficacy of these
mRNA vaccines has reignited interest in RNA therapeutics [8].
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Synthetic RNA could be engineered to express therapeutic pro-
teins or manipulate specific genes’ expression, making it particu-
larly useful in drug and vaccine development for pathologies
with established molecular targets, such as infectious diseases,
tumors, and Mendelian disorders [4]. The recent advent of multi-
omics technology is allowing scientists to probe the complex, tran-
sient and diverse molecular changes that underpin the course of
disease and response to treatment, driving the discovery of novel
targets in human health and disease [9]. The ability to manipulate
those targets, especially those noncoding RNA occupying 85 % of
the human genome, shows great promise to open diseases once
deemed ‘‘undruggable” by small molecules and proteins, thus flar-
ing up new avenues for treating intractable diseases [4].

The early stages of developing RNA therapeutics start with
initial steps of RNA target screening and move to the later
stages of design and optimization [10]. Those therapeutic RNAs
refer to antisense oligonucleotides (ASOs), small interfering
RNAs (siRNAs), or large RNAs, such as messenger RNA (mRNA),
long noncoding RNA(lncRNA) and circular RNA [11]. Multi-
omics integration and network-based analysis are usually
employed to fully understand complex biological processes, thus
identifying suitable disease targets [12]. Open Targets is an
innovative public-private partnership that uses human genetics
and genomics data for systematic drug target identification
and prioritisation [13]. The Network Analyst platform is a
molecular network analysis and visualization platform that inte-
grates Protein–protein interaction (PPI) networks and gene reg-
ulatory networks to evaluate the significance of specific targets.
[14]. However, most existing tools ignore noncoding RNAs and
their heterogeneous regulatory roles. In addition, the spatiotem-
poral specificity of noncoding RNAs [15] imposes new require-
ments to regard various physiological conditions.

Irrespective of their therapeutic mechanism of action, the insta-
bility and immunogenicity of some therapeutic RNAs make it diffi-
cult to function on their own. Thus, the candidate RNA needs
undergo sequence optimization and modification to enhance RNA
stability and reduce immunogenicity. Complex calculations were
regarded concerning RNA characteristics, such as translation effi-
ciency, secondary structure, GC content, and off-target possibility.
Sequence optimization for long RNAs, such as mRNA, is extremely
challenging due to the exponentially large search space. Taking the
S protein of COVID-19 as an example, there are a total of 1273
amino acids, and the possible RNA candidates are 2.4*10632. It is
impossible to investigate all combinations to select the optimal
one with current computing power. Several tools have been devel-
oped for sequence optimization, such as LinearDesign [16], DNA
Chisel [17], OPTIMIZER [18], GeneOptimizer [19]. However, the
main problems of these tools are limited integrated features, lack
of optimization for multiple objectives, and poor stability for the
algorithms.

To enables disease-relevant target screening, sequence design
and optimization for RNA therapeutics, we have built TREAT plat-
form. This platform fully incorporates 43,087,953 regulatory rela-
tionships between coding and noncoding genes from 81
biological networks under different physiological conditions. It
introduces three ranking algorithms, degree centrality, PageRank,
and Random Walk, to perform disease-relevant target screening.
For the multi-objective optimization of large RNA, we stratified
the RNA sequence features into the local and global features, to
avoid inefficient combinations, thereby reducing the search space.
In addition to directly optimizing large RNAs, it also supports
designing their interfering RNAs. TREAT is a one-stop platform
for the screening and design of therapeutic RNAs, with high quality
biological networks integrated, cutting-edge algorithm embedded,
friendly interface and exploratory visualization presented.
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2. Methods

2.1. Specific regulatory networks of noncoding RNA

The regulatory networks covering noncoding RNAs were col-
lected from ncFANs 2.0 we built previously, which is a functional
annotation platform for noncoding genes. We built the
noncoding-coding coexpression networks based on the RNA
expression data of 50 normal tissues from GTEx [20] and 30 cancer
types from TCGA. R package WGCNA [21] was utilized to calculate
the Spearman correlation coefficients (Rho), Fisher’s asymptotic
P-value, and topological overlap measure (TOM). TOM is an
approach to measure how close pairs of nodes are in a network
[22]. To filter low confidence relationships, RNA pairs were
screened with cutoff of adjusted P-value (FDR correction) < 0.05,
correlation coefficient > 0.9 and TOM = 0.01.
2.2. Integration of coding and noncoding networks

To completely cover the intracellular molecular relationships
under different physiological conditions, we collected PPI from
Huri [23] and String database [24], and TF regulatory relationships
from GRNdb [25]. These networks are integrated with the above
noncoding networks in 2.1 under the same physiological condi-
tions. The original PPI interactions of Huri were retrieved and
screened under different tissue conditions according to the
tissue-specific score > 0.9. Relationships from GRNdb are retained
with confidence = high. Since Huri does not provide cancer-
specific relationships, we curated its generic relationships instead.
RNAs or proteins with the same Ensembl gene ID, are merged into
one node in the integrated network. The relations between two
nodes are established if connections exist in at least one of the
original networks. Finally, networks for 50 normal tissues and 30
cancer types were constructed.

We also constructed one generic network as an alternative for
other pathophysiological studies. This network is integrated from
several databases, with the experimental data being pulled and
curated. Coding gene-related relationships are from HURI [23], Bio-
plex [26], PhosphoSitePlus [27], BioGRID [28], InnateDB [29], MINT
[30], INSIDER [31], and DIP [32]. TF regulatory relationships are
from TRRUST [33], KnockTF [34] and IntACT [35]. log2FC > 1 and
p value < 0.01 were utilized to filter KnockTF data, and TF data from
BioID and AP-MS experiments in IntACT were retained. miRNA
related relationships are from StarBase [36] and miRTarBase [37].
We use the Ensembl database [38] to uniformly convert the IDs
in all databases into ensembl IDs.
2.3. Random Walk Diffusions algorithm for target screening

In addition to the degree and PageRank algorithms commonly
used in network analysis [14,39], TREAT introduced the Random
Walk Diffusions algorithm [40]. This algorithm simulates a walker,
starting from the customized differential expressed genes, and ran-
domly moving to adjacent neighbors, or returning to the initial
nodes to restart. The algorithm can be formally described as
follows:

Ptþ1 ¼ 1� kð ÞMPt þ kP0

Where P0 is the initial probability vector for all the nodes, and Pt is
probability vector after t steps of iterations. M is the transfer matrix,
normalized by the biological network’s adjacency matrix. k repre-
sents the probability of moving to the next node, while 1� k repre-
sents the probability of restarting the walk from the initial nodes.



Y. Luo, L. Liu, Z. He et al. Computational and Structural Biotechnology Journal 20 (2022) 5680–5689
When the difference between Pt and Ptþ1 is <1e-6, the random walk
is regarded as convergence.

2.4. Multi-objective sequence optimization of large RNA

Eleven features concerning RNA composition, immunogenicity,
stability, translation and degradation [41] were collected in TREAT.
They were divided into local and global features based on the RNA
contextual properties. Firstly, scores summarized from all the local
features are calculated at each bin, and taken as a measure to avoid
inefficient combinations, thereby reducing the search space. Sec-
ondly, the sequences of two adjacent bins would be combined,
and the next round of scoring, sorting, and screening would be per-
formed. Finally, the complete sequence combined with all bins will
be scored on all the local and global features.

2.5. Ensemble scoring and boosting framework

The optimization of multiple objectives relies on principles
defined by the multiple features. However, conflicts may exist
between different features. In order to effectively integrate differ-
ent principles, we calculate an ensemble score for each sequence
to evaluate the deviation from all the principles. This score ranges
between 0 and 1, with 0 representing perfect compliance and 1
representing the divergence. This ensemble score was calculated
by summing the boosting score of each single feature, using the
following formula:

ES ¼
Pn

i¼1Bi � DSi
10 � n

Where ES is the ensemble score, Bi is the boosting value for feature i
(a user-customized integer between 1 and 10), DSi is the divergence
score for feature i, and n is the number of features the user cus-
tomed to conduct the analysis.

3. Results

3.1. Framework of TREAT

3.1.1. Components
TREAT is designed for the screening, design and optimization of

therapeutic RNAs. It consists of two computational components of
‘‘target screening” and ‘‘drug design and optimization” (Fig. 1). The
‘‘target screening” component focuses on identifying and ranking
disease-relevant targets from existing biomedical data sources. It
utilizes multiple biological networks under different physiological
states and three different algorithms to rank the importance of tar-
gets for the concerned disease. In order to facilitate understanding
and screening of the candidate targets, TREAT also collected gene
expression profiles of 50 normal tissues and 30 cancer tissues in
GTEx and TCGA databases. The ‘‘drug design and optimization”
component integrates multiple features on RNA composition,
immunogenicity, stability, translation and degradation, and pro-
poses a hierarchical multi-objective optimization strategy for the
input RNA sequence. Design and optimization of large RNAs or
the interfering RNAs are both available.

3.1.2. Implementation
TREAT is implemented in Python, with the database stored in

MySQL. The web application is built using the Flask micro-
framework, with REST API embedded to send and receive data.
The curated heterogeneous networks under different physiological
conditions for disease-relevant targets screening are available at
the download page. Three algorithms for target evaluation are
introduced from third party tools, including degree centrality,
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PageRank and Random Walk. The TREAT web server is hosted on
an elastic cloud server from the Ali cloud, running on a CentOS
Linux system with 4 CPU and 16 GB of memory. Analyzing tasks
submitted by users are scheduled by Python package multiprocess-
ing. The user could asynchronously retrieve their result using a
task id.
3.2. Disease-relevant target screening

3.2.1. Integrated tissue-specific and generic networks
We curated intracellular regulatory and interactive relationships

between coding and noncoding genes from multiple databases.
These relationships mainly include RNA-RNA co-expression,
Protein-Protein interactions, and TF regulations. Through filtering,
unifying, and merging the nodes and edges in different networks
(see methods section), we finally construct 80 specific networks
(Fig. 2) from 50 normal tissues and 30 cancer types, and one generic
network (Table S1). The generic network play a complementary role
to the specific networks. These networks contain a total of
43,087,953 coding-noncoding relationships. IDs and gene names
from different databases were uniformly converted to Ensembl
IDs and gene symbols.
3.2.2. Target screening and mechanisms characterization
Target screening begins with identifying a possible therapeutic

target, and follows by characterization of the molecular mecha-
nisms addressed by this target (Fig. 3). An acceptable target should
be efficacious, safe, meet clinical requirements and be ‘‘druggable”.
In order to better utilize the above-integrated network for discov-
ering disease-relevant targets, we integrated degree centrality,
PageRank and Random Walk algorithms for assessing the target
importance (Fig. 1). A ranked list would be generated through
the target screening analysis. Moreover, to facilitate understanding
and screening of the candidate targets, we collected gene expres-
sion profiles of 50 normal tissues and 30 cancer tissues in GTEx
and TCGA databases, which could be visualized by clicking on ’Nor-
mal Tissue’ and ’Cancer Tissue’ at the concerned gene (Fig. 3). Func-
tional enrichment of Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) is performed on the target ranking
result to characterize the possible molecular mechanisms.
3.3. Drug design and optimization

3.3.1. Large RNA design and optimization
For the therapeutic RNAs with large sizes, such as mRNAs and

lncRNAs, their anionic charge, susceptibility to RNases and special
structures, make it difficult for therapeutic RNAs to enter cells effi-
ciently and function on their own [4]. Thus, the candidate RNA
needs to undergo sequence optimization and modification to
enhance RNA stability and reduce immunogenicity [16]. TREAT
supports the design and optimization of large RNAs, regarding
their sequence composition, immunogenicity, stability, translation
and degradation. It builds a framework that can integrate more
features, boost specific features, and give a deterministic output
in a controlled space of search (Table 1).

TREAT collects 11 influential features, such as GC content [42],
secondary structure [43], codon usage [44], bicodon usage [45],
Codon Adaptation Index (CAI) [46], and degradation score [47]
(Fig. 4B). These features are stratified into local and global features.
The entire sequence is first optimized using local features to gener-
ate different optimized candidates, and then finally assessed on the
global features (Fig. 4A). The local bins are divided by the fixed-
length or dynamic-length stragedy, whereas the latter is inspired
by AI language models of the protein sequence [48].



Fig. 1. Framework of TREAT. TREAT consists of two computational components: ‘‘target screening” and ‘‘drug design and optimization”. The ‘‘target screening” component
focuses on identifying and ranking disease-relevant targets. The ‘‘drug design and optimization” component focuses on the design and optimization of large RNAs and siRNAs.
The grey bar represents an RNA sequence. The blue circle on the left represents the local bins, while the red lines below represent the modified bases on the sequence. The red
and blue rectangular on the right represent candidate siRNAs with different scores. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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3.3.2. RNA degradation characteristics
To protect the RNA from degradation and thus maximize the

effectiveness of therapeutic RNAs, we included several features
concerning RNA degradation to conduct large RNA design and opti-
mization. A global degradation score was calculated to help assess
an RNA sequence’s degradation risk, enabling RNA sequence opti-
mization for enhanced in-solution stability [47]. In addition to
the global degradation score, a base score to evaluate degradation
risk at each base was also provided. Since w modification provides
a general technology that can be applied to stabilize specific
nucleotides [49], this single base score is beneficial in guiding the
posting nucleoside modifications. Scientists may generate their
preferred candidates through some ways of engineering
technology.

3.3.3. Specific features boosting
Users may have different concerns during large RNA design and

optimization. In order to better integrate multiple features, we
define a boosting weight for each feature. It could balance or exag-
gerate specific features when we sum all the feature scores
together. By manipulating the web service, users can customize
their weights of different features to try different directions of opti-
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mization. This helps generate diverse sequence candidates with
different characteristics. For example, when the boosting value of
the CAI feature is set to 5 times than default, the constraints of
the CAI Principe will be heightened so that the sequence will be
optimized to have more translational efficacy.
3.3.4. Small interfering RNAs design
One class of RNA therapeutics requires the delivery of small

RNA molecules, which can reduce gene expression via RNA-
induced silencing complex (RISC)-mediated mRNA degradation.
For small interfering RNAs design, the input RNA sequence is tra-
versed using a sliding window of 21nt, generating N-23 candidate
sequences, where N is the length of input RNA. Guide sequence and
passenger sequence are obtained for each sequence according to
the principle of complementary base pairing. The 2–8 bases at
the 50 end are regarded as the seed region. Each sequence is filtered
according to user-defined rules, such as TM score [50], GC content
[51], and specific sequence structures. Further, these sequences are
Blast against human RefSeq genes [52] to identify possible
off-targets.



Fig. 2. Integrated tissue-specific networks. TREAT integrates 80 tissue-specific biological networks, including 50 normal tissue-specific networks and 30 cancer tissue-
specific networks. The red bar length was proportional to the number of edges in the network, while the blue bar represents the number of nodes. Three different types of
relationships are curated: 1.RNA-RNA: relationships between RNAs; 2.TF: transcript factor regulation relationships; 3.PPI: protein-protein interactions’. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Steps for target screening analysis. A.Homepage of TREAT. B.Input the differential expressed genes and biological network to start target ranking analysis. C. Targets
ranking result. D. Enriched terms for the ranking result.

Table 1
Comparison with other platforms or tools.

Study Tool Features Feature
Boosting

Optimization algorithm Output
determinism

PMID

Ours TREAT 10 + features Yes Ensemble score with feature
stratification

deterministic –

He Zhang, et al., 2020
[16]

LinearDesign MFE, CAI No Dynamic Programming deterministic –

Valentin Zulkower et al,
2022 [17]

DNA Chisel 10 + features Yes Stochastic search,
Exhaustive search

Non-
deterministic

32647895

Pere Puigbò et al., 2007
[18]

OPTIMIZER Codon Usage No Monte Carlo algorithm deterministic 17439967

David Raab et al., 2010
[19]

GeneOptimizer Codon Usage, DNA motifs, GC content,
Repetitions, Homologies

No Ensemble score deterministic 21189842
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3.4. Interface and visualization

3.4.1. Input and output
TREAT is a one-stop portal to systematically select and optimize

therapeutic RNAs, working in a powerful and user-friendly inter-
face. Firstly, the user could start an analysis from a concerning dis-
ease using the ‘‘target screening” component, with the differential
genes customized as the prior knowledge. Then, the user choose a
biology network associated with this disease to perform target
ranking using three embedded algorithms (Fig. 3). The specific
expression of genes in different tissues or cancers is available to
assess the importance of a target. Secondly, the determined RNA
could be modified for further optimization. Directly optimizing
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the RNA or designing its interfering RNA are both available at the
‘‘drug design and optimization” component. It takes one RNA
sequence as the input, and generate multiple candidate therapeu-
tic large RNAs or siRNAs (Fig. 5).
3.4.2. Exploratory visualization for sequence optimization
Exploratory visualization is a heuristic approach to knowledge

discovery. To help explore in different directions across the huge
sequence traversal space when performing optimization, TREAT
visualized the RNA and associated contextual information in an
interactive graph, allowing flexible and interactive editing of the
target sequence (Fig. 5B). Alternative choices are provided when
clicking on a nucleotide. Evaluations of different features and a



Fig. 4. Multi-objective optimization Framework. A. Hierarchical multi-objective optimization framework for large RNA. B. Features integrated in the large RNA
optimization.
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Fig. 5. Steps for RNA drug design and optimization. A. Input for the large RNA design and optimization. B.Output for the large RNA design and optimization. C. Input for the
siRNA design and optimization. D.Output for the siRNA design and optimization.
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new ensemble score would be calculated for the new sequence in
real-time. Facilitated by the exploratory visualization, the user
could edit and continuously optimize an RNA sequence until
founding the preferred one.

4. Discussion

Accompanied by RNA generation, purification, and delivery
technology breakthroughs, RNA-based therapeutics are developed
rapidly, and the RNA drug approval rate has also been recently
accelerated. RNA therapeutics comprise a rapidly expanding cate-
gory of drugs, emerging as suitable treatment options for many
challenging diseases. However, although mRNA-based drugs and
vaccines have been developed and broadly used, these RNAs only
involve 2 %-3% of the human genome. The vast noncoding region,
which accounts for 97 % of the human genome, has not been
included in the scope of current RNA drug development. To unlock
the therapeutic potential of noncoding RNAs, we have built TREAT,
which enables us to identify, and selectively disrupt disease-
relevant noncoding RNAs. The target screening and drug design
engine embedded in TREAT could help scientists rapidly expand
their pipelines of RNA therapeutics in multiple disease areas.

The first step in discovering a drug is identifying the molecular
origin of a disease and the potential targets for intervention. With
the development of omics technology, target identification is
mainly based on principles of molecular biology. Scientists usually
integrate available molecular networks based on muti-omics data
to build and rank target-disease associations. TREAT fully incorpo-
rates 81 heterogeneous regulatory networks covering noncoding
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RNA and three advanced algorithms to perform target ranking.
Despite the huge number of noncoding genes in the human gen-
ome, the number of those integrated into TREAT is still incompara-
ble with coding genes. We will continuously update the scope of
the noncoding networks and introduce more cutting-edge meth-
ods, such as artificial intelligence algorithms.

To overcome the high complexity of sequence optimization for
large RNA, we stratified the features into local features and global
features. Local features are calculated on each bin, while global fea-
tures are calculated only on the final refined candidates, thus
reducing the search space. Moreover, the ensemble score summa-
rized could better balance different features and resolve conflicts
between different features. However, this computational strategy
still has a certain probability of missing some candidates, and its
computational complexity still needs improvement. We would
try more computing technology such as indexing and linear pro-
gramming to improve the algorithm further. Correspondingly, we
would continue collecting features at multiple omics levels for
RNA sequence optimization and siRNA design.

The downstream RNA engineering technologies, even the tis-
sues or species to be investigated, may have different preferences
for RNA sequence characteristics. So it is difficult to define a uni-
versal strategy for ranking candidate RNA sequences. To be com-
patible with the optimization requirements of different
platforms, TREAT integrates multiple sequence features and sup-
ports customized adjusting of their weights. An interface for inter-
active editing and real-time evaluation of the concerned RNA
sequence is also available. These customization and exploratory
visualization make the platform more flexible. In the future, we



Y. Luo, L. Liu, Z. He et al. Computational and Structural Biotechnology Journal 20 (2022) 5680–5689
will conduct more web service development on the interactive
editing of therapeutic RNAs, to best inspire users’ innovation in
conducting the design and optimization. Moreover, to improve
prediction performance on specific experimental platforms, such
as mRNA vaccines for human, TREAT are going to integrate more
testing data from several common experimental platforms and
optimize TREAT’s design parameters and algorithms based on
these benchmark data. It is expected TREAT will becomemore flex-
ible, automated and intelligent in the future.

5. Conclusions

In this study, we propose a platform TREAT for the screening,
design and optimization of therapeutic RNAs, with particular
attention to noncoding RNAs. It consists of two component of ‘‘tar-
get selection” and ‘‘drug design and optimization”, with heteroge-
neous biological networks, powerful algorithms embedded, and a
friendly interface for exploratory search. We believe that TREAT
would be a great source and intelligent tool for RNA therapeutics
and provide essential clues toward novel drug innovation for chal-
lenging diseases.
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