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Substantial evidence has shown that microRNAs are crucial for biological processes within
complex human diseases. Identifying the association of miRNA–disease pairs will
contribute to accelerating the discovery of potential biomarkers and pathogenesis.
Researchers began to focus on constructing computational models to facilitate the
progress of disease pathology and clinical medicine by identifying the potential
disease-related miRNAs. However, most existing computational methods are
expensive, and their use is limited to unobserved relationships for unknown miRNAs
(diseases) without association information. In this manuscript, we proposed a creatively
semi-supervised model named bidirectional generative adversarial network for miRNA-
disease association prediction (BGANMDA). First, we constructed a microRNA similarity
network, a disease similarity network, and Gaussian interaction profile kernel similarity
based on the known miRNA–disease association and comprehensive similarity of miRNAs
(diseases). Next, an integrated similarity feature network with the full underlying
relationships of miRNA–disease pairwise was obtained. Then, the similarity feature
network was fed into the BGANMDA model to learn advanced traits in latent space.
Finally, we ranked an association score list and predicted the associations betweenmiRNA
and disease. In our experiment, a five-fold cross validation was applied to estimate
BGANMDA’s performance, and an area under the curve (AUC) of 0.9319 and a
standard deviation of 0.00021 were obtained. At the same time, in the global and local
leave-one-out cross validation (LOOCV), the AUC value and standard deviation of
BGANMDA were 0.9116 ± 0.0025 and 0.8928 ± 0.0022, respectively. Furthermore,
BGANMDAwas employed in three different case studies to validate its prediction capability
and accuracy. The experimental results of the case studies showed that 46, 46, and 48 of
the top 50 prediction lists had been identified in previous studies.
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1 INTRODUCTION

MicroRNAs (miRNAs) are endogenous gene-encoded non-
coding single-stranded RNA molecules with a length of about
20–24 nucleotides (Bartel, 2004; Cheng et al., 2005). They
participated in the post-transcriptional management of gene
expression and are crucial for multiple biochemical processes
(such as cellular apoptosis, cell proliferation, metabolism, and so
on) by targeting specific message RNAs (mRNAs) and regulating
gene expression and miRNA degradation (Ambros, 2003; Karp
and Ambros, 2005; Shukla et al., 2011; Ebert and Sharp, 2012; Shi
et al., 2013). Therefore, scientists are increasingly interested in
human biochemical processes at the miRNA level (Xu et al.,
2004). Currently, accumulating evidence indicates that most
miRNAs are directly related to complex human diseases
(Meltzer, 2005; Krützfeldt and Stoffel, 2006; Jiang et al., 2009;
Chen et al., 2019). For instance, it was confirmed that mir-367 can
facilitate the proliferation of hepatocellular carcinoma and
invasion of cells, displaying aberrant expressions in the tumor
tissues of hepatocellular cancer patients compared to normal
tissues (Guo et al., 2020). In addition, recent studies revealed that
mir-21 is correlated with the prognosis of patients with brain
tumors, and particularly, its overexpression may cause a worse
prognosis (He et al., 2016). Another example of disease-related
miRNA is mir-125a-5p, which plays a critical role in lung cancer
development under the regulation of epidermal growth factor
signal transduction (Wang et al., 2009). Therefore, utilizing
experimental or computational models to identify the
underlying miRNA–disease associations will contribute to
facilitating the discovery of pathogenic mechanisms and
potential biomarkers (Calin and Croce, 2006; Jones et al.,
2014). Previous studies have indicated that predicting possible
miRNA–disease associations through traditionally biological
methods is laborious and expensive. With the rapid evolution
of technology and science, numerous advanced computational
methods have been developed to establish the representation of
pairwise miRNA-disease associations based on accumulated
genomic data.

Based on the assumption that functionally similar mirnas are
likely to be associated with phenotypically similar diseases (Perez-
Iratxeta et al., 2005), researchers had made great progress over the
past few decades in building computational models to infer
potential miRNA-disease associations. Most of them were
score function-based models, which analyze biological
information to establish the score function and predict the
associations (Zeng et al., 2016b). For example, an innovative
model named MiRNA-protein-disease Association was proposed
(Mørk et al., 2014), which utilized proteins as mediums between
miRNAs and diseases to predict the associations. A group of
proteins correlated with a specific miRNA (disease) was listed, the
association scores of miRNA-protein pairs and protein-disease
pairs were calculated, and the maximum value was selected as the
final association score is between miRNA and disease. In addition
Chen et al. (2016) mixed the known miRNA-disease associations,
the diseases semantic similarity, and the miRNAs functional
similarity with GIP kernel similarity to figure out unknown
miRNA-disease associations. Then, a model named within and

between score for MiRNA-disease association prediction
(WBSMDA) was developed, which can simultaneously
prioritize miRNAs for all diseases. A new similarity matrix of
miRNA–disease associations was constructed (Ma et al., 2019) by
integrating gene similarity information, miRNA target gene
information, disease gene information, and other data sources.
They applied the nuclear neighborhood similarity algorithm to
calculate the similarity feature of miRNA-disease pairs.
Ultimately, a bidirectional propagation algorithm was adopted
to obtain the predicted score.

In the past 2 decades, machine learning-based models have
been widely proposed to predict the underlying associations of
miRNA-disease pairs. For example, researchers constructed a
vector spacer model named MiRAI (Pasquier and Gardè s, 2016).
First, an adjacent matrix was acquired by splicing four types of
miRNA-related associations among disease, target, neighbor, and
cluster. Then, they applied a singular value decomposition
algorithm to cut down the new matrix dimension and
computed an eigenvector representation of each
miRNA–disease pair. Finally, the correlation grade was
obtained using the cosine similarity of miRNA–disease vector
representation. Based on combining two ideal classifiers in
disease (miRNA) space to optimize the association probability,
a model named Regularized Least Squares for predicting miRNA-
disease associations (RLSMDA) was proposed (Chen and Yan,
2014). It is worth mentioning that this method does not require
any representation of unknown miRNA–disease pairs. An
inductive matrix completion model was developed (Chen
et al., 2018) to predict the disease-related miRNAs, which is
applicable to new diseases with unknown miRNAs. First, they set
up two metrics to indicate the low-dimensional matrix of
miRNA-disease representation. Then, an optimal algorithm
was used in iteration to update them. When the stopping
threshold was reached, the two updated matrices were directly
fused into the miRNA-disease similarity matrix. As an
enhancement, researchers innovatively constructed an updated
model named Neighborhood Constraint Matrix Completion for
miRNA-disease association prediction (NCMCMDA), which
utilized the similarity information of miRNAs and diseases
(Chen et al. (2021)). They applied a fast iterative shrinkage-
thresholding algorithm based on the known miRNA-disease
associations and comprehensive miRNA (disease) similarity to
recover the missing association information. A label propagation-
based method was proposed (Li et al., 2018) for scoring miRNA-
disease pairs by calculating pairwise neighborhood similarity
(LPLNS). Due to unvalidated miRNA-disease pairs presenting
few known associations, an additional processing step was
included in the LPLNS to drive new interaction likelihood
profiles. To list the candidate miRNAs for diseases and
explore the potential associations, a novel framework called
GBDT-LR was constructed by combining logistic regression
and gradient boosting decision tree (Zhou et al., 2020).
Besides, researchers developed a computational model based
on Similarity Constrained Matrix Factorization for miRNA-
disease association prediction (Li et al., 2021a), which
creatively expanded L2 regular term and similarity constraint
term to infer disease-related miRNAs.
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Many novel neural network-based methods that extract
similarity features and learn the latent representations had
been proposed to predict potential miRNA-disease associations
(Yang and Li, 2021). For example, a model called Deep Belief
Network for miRNA-disease association prediction (DBNMDA)
was mentioned (Chen et al., 2021), which innovatively
constructed the feature vectors with all microRNA and disease
information to pre-train restricted Boltzmann machines. A graph
neural network-based auto-encoder model called GAEMDA (Li
et al., 2021b) adopted an end-to-end way to identify the
underlying associations between miRNAs and diseases. By
combining an auto-encoder and a convolutional neural
network (Peng et al., 2019), a learning-based neural network

model was constructed to figure out the potential miRNA-disease
associations. Based on four integrated biological networks and
verified protein-protein interaction in humans, researchers
developed a new computational framework named
Heterogeneous Graph Convolutional Network for miRNA-
disease associations prediction (Li et al., 2019). For predicting
the correlations between miRNAs and diseases, some studies
presented a supervised end-to-end method, termed the neural
inductive matrix completion with graph convolutional network
(Li et al., 2020), which can effectively learn the representation of
underlying traits from the known miRNA (disease) information.
To learn the original and global miRNA-disease representations
in a low-dimensional feature space (Xuan et al., 2019), a novel

FIGURE 1 | Flowchart of potential miRNA-disease association prediction based on the BGANMDA model, (A) is the multi-source information of miRNAs and
diseases, (B) is the details of constructing both miRNAs and diseases similarity network, and (C) is the structure of BGANMDA.
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network-based model was proposed, termed Convolutional
Neural network for miRNA-disease associations prediction
(CNNMDA).

Despite the great progress achieved in the techniques used to
explore the potential miRNA and disease relationships, the
above-mentioned models, and also others, still present some
restrictions and disadvantages. Overall, the studies published
in the past decade show that great success has been achieved
in the field of bioinformatics based on deep learning-based
models. In particular, computational models based on neural
networks have made outstanding contributions to the task of
prediction (Zeng et al., 2016a). As a neural network, the auto-
encoder can learn input data through unsupervised learning,
strongly represent potential features, effectively reduce sample
noise, and randomly generate data (Suk et al., 2015). For example,
aiming to discover complex feature representation of disease-
related miRNAs, a novel deep learning method for predicting
miRNA-disease associations through deep autoencoder with
multiple kernel learning (DAEMKL) was presented (Zhou
et al., 2021). In this study, a creative computational model
named bidirectional generative adversarial network
(BGANMDA) is proposed to predict potential pairwise
miRNA-disease associations. More specifically, similarity
information networks were initially constructed from
comprehensive similarity characteristics. Then, a similarity
feature network with the full underlying relationships between
miRNA and disease pairs was obtained by integrating all the
similarity information. The whole integrated similarity network
was loaded into the BGANMDA which employed an encoder to
learn high-level features in latent space, a generator to produce a
brand-new correlation between miRNAs and diseases, and a
discriminator to decide whether the predicted associations
were real. In this study, five-fold cross-validation and leave-
one-out cross-validation (LOOCV) were adopted to evaluate
the model’s prediction performance. During the five-fold
cross-validation, the BGANMDA acquired an area under the
curve (AUC) of 0.9319 and a standard deviation of 0.00021 was
obtained. At the same time, in the global and local leave-one-out
cross-validation (LOOCV), the AUC value and standard
deviation of BGANMDA were 0.9116 ± 0.0025 and 0.8928 ±
0.0022, respectively. Furthermore, BGANMDA was employed in
three different case studies to validate its prediction capability and
accuracy. The experimental results of the case studies showed that
46, 46, and 48 of the top 50 prediction lists had been identified in
previous studies.

2 MATERIALS AND METHODS

2.1 Human miRNA–Disease Associations
The Human MiRNA Disease Database (HMDD V3.0) was
adopted as a benchmark dataset (Huang et al., 2019), which
can be directly downloaded for experimental verification of
disease-related miRNA information from http://www.cuilab.cn/
hmdd (version v 3.2, published on 27Mar 2019). After erasing the
pairwise miRNA-disease associations that did not have IDs or
lacked traits, duplicate samples describing the miRNA-disease

relationships were removed based on experimental support. In
the process, 18,733 miRNA-disease associations were obtained,
including 1,208 miRNAs and 985 diseases in the HMDD v 3.
2 database. Based on the sorted dataset, we constructed an
association binary matrix BM, consisting of 984 rows and
1,207 columns, was constructed to maintain the interaction
information between miRNAs and diseases, which has
984 rows and 1,207 columns. If an experimentally verified
miRNA-disease association was detected, the element value at
the corresponding position of the matrix was set to 1; otherwise, it
was set to 0.

2.2 Multi-Source Similarity Information for
miRNAs and Diseases
2.2.1 MiRNA Similarity Network
To calculate the network of miRNA sequence similarity, the
miRBase database containing almost all the miRNA sequence
information, (Kozomara and Griffiths-Jones, 2014), was
downloaded from https://www.mirbase.org, as shown in
Figure 1A. The similarities of any two miRNAs were
quantified using the Levenshtein distance, which represented
the minimum cost of converting a single string to another
string after replacing, inserting, and deleting one letter. The
editing penalty was set to 2, while the deleted and inserted
penalties were set to 1. Let MSS(mi, mj) be the miRNA
similarity score, where mi denotes the ith miRNA and mj

denotes the jth miRNA, and the definition formula is shown
as follows:

MSS mi,mj( ) � 1 − x

Len mi( ) − Len mj( ), (1)

where x denotes the minimum penalty and Len(m) is the
sequence length of miRNA.

Then, we applied the max-min normalization to rescale and
normalize MSS as follows:

MSS′ � MSS mi,mj( ) −MSSmin

MSSmax −MSSmin
, (2)

where MSSmax and MSSmin represent the maximum and
minimum MSS, respectively.

Based on the universally acknowledged conjecture that
pathologically similar diseases are more likely to be relevant to
functionally similar miRNAs (and vice versa), a popular strategy
(Zou et al., 2016) was employed to calculate the functional
similarity (MFS) for a miRNA-miRNA pair mi and mj as follows:

MFS � ∑d∈D mi( )⋂D mj( ) DSS d,D mi( )( )+DSS d,D mj( )( )(
|D mi( )| + |D mj( )| , (3)

where D (mi) and D (mj) denote the disease sets linked with mi

and mj, respectively, and |D (·)| is the cardinal number of disease
set. DSS(d, D (mj)) is calculated through the max value of disease
semantic similarity.

In this study, the sequence and functional similarity of
miRNAs were employed to describe the miRNA similarity
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characteristics. However, an independent similarity descriptor is
not capable of accurately expressing the global similarity between
any two miRNAs. Therefore, a similarity factor was set to
determine which similarity descriptor can better represent
similar features of miRNAs. Finally, a miRNA similarity
network MSN(mi, mj) between miRNA mi and mj was
obtained by synthesizing the two similarity descriptors as follows:

MSN mi,mj( ) � αMFS mi,mj( ) + 1 − α( )MSS mi,mj( ), (4)
where α is the similarity factor. In order to better describe the
similarity characteristics between mirnas, we carefully compared
the differences in miRNA functional similarity and sequence
similarity in the description of similarity characteristics. Referring
to previous literature (Lei et al., 2021), it was found that mirnas
with similar functions were more likely to cause similar diseases.
Experimental comparison shows that the optimal miRNA
similarity network can be constructed when the value of α is
set to 0.6.

2.2.2 MiRNA GIP Kernel Similarity
Based on the previous study, the Gaussian interaction profile
can be applied to capture the topological features of
interaction networks, which is a successful method to
evaluate the nuclear similarity of biomolecules for each
pair in computational biology (Chen et al., 2016; Bao et al.,
2017). Therefore, it is of great importance to search for GIP
kernel similarity in the binary matrix with miRNA-disease
interaction information. The GIP kernel similarity of
microRNA MGSd (mi, mj) between mi and mj can be
defined as follows:

MGSd mi,mj( ) � exp −λ‖BM mi( ), BM mj( )‖2( ), (5)
where BM(mi) and BM(mj) are the ith and jth columns miRNA
kernel information of each disease in binary matrix BM,
respeectively, λ represents a parameter that controls the kernel
boundary’s width, which can be calculated based on λ′ as follows:

λ � λ′
1
nm∑nm

i�1‖BM mi( )‖, (6)

where nm denotes the number of miRNAs, λ′ is the original
bandwidth and set to 1 as suggested in other studies (Xiao et al.,
2019).

2.2.3 Disease Similarity Network
As described in previous studies (Xuan et al., 2013), by using the
medical subject headings disease descriptors (MeSH),
downloaded from the NCBI website (https://www.ncbi.nlm.
nih.gov/), it was possible to estimate the semantic similarity of
diseases based on directed acyclic graph (DAG) structures.
Specifically, a disease d can be described as DAGd = (d, G(d),
E(d)), in whichG(d) denotes the disease d itself and all the node of
its ancestors, E(d) is the corresponding edge set that contains the
direct relationships from parents to child nodes in DAGs.
Therefore, we computed the semantic contribution of disease
dk and dt as follows:

C1dt dk( ) � max μ · C1dt dk′( ){ }, if dk ≠ dt

1, if dk � dt
{ , (7)

where μ is the semantic contribution factor, as suggested by recent
study we set it as 0.5 (Wang et al., 2010). Then, the disease
semantic value dt is defined as

SV1 dt( ) � ∑
dk∈G d( )

C1dt dk( ). (8)

Let DSS1 ∈ Rnd×nd be the pairwise disease semantic similarity,
which can be computed as follows:

DSS1 di, dj( ) � ∑x∈G di( )∩G dj( ) C1di x( ) + C1dj x( )( )
SV1 di( ) + SV1 dj( ) , (9)

where G(di) and G(dj) represent the disease di and dj in DAGs,
respectively, and DSS1 is the first matrix to store the disease
semantic similarity.

Furthermore, because diseases are more common when they
appear in more DAGs, they are more specific when they appear in
fewer GAGs, and in the same DAG layer, the diseases’ semantic
contribution value is almost different. Therefore, based on
previous research (Pasquier and Gardès, 2016), another
measurement was applied to obtain the semantic similarity of
diseases as follows:

C2dt dk( ) � −log NG dk( )
nd

( ), (10)

where NG (dk) is the number of DAGs including dk.
Similarly, both the disease semantic value dt and the pairwise

disease semantic similarity DSS2(di, dj) can be described as
follows:

SV2 dt( ) � ∑
dk∈G d( )

C2dt dk( ) (11)

DSS2 di, dj( ) � ∑x∈G di( )∩G dj( ) C2di x( ) + C2dj x( )( )
SV2 di( ) + SV2 dj( ) , (12)

where DSS2 is the second matrix to store the semantic similarity
of diseases.

To obtain a more persuasive semantic similarity of diseases, a
disease similarity network DSN(mi, mj) was constructed between
disease di and dj by coalescing the two semantic disease
similarities as follows:

DSN di, dj( ) � DSS1 di, dj( ) +DSS2 di, dj( )
2

. (13)

2.2.4 Disease GIP Kernel Similarity
Correspondingly, the GIP kernel similarity of diseases can be
established as follows:

DGSm di, dj( ) � exp −λ‖BM di( ), BM dj( )‖2( ) (14)

λ � λ′
1
nd∑nd

i�1‖BM di( )‖, (15)
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where BM(di) and BM(dj) represent the ith and jth rows disease
kernel information of each miRNA in binary matrix BM,
respectively, λ represents a parameter that controls the width
of the kernel boundary, and nd is the number of diseases.

2.4 Integrated Similarity Characteristic
Based on the above section, the miRNAs (diseases) similarity
network and the GIP kernel similarity of miRNAs (diseases) were
collected to acquire comprehensive similarity information.
Considering that many sparse values may exist in the above-
mentioned similarity network, the GIP kernel similarity was
integrated with the similarity networks of miRNAs and
diseases using the following formulas:

MS mi,mj( ) � MSN mi,mj( ), if similarity between
mi and mj are exist

MGSd mi, mj( ), otherwise

⎧⎪⎪⎨⎪⎪⎩ ,

(16)

DS di, dj( ) � DSN di, dj( ), if di and dj have
semantic similarity

DGSm di, dj( ), otherwise

⎧⎪⎪⎨⎪⎪⎩ . (17)

In the integrated similarity network, the miRNA similarity
vector of miRNAmi stores the similarity values of all the miRNAs
to mi. At the same time, the similarity values of all other diseases
to disease di are included in the similarity vector of di. Thus, all the
similarity eigenvectors for the corresponding pairwise miRNA-
disease were concatenated to create a long feature vector of size
nm + nd, where the nm and nd represent the number of
microRNAs and diseases, respectively. Overall, the nm × nd

generated eigenvectors were taken as samples, each sample
corresponding to a miRNA-disease pair. As shown in
Figure 1B, the details of processing similarity for potential
miRNA-disease prediction is displayed.

2.5 Bidirectional Generative Adversarial
Network
The present study introduced a computational model named
bidirectional generative adversarial network (BGANMDA),
which combined a nonlinear auto-encoder (consisting of an
encoder and a generator), and an optimal discriminator to
complete the task of identifying the potential associations
between miRNAs and diseases. The Framework of
BGANMDA is shown in Figure 1C (See more details in
Supplementary Figure S2). Generally, the encoder of
BGANMDA maps the original data point x to the feature
representation E(x) in latent space. At the same time, z is
captured to generate a new relationship between a miRNA
and a disease G(z) through hidden layers in the generator.
Then, the BGANMDA discriminator discriminates both in the
traditional data space, and in the joint data and latent space ((x,
E(x)) versus (G(z), z)), where the output of encoder E(x) and the
input of generator z are the latent components.

In the model, the encoder E: ΩX → Ωz included a distribution
PE (Z|X) = δ(Z − E(x)), which maps the original data points x into
a latent space of the generator. At the same time, the generator G:
ΩZ → OmegaX randomly extracts sampling noise form the latent
space of the encoder to generate newmiRNA-disease associations
under the distribution QG (X|Z) = δ(X − G(z)). To “fool” a
discriminator perfectly, both of encoder and generator must learn
to invert each other through the joint probability distribution,
satisfying the following two properties:

a( )X ∈ Ω̂X ∧ E X( ) � Z b( )Z ∈ Ω̂Z ∧ G Z( ) � X. (18)
The discriminator will take (X, Z) as input from the latent

space to forecast the deterministic relationship of miRNA-disease
pairs under the distribution of PD (Y|X, Z). If only property (a) is
satisfied, the discriminator can infer the source of input (X, Z)
must be come from the encoder pair (X, E(X)), and the value of
discriminatorDp

EG(X,Z) is 1; if the source of (X, Z) only satisfies
(b), it must be come from the generator pair (G(Z), Z) and
Dp

EG(X,Z) is 0. Therefore, a minimax objective can be defined to
displace the BGANMDA training objective as follows:

min
G,E

max
D

V D, E, G( ), (19)

where V (D, E, G) can be represented by the following formulas:

EX~pX logD X, E X( )( )[ ] + EZ~pZ log 1 −D G Z( ), Z( )( )[ ] (20)
and

logD X, E X( )( ) � EZ~pE ·|X( ) logD X,Z( )[ ], (21)
log 1 −D G Z( ), Z( )( ) � EX~pG ·|Z( ) log 1 −D X,Z( )( )[ ]. (22)
When a discriminator input (X, Z) satisfies noth (a) and (b), E

and G invert each other almost everywhere, that is X = G (E(X))

FIGURE 2 | ROC curves performed in 5-flod cross-validation by
BGANMDA, which obtained the mean AUC value and standard deviation of
0.9319 ± 0.0021.
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and Z = E (G(Z)). Compared with other advanced miRNA-
disease predicting models, the BGANMDA here employed
focuses more on processing complex data and effectively
learning the gradient information to ensure the correct
allocation of parameter weights.

In preprocessed similarity eigenvectors, each disease (miRNA)
contains the similarity information of all miRNAs (diseases),
which integrate the miRNAs similarity network, diseases
similarity network, and GIP kernel similarity of miRNAs
(diseases). As mentioned above, BGANMDA is an innovative
computational model inspired by a nonlinear auto-encoder. A
BGANMDA encoder is one of the two parts of an auto-encoder,
and it shows a strong performance in terms of compressing
complex data, eliminating extra noise, and learning the additional
features of latent space. The eigenvector samples are used as
encoder input and the parameters of the similarity vectors can be
calculated through three fully connected layers of the neural
network. Besides, LeakyReLu was applied as an activation
function for each network layer with dropout to accelerate the
convergence rate and prevent the occurrence of over-fitting. It
assigns a non-zero slope to all negative values, which can
accelerate gradient descent and better carry out
backpropagation The function is defined as follows:

LeakyReLu � x, x≥ 0
ηx, x< 0{ , (23)

where η, which is set to 0.01, denotes a fixed learning parameter.
In the BGANMDA encoder, the dimensions of the

similarity eigenvector samples between miRNA and disease
are compressed into low-dimensional vectors when passing
through network layers. The dense information of compressed
low-dimensional vectors allows the model to learn how to map
the miRNA-disease relationship into latent space. In this way,
a trained encoder can precisely identify the feature
representation by capturing semantic attributes, in order to
obtain a data pair (x, E(x)). To better understand the further
representation of latent space, the number of neurons in an
encoder output layer was set to 100. At the same time, the
binary cross-entropy was used as the loss function, as shown in
the following equation:

Lossp q( ) � −1Γ ∑Γ
i�1

yi · log p yi( )( ) + 1 − yi( ) · log 1 − p yi( )( ),
(24)

where Γ represents the output size of BGANMDA, y is the label
(1 for known miRNA-disease pairs), and p(y) is the predicted
probability of the association between miRNA and disease.

In most generative adversarial network models, generators
always play a role in studying the features of original data to
generate new data based on the learned characteristics. However,
in the BGANMDA, the generator was preferentially used to select
a random sample as input instead of the original one. The
structure of the generator network is similar to that of the
encoder which has three fully connected layers with dropout.
The generator output was calculated as follows:

G Z( ) � WGz + bG, (25)
where z is the sampling noise from the encoder latent space, and
WG and bG represent the weights and bias of the generator,
respectively.

It is noteworthy that each layer in the BGANMDA generator
increases the dimension of the potential representation layer by
layer and the final output dimension is the same as the encoder
input. The sampling noise representation of the miRNA-disease
association is decoded by the generator, then the new associations
are generated. As a result, a series of data pairs (G(z), z) is
obtained.

The data pairs (x,E(x)) and (G(z),z) are taken as inputs to
try to fool the discriminator. Initially, if the data pair derives
from the encoder, the discriminator can easily recognize the
input source and discriminate it as real, namely Dp

EG(X, Z) is
set to 1; whereas, if the data pair derives from the generator, the
DEGp(X, Z) is set to 0. As the model comprehensively analyzes
the underlying features of miRNA-disease relationships, the
encoder and the generator learn to convert each other. It
becomes difficult for the discriminator to distinguish the
source of the input, so that we can obtain predictions that
are more representative of reality. The sigmoid function was
employed to calculate the final probability of miRNA and
disease pairs, which is defined as follows:

sigmoid θ( ) � 1
1 − exp −θ( ), (26)

where θ denotes the sigmoid function input.
This BGANMDA encoder, with its excellent representation

ability, can learn the potential association of miRNA-disease
pairs. The generator can extract the features from the sampled
noise latent space and generate new miRNA-disease associations.
Finally, x = G (E(x)) and z = E (G(z)) are almost everywhere
through a union probability distribution to obtain a bidirectional
structure. The experimental results of the present study reveal
that BGANMDA is robust and has a strong representational
learning ability to predict potential miRNA-disease associations
and, compared with other state-of-the-art methods, it performs
remarkably well.

TABLE 1 | The AUC AUPR, F1-scores, recall, precision, and MCC of ten methods
on miRNA–disease associations prediction task in five-fold cross validation.

AUC AUPR F1-score Recall Precision MCC

BGANMDA 0.9316 0.9237 0.9024 0.8968 0.9215 0.8913
NCMCMDA 0.9187 0.9093 0.9031 0.8621 0.9033 0.8541
DBNMDA 0.8994 0.8972 0.8793 0.8517 0.8802 0.8632
GAEMDA 0.8674 0.8625 0.8609 0.8485 0.8756 0.8427
TDRCMDA 0.8713 0.8706 0.8569 0.8990 0.8783 0.8409
SSCMDA 0.8531 0.8654 0.8542 0.8501 0.8697 0.8371
CNNMDA 0.8494 0.8583 0.8512 0.8453 0.8724 0.8347
HDMP 0.8226 0.8407 0.8373 0.8486 0.8531 0.8287
KADZMDA 0.8317 0.8351 0.8219 0.8312 0.8418 0.8216
WBSMDA 0.8163 0.8216 0.8097 0.8277 0.8391 0.8163

Bolded numbers are the best performance in each category.
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3 RESLUTS

3.1 Performance Evaluation
In this study, we implemented BGANMDA based on the structure
of combined generative adversarial networks with auto-encoder.
The input size of BGANMDA encoder is 2,191, and the output size
is 100. The generator in our model has the same network structure
with encoder, its input size and output size are 100 and 2,191,
respectively. The data pair (x, E(x)) or (G(z), z) was concatenated
and fed to the BGANMDAdiscriminator, which has the dimension
2,291 of input size. We adopted Adam as a gradient descent
algorithm to optimize parameters and the learning rate was
fixed at 2e-4. To avoid over-fitting, the cross-entropy function
and LeakyRuLe (Wang et al., 2018) were used as the loss function
and activation function, respectively. The suitable dropout rate
strategy ranged from 0.1 to 0.9, andwe set it at 0.5 after the effective
validation. To train the model, 20% of the evaluated samples in
training sets were randomly removed five times, and the epochs
and batch size were set at 20,000 and 128 each time.

To systematically measure the prediction capability of
BGANMDA, three different validation methods were employed,
namely five-fold cross-validation, global LOOCV, and local
LOOCV. In the first, the acknowledged miRNA-disease samples
were stochastically split into five subsets, where each was
considered as the dataset for testing, and the others were
treated as training sets. The BGANMDA model was used to
prioritize the unverified miRNA-disease candidates and test
samples according to the score given obtained. In order to
ensure the reliability of the evaluation results, the five-fold
cross-validation was repeated 150 times to reach the

distribution of original samples. As shown in Figure 2, our
model calculated a mean AUC and standard deviation of
0.9116 ± 0.00021. Meanwhile, we compared with other state-of-
the-art models, namely the NCMCMDA, DBNMDA, GAEMDA,
TDRC, SSCMDA, CNNMDA HDMP, KATZMDA, and
WBSMDA via different evaluation index. As shown in Table 1,
BGANMDA obtains the values of AUPR (0.9237), F1-score
(0.9024), Recall (0.8968), Precision (0.9215), and MCC (0.8913),
which outperforms than other advanced models in 5-fold cross
validation. Noting that the miRNA (diseases) similarity network
and GIP kernel similarity in 5-fold cross-validation process,
because the correlation binary matrix was altered when part of
the known association of miRNA-disease pairs was removed.

In LOOCV, the distinction between global and local LOOCV
depends on whether the whole miRNA-disease information is
included simultaneously specifically, in global LOOCV, the focus
was on all underlying pairwise miRNA-disease correlations and
each known association between a specific disease and miRNA as
test sample was excluded in turn. In contrast, in local LOOCV,
only the unknown miRNA-disease associations concerned in test
samples were ranked by comparing the association scores. In the
rank list, a threshold was given: samples with miRNA-disease
association prediction scores above the threshold were considered
true positives (TP). For each given threshold, it was possible to
find the corresponding TP to determine the true positive ratio
(sensitivity). Similarly, the false negatives among the candidate
samples could be obtained by setting a threshold, and the
corresponding false-positive ratio (1-specificity). The term
sensitivity denotes the ratio of the test sample ranking over a
specific threshold, whereas specificity indicates the proportion of

FIGURE 3 | The performance of BGANMDA and the other nine disease-related miRNA prediction methods, namely NCMCMDA, DBNMDA, GAEMDA, TDRC,
SSCMDA, CNNMDA, HDMP, KADZMDA andWBSMDA, were compared based on the ROC curve and the AUC value in global and local LOOCV. BGANMDA obtained
the AUC and standard deviation of 0.9116 ± 0.0025 in global LOOCV and 0.8928 ± 0.0022 in local LOOCV, respectively.
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unknown miRNA-disease association samples ranked under this
threshold. Based on the results obtained, the receiver operating
characteristic curve was drawn and the AUC at different
thresholds was calculated. The higher the AUC value, the
better the model performance; if it was close to 1, the
BGANMDA was considered an excellent predictor of potential
miRNA-disease correlations, whereas the association was
regarded as a random prediction if the AUC value was close
to 0.5. To comprehensively verify BGANMDA’s predictive ability
for complex disease-related miRNAs, we compared it with other
nine models for global and local LOOCV. As shown in Figure 3,
BGANMDA acquired the AUC and standard deviation of
0.9116 ± 0.0025 in global LOOCV and 0.8928 ± 0.0022 in
local LOOCV, respectively. Obviously, our model superior to
other advanced methods, which recorded values of 0.8972 ±
0.0031, 0.8750 ± 0.0047, 0.8418 ± 0.0053, 0.8343 ± 0.0072,
0.8157 ± 0.0064, 0.7925 ± 0.0081, 0.7466 ± 0.0076, 0.7191 ±
0.0085, and 0.6880 ± 0.0091 in global LOOCV. However, in local
LOOCV, the CNNMDA (0.8032 ± 0.0057) obtained a higher
AUC value, while the other methods recorded lower ones, as
observed for the NCMCMDA (0.8449 ± 0.0035), DBNMDA
(0.8340 ± 0.0041), GAEMDA (0.8150 ± 0.0043), TDRC
(0.7944 ± 0.0051), SSCMDA (0.7379 ± 0.0049), HDMP
(0.7045 ± 0.0060), KADZMDA (0.6909 ± 0.0071), and
WBSMDA (0.6776 ± 0.0084). We assumed that CNNMDA
could outperform other methods in local LOOCV because of
the effective pattern of convolutional feature extracting.
NCMCMDA integrated neighborhood constraint with matrix
completion, aiming at transforming the task of recovering the

missing miRNA–disease associations into an optimization
problem. As can be seen, though NCMCMDA has a good
performance in global and local LOOCV, the insufficiency of
present known miRNA-disease associations which NCMCMDA
strongly depends on will limit the prediction performance.
Compared with the other advanced models, BGANMDA has
the advantage of excellent learning capability for underlying
similar traits, making it inclusive and robust to the lack of
unknown miRNA-disease associations.

3.2 Case Studies
In order to further evaluate the practical capability of the
BGANMDA to predict the potential disease-related miRNAs,
three different case studies of fatal cancers were considered,
namely the neoplasms of the colon, esophagus, and kidney.
Here, the known information on the associations between
microRNAs and diseases obtained from the HMDD v
3.2 databases was used as the positive samples for the
BGANMDA, and the miRNAs were prioritized based on the
predicted score given by the model. Then, the top 50 forecast
candidates were ranked based on the dbDEMC database (Yang
et al., 2017) and HMDD v3.2 database.

Colon neoplasm is a dangerous malignant tumor causing a high
mortality rate in humans, and its morbidity rates are only second to
those of esophageal and gastric cancers (Brody, 2015; Ji et al., 2018).
Studies have predicted the occurrence of 101,420 new colon
neoplasm cases, representing 8.3% of all new cancer cases
reported in the United States in 2019, which will result in the
death of 51,200 people (Siegel et al., 2019). Thus, it is urgent to

TABLE 2 |Based on the known associations provided by dbDEMC and HMDD v3.2, the top 50miRNAs related to colon neoplasmwere predicted by employing BGANMDA
model, and 46 predictions were confirmed based on dbDEMC and miR2Disease. The first column records the top 1–25 predicted potentially related miRNAs and the
third column records the 26–50 predicted potentially relevant miRNAs.

miRNA Evidence miRNA Evidence

hsa-mir-145 dbDEMC; HMDD v3.2 hsa-mir-139–5p dbDEMC; HMDD v3.2
hsa-mir-21 dbDEMC hsa-let-7c dbDEMC; HMDD v3.2
hsa-mir-143 dbDEMC; HMDD v3.2 hsa-mir-96 dbDEMC; HMDD v3.2
hsa-mir-195 dbDEMC; HMDD v3.2 hsa-mir-106a dbDEMC; HMDDv3.2
hsa-mir-502–5p dbDEMC hsa-mir-628–3p HDMM v3.2
hsa-mir-215 dbDEMC; HMDD v3.2 hsa-mir-210 dbDEMC
hsa-mir-503 dbDEMC hsa-mir-140–5p dbDEMC
hsa-mir-100 dbDEMC hsa-mir-20a dbDEMC
hsa-mir-155 dbDEMC hsa-mir-28–5p HMDD v3.2
hsa-mir-497 dbDEMC; HMDD v3.2 hsa-mir-342–3p dbDEMC; HMDD v3.2
hsa-mir-548d-3p dbDEMC; HMDD v3.2 hsa-mir-556–5p dbDEMC
hsa-mir-150 unconfirmed hsa-mir-23a dbDEMC
hsa-mir-552 dbDEMC; HMDD v3.2 hsa-mir-93 dbDEMC; HMDD v3.2
hsa-mir-650 HMDD v3.2 hsa-mir-133b HMDD v3.2
hsa-mir-491–5p dbDEMC hsa-mir-518b dbDEMC; HMDD v3.2
hsa-mir-183 dbDEMC hsa-mir-581 unconfirmed
hsa-mir-30a HMDD v3.2 hsa-mir-421 dbDEMC; HMDD v3.2
hsa-mir-182 dbDEMC; HMDD v3.2 hsa-mir-192a dbDEMC
hsa-mir-378 HMDD v3.2 hsa-mir-32–3p dbDEMC
hsa-mir-34a unconfirmed hsa-mir-18a dbDEMC; HMDD v3.2
hsa-mir-17 dbDEMC hsa-mir-330–3p dbDEMC; HMDD v3.2
hsa-mir-665 dbDEMC hsa-mir-203 dbDEMC; HMDD v3.2
hsa-mir-155–3p dbDEMC; HMDD v3.2 hsa-mir-583 HMDD v3.2
hsa-mir-623 HMDD v3.2 hsa-mir-889 unconfirmed
hsa-mir-486–5p HMDD v3.2 hsa-mir-10b dbDEMC; HMDD v3.2
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develop sensitive and novel biomarkers that can effectively and
timely detect colon neoplasms. Studies have confirmed thatmiRNAs
are becoming a crucial target for colon tumor prevention, diagnosis,
and therapy. Some research revealed that the abundance of hsa-mir-
145 is negatively correlated with its expression in colon neoplasm
cells (Wang et al., 2012), a relationship confirmed by luciferase
reporter assay. In addition (Yu et al., 2018), identified the association
between has-mir-21–5p and the clinicopathological features of colon
adenocarcinoma (CODA) patients, as well as its overexpression in
CODA cells. The experiments conducted revealed that has-mir-
21–5p promoted the migration, and proliferation of colon neoplasm
cells, and invasion of tissues, by inhibiting CHL1 expression. It was
also shown that the overexpression of has-mir-143 raised
oxaliplatin-induced apoptosis relavent to oxygen generation
(Gomes et al., 2018). This suggests that has-mir-143 may bypass
oxaliplatin resistance in the cells of HCT116 human colon neoplasm
by increasing oxidative stress. In this study, the BGANMDA was
used to determine the potential miRNAs associated with colon
neoplasms and 100, 90, and 92%, were confirmed in the top 10,
20, and 50, respectively, based on the dbDEMC and HMDD v3.2
(see Table 2).

In order to illustrate the capability of the BGANMDA to predict
diseases with unconfirmed miRNAs, the esophageal neoplasm was
selected as a concrete example, based on the HMDD v 3.2 database.
More specifically, the validated disease-related microRNAs of this
tumor were omitted and it was considered a new disease. Hence, the
model only extracted the associatedmiRNAs of other diseases and all
the miRNA-disease similarity information to train its prediction
ability. As a dangerous and high-incidence tumor worldwide, the

etiology of esophageal neoplasms is associated with inflammation,
chronic nitrosamine stimulation, and content of microelements in
edibles (Kollarova et al., 2007). A number of studies have revealed
that hsa-mir-133b may be a potential therapeutic target for
esophageal squamous cell carcinoma. Its overexpression can
inhibit the MAPK/ERK and PI3K/AKT signaling pathways by
regulating epidermal growth factor receptors to suppress the
proliferation and migration, of esophageal squamous carcinoma,
and invasion of tissues cells (Zeng et al., 2019). Thus, detecting
the existing miRNA biomarkers is of great importance to discover
esophageal neoplasm cases. Some studies indicated that hsa-mir-
17–5p is a crucial biomarker to predict the response to neoadjuvant
chemoradiation therapy in esophageal adenocarcinoma (EAC),
which would help improve patient stratification and serve as a
new therapeutic target to boost the efficacy of this therapy in
EAC (Lynam-Lennon et al., 2017). After the implementation of
BGANMDA resulted in values of 100, 95 and 92% in the top 10, 20,
and 50 potential miRNAs related to esophageal neoplasm based on
the dbDEMC and HMDD v3.2 databases (Supplementary
Table S3).

To evaluate the stability of themodel performance using various
data sources, all the known kidney neoplasm-related miRNA
associations and similarity information (obtained from the
HMDD v 2.0 database) database and unverified pairwise
miRNA-disease associations were used to train its prediction
ability. Then, the prediction scores obtained from the model
were verified using the HMDD v 3.2 and dbMDEMC databases,
and the literature. Kidney neoplasm, also known as renal cancer, is
recognized as one of the top 10 frequent diseases, with over

TABLE 3 | Based on the validated associations provided by dbDEMC and HMDD v3.2, the top 50 miRNAs related to kidney neoplasm were predicted by employing
BGANMDA model, and 48 predictions were confirmed based on dbDEMC and miR2Disease. The first column records the top 1–25 predicted potentially relevant
miRNAs and the third column records the 26–50 predicted potentially related miRNAs.

miRNA Evidence miRNA Evidence

hsa-mir-21 dbDEMC; HMDD v3.2 hsa-mir-21–5p dbDEMC; HMDD v3.2
hsa-mir-429 dbDEMC hsa-mir-548d-3p Unconfirmed
hsa-mir-299–5p dbDEMC hsa-mir-30c-2-3p dbDEMC; HMDD v3.2
hsa-mir-200c dbDEMC hsa-mir-30a-5p dbDEMC; HMDDv3.2
hsa-mir-204 dbDEMC; HMDD v3.2 hsa-mir-513c-5p dbDEMC
hsa-mir-1293 HMDD v3.2 hsa-mir-584–3p dbDEMC; HMDD v3.2
hsa-mir-184 dbDEMC; HMDD v3.2 hsa-mir-20b HMDD v3.2
hsa-mir-193a-3p dbDEMC; HMDD v3.2 hsa-mir-18a HMDD v3.2
hsa-mir-210 unconfirmed hsa-mir-144–5p HMDD v3.2
hsa-mir-211–5p dbDEMC; HMDD v3.2 hsa-mir-244–5p HMDD v3.2
hsa-mir-199a-5p dbDEMC hsa-mir-106b dbDEMC; HMDD v3.2
hsa-mir-532–5p dbDEMC; HMDD v3.2 hsa-mir-133b dbDEMC; HMDD v3.2
hsa-mir-433–3p dbDEMC; HMDD v3.2 hsa-mir-483–5p dbDEMC
hsa-mir-206 HMDD v3.2 hsa-mir-580–5p dbDEMC; HMDD v3.2
hsa-mir-489–5p HMDD v3.2 hsa-mir-484 dbDEMC
hsa-mir-660–5p dbDEMC hsa-mir-363 dbDEMC
hsa-mir-3654 dbDEMC; HMDD v3.2 hsa-mir-93 dbDEMC; HMDD v3.2
hsa-mir-196a-3p unconfirmed hsa-mir-342–3p dbDEMC; HMDD v3.2
hsa-mir-320b dbDEMC; HMDD v3.2 hsa-mir-215 dbDEMC; HMDD v3.2
hsa-mir-199b-5p dbDEMC; HMDD v3.2 hsa-mir-194 dbDEMC
hsa-mir-301b-3p dbDEMC hsa-mir-6843–3p HMDD v3.2
hsa-mir-199b-3p dbDEMC hsa-mir-496 HMDD v3.2
hsa-mir-17–3p dbDEMC; HMDD v3.2 hsa-mir-30e-3p HMDD v3.2
hsa-mir-199a-3p HMDD v3.2 hsa-mir-415a dbDEMC; HMDD v3.2
hsa-mir-676–5p dbDEMC; HMDD v3.2 hsa-mir-185 dbDEMC; HMDD v3.2
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250,000 unheard cases verified each year. Therefore, finding the
association between kidney neoplasm progression and the
dysregulation of certain miRNAs can accelerate the prevention,
diagnosis, and treatment of renal cancer, and reduce their costs
(Shephard et al., 2013). Has-mir-429, the second-highest
probability associated with kidney neoplasm predicted by the
model, has been reported to be downregulated in contrast-
induced acute kidney injury (CI-AKI). In this model, the
overexpression of mir-429 reduced apoptosis and increased cell
viability by targeting PDCD4 to inhibit theNF-B signaling pathway
(Niu et al., 2021). According to previous research, hsa-mir-210 can
directly target HIF-1 α and inhibit the HIF-1 α pathway by
participating in the molecular response of hypoxic kidney injury
in vitro, thus protecting renal tumor cells from hypoxia-induced
apoptosis (Liu et al., 2017). In addition, hsa-mir-206 also
suppresses kidney neoplasm carcinoma proliferation and
epithelial-mesenchymal transformation by inhibiting
CDK6 expression (Guo et al., 2020b). After training the stable
capability of the BGANMDA, the results showed that the accuracy
in the determination of potential miRNAs correlated with kidney
neoplasm was 90, 95, and 96% in the top 10, 20, and 50,
respectively, based on the dbDEMC and HMDD v3.2 databases,
as shown in Table 3.

4 DISCUSSION AND CONCLUSION

Predicting the underlying associations of miRNA-disease pairs
contributes to the understanding of disease mechanisms at the
miRNA level, ultimately resulting in better prevention, diagnosis,
and treatment. In the present study the model known as
BGANMDA, based on auto-encoder and traditional generative
adversarial networks, was proposed to determine the probability
score of unknown miRNA-disease pairs by constructing the
miRNAs (diseases) similarity network and GIP kernel
similarity of miRNAs (diseases). The BGANMDA showed a
superior performance compared to other advanced methods in
three types of cross validation, which also reflected its stable
capability. Furthermore, case studies of various diseases also
confirmed that the model’s predictions are reliable and accurate.

The model’s successful performance of can be illustrated by the
following factors. First, the similarity network was constructed from
miRNAs (diseases) as traits to train the model. Second, the
BGANMDA retained the advantages of both the auto-encoder
and GAN, which can automatically recognize the comprehensive
similarity characteristics of miRNAs and diseases, eliminate noise,
and reduce dimensions. In addition, the model had an excellent
performance in terms of learning the annotated biological patterns.
Third, and most importantly, it achieved a bidirectional GAN
structure, which means that the model’s encoder mapped the
data points x into latent space and the generator’s sampling noise
from the latent space to generate new miRNA-disease associations.
Ultimately, the encoder and generator of BGANMDA can invert
each other based on the joint probability distribution.

However, the model has some limitations. First, the parameter
values proposed were set as default, so it was not possible to
further consider whether the performance would be impacted.

Parameter settings play an important role in assisting the model
to learn privileged information from the eigenvectors,
particularly for complex associated features. Second, the
model’s strongly relied on similarity features, which were
computed based on handcrafted measurements. Third, the
information in each network layer could not be shared and
propagated well, because the component of the auto-encoder
was used for compressing the features into low dimensions and
learning the latent representation.
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