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Nuclear imaging plays a unique role within diagnostic imaging since it focuses
on cellular and molecular processes. Using different radiotracers and detection
techniques such as the single photon emission scintigraphy or the positron emission
tomography, specific parameters can be assessed: myocardial perfusion and viability,
pulmonary perfusion, ventricular function, flow and shunt quantification, and detection
of inflammatory processes. In pediatric and congenital cardiology, nuclear imaging
can add complementary information compared to other imaging modalities such as
echocardiography or magnetic resonance imaging. In this state-of-the-art paper, we
appraise the different techniques in pediatric nuclear imaging, evaluate their advantages
and disadvantages, and discuss the current clinical applications.

Keywords: pediatric cardiology, nuclear imaging, radiopharmaceutical, scintigraphy, positron emission
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INTRODUCTION

Pediatric cardiology includes heterogeneous congenital and acquired heart diseases.
Echocardiography is the key non-invasive diagnostic imaging tool that is usually sufficient
to manage most children with heart disease (1, 2). However, cross-sectional imaging modalities
such as magnetic resonance imaging (MRI) and computed tomography (CT) are increasingly
used in pediatric cardiology, and can provide additional anatomical, structural, and functional
information (3–5). In adult cardiology, nuclear imaging techniques are used for evaluating
myocardial perfusion and viability, pulmonary perfusion, ventricular function, and detection of
inflammatory processes. The role of nuclear imaging is more controversial and less well established
in pediatric cardiology. The evolution of scanning technologies and the development of low
radiation dose protocols dedicated to children open new perspectives on the use of nuclear imaging
in pediatric heart disease. This state-of-the-art paper aims to highlight the principles and the
current roles of nuclear imaging in pediatric cardiology and discuss its current limitations.

TECHNICAL CONSIDERATIONS

Functional and Molecular Imaging: Basic Principles
The aim of nuclear imaging is to visualize, characterize and quantify biological processes by
non-invasive methods. The imaging contrast is provided by radiopharmaceuticals that behave
as biological probes. The pharmaceutical is combined with a radionuclide, used for detection,
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and their biological properties determine the diagnostic
significance of the radioactive signal (6). The main advantage of
this technique relies in the ability to quantify, map, and monitor
a specific biological activity in situ, with high sensitivity and
specificity (7). It can represent a specific metabolic activity,
receptor density or blood flow (8). Due to the inherent
characteristics of the radionuclide signal and its detection mode,
the spatial resolution of nuclear imaging is lower than that of
other clinical imaging techniques (2.5 –5 mm for PET, 5–10 mm
for SPECT versus 0.5–1 mm for MRI or CT) (9).

Scintigraphy, Single-Photon Emission
Computed Tomography, Positron
Emission Tomography, and Hybrid
Systems: From Physics to Practice
There are three main types of nuclear imaging techniques
that differ in their detection method: (a) two-dimensional
(2D) gamma scintigraphy, (b) single-photon emission computed
tomography (SPECT) and (c) positron emission tomography
(PET). Scintigraphy and SPECT is to detect gamma radiation
from photon emitting radiotracers, using gamma ray detectors.
While planar scintigraphy is a 2D detection method, providing a
projection image like a classic X-ray, SPECT allows acquisitions
in the three dimensions (3D). Multiple 2D images from
several angles around the patient are acquired and computed
tomographic reconstruction algorithm is used to generate a
3D data set (6). In the same way as SPECT, PET reconstructs
volumetric acquisitions from of a set of 2D images, but the
detection method and the radionuclides used are different.
PET is based on indirect detection of positrons since the
PET camera detects the annihilation photons created by the
positron-electron interaction in the biological environment.
Currently, most PET cameras integrate an X-ray computed
tomography (CT) scanner (10). Tomographic reconstruction
must implement corrective measures to avoid artifacts generated
by interactions between photons and matter (11). In case of
hybrid PET/CT and SPECT/CT cameras, this process is based on
CT transmission scanning, which provide a map of attenuation
coefficients (12). Hybrid systems provide, in a single imaging
study, comprehensive cardiac assessment consisting of accurate
anatomic mapping and artifact-free molecular information (10).
However, PET and CT images are not acquired simultaneously,
and potential misalignment, due to respiratory motion for
example, need to be considered during the PET/CT fusion images
reviewing.

Radiopharmaceuticals: Concept of
Molecular Targeting
Radiopharmaceuticals consists of three components: a vector
molecule, a radionuclide, and a linker in between. They are
administered at a nano-molar concentration and accumulate
in the targeted tissue based on the specific molecular vector-
target interaction. The radiotracer is most often administrated
intravenously but inhalation [e.g., ventilation scintigraphy
with inhaled radioactive gas (13)] or ingestion [e.g., orally

administered fluorine-18 fluorodeoxyglucose (18F-FDG) (14)]
are also used. The radioactive label is used diagnostically as
an emitter of electromagnetic radiation. The vector molecule
can consist of a small molecule, a peptide, a protein including
antibodies or a nanoparticle (15). Vectors and radionuclide have
different properties and therefore lead to different applications
(Table 1). The choice of a radiopharmaceutical is impacted by
its biological and nuclear characteristics, its availability, and
its cost which depend on the way it is manufactured (16).
Their production typically requires a nuclear reactor or medical
cyclotron. The nuclear reactors allow a large-scale production
of most of radioisotopes at lower cost by bombarding a target
with neutrons that cause fission reactions. The cyclotrons are
circular particle accelerators which are usually installed in large
hospitals and produce, in a more limited and expensive way,
only some radioisotopes as Fluor-18 and Thallium-201 for
an immediate use. Radionuclide generators can also be used
as a more convenient and portable source to provide some
selected radiopharmaceuticals (17–19). The most common is
the technetium-99m generator, a space-saving device stored in
the hospital radiopharmacies and used to extract technetium-
99m from a molybdenum-99 source, for a direct use in nuclear
medicine diagnostic procedures.

CLINICAL APPLICATIONS

Myocardial Perfusion
Principles and Protocols
Nuclear myocardial perfusion imaging (NMPI) provides both
metabolic and functional analysis (Figure 1). The commonly
used radiopharmaceutical agents for NMPI in children, as in
adults, are SPECT radiotracers: thallium-201 chloride (Tl-201)
and technetium-99m-labeled agents (20, 21). After intravenous
injection of the radiotracer, its myocardial uptake is proportional
to the regional myocardial blood flow (MBF) (9). When
coronary perfusion is impaired, the uptake of the radiotracer is
decreased proportionally to the regional flow (Figure 2). When
MBF is preserved at rest, exercise or pharmacological stress
(injection of dipyridamole, dobutamine, adenosine or selective
adenosine receptor agonists such as regadenoson) can unmask
underlying ischemia.

Myocardial perfusion and viability can also be assessed
by PET/CT. Myocardial viability is identified as a mismatch
between fluorine-18 fluorodeoxyglucose (18F-FDG) uptake and
rest perfusion imaging. A viable myocardial segment is defined by
reduced or absent perfusion with preserved glucose metabolism
(22). PET agents, such as Tl-201 SPECT, can provide an absolute
quantification of the MBF and determine the myocardial flow
reserve (23).

Congenital Coronary Abnormalities
Congenital coronary abnormalities are a clinical challenge both
diagnostically and therapeutically with a lot of controversies
regarding the related individual risk and the management.
Anomalous aortic origin of a coronary artery from the opposite
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TABLE 1 | The main radiopharmaceuticals in pediatric cardiology.

Radionuclide
production

Physical
half-life

Biological properties Indications Refs.

Single photon emitters

99mTc-tetrofosmin Generator 6 h Lipophilic cationic agent: passive myocardial uptake
proportional to the regional MBF

MPI; Ventricular function (19)

Tl-201 Cyclotron 73 h K + analog: active myocardial uptake proportional to
the regional MBF

MPI; MBF quantification; Viability (74)

99mTc-MAA Generator 6 h Human albumin aggregates: trapped in capillaries LPS; Right-to-left shunts (19)

123I-MIBG Cyclotron 13 h NE analog: sympathetic innervation marker Autonomic imaging (18)

Positron emitters

18F-FDG Cyclotron 110 min Glucose analog: marker of high cellular/tissular glucose
uptake

Infection; Malignancy; Viability (15)

Rubidium-82 Generator 75 s K + analog: active myocardial uptake proportional to
the regional MBF

MPI; MBF quantification; Viability (15, 19)

FDG, fluorodeoxyglucose; LPS, lung perfusion scintigraphy; MAA, macroaggregated albumin; MBF, myocardial blood flow; MIBG, meta-iodobenzylguanidine; MPI,
myocardial perfusion imaging; NE, norepinephrine.

FIGURE 1 | Overview of nuclear imaging in pediatric cardiology. CT, computed tomography; PET, positron emission tomography; SPECT, single-photon emission
computed tomography.

sinus of Valsalva (AAOCA), associated with intramural or
interarterial course, is increasingly diagnosed incidentally in
children, but the related clinical risks are not well defined (24).
A key component in the assessment of these patients include
evaluation of regional myocardial perfusion at rest and during
physical or pharmacological stress. The current guidelines from
the American Heart Association/American College of Cardiology
are based on anatomic findings, the presence of symptoms and
the results of the stress testing to guide exercise limitations (25).
However, the recent guidelines from the American Society of

Echocardiography also emphasize the as yet unclear role of NMPI
in management of asymptomatic patients with AAOCA (26).
The non-irradiating alternative technique to assess for inducible
myocardial hypoperfusion, wall motion and myocardial viability,
is the dobutamine stress-cardiac MRI. It can be performed
safely in pediatric patients with AAOCA and has shown
promising results in risk stratification and decision-making in
this challenging patients (27).

The use of NMPI has been favorably reported in other
rare congenital coronary disease such as left coronary artery
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FIGURE 2 | Stress and rest myocardial perfusion SPECT. (A) Normal stress and rest myocardial perfusion SPECT. (B) Stress-induced antero-septal and
antero-apical ischemia in the setting of left anterior descending artery critical stenosis. (C) Fixed inferior perfusion defect on both rest and stress acquisitions: this
pattern can be related to scarring form infarction or hibernating myocardium.

originating from the pulmonary artery (ALCAPA) (28, 29),
myocardial bridging (30), Williams syndrome with coronary
involvement (31) or complex CHD such as pulmonary atresia-
intact ventricular septum with right ventricular coronary
sinusoids (32). In ALCAPA, identification of hibernating
myocardium is useful to evaluate the chances of recovery after
surgical repair. It can be demonstrated by nuclear imaging as a
mismatch between reduced rest perfusion and enhanced glucose
uptake on PET imaging (33).

Transposition of Great Arteries Corrected by Arterial
Switch Operation
Both early and late mortality after arterial switch operation (ASO)
for transposition of great arteries (TGA) is predominantly related
to coronary artery complications (34–36). Exercise testing with
ECG alone has been shown to be insufficient in identifying
ischemia after ASO (37, 38). Perfusion defects diagnosed by
NMPI are present in 5–24% of patients during follow-up
and persist more than 10 years after ASO (39–41). Analyzing
110 children with TGA after ASO, Sugiyama et al. directly
compared angiographic and NMPI findings and concluded that
SPECT is accurate to differentiate spontaneously resolutive from
progressive stenoses in this population (42). In addition, the
authors propose that the indication for coronary reintervention
should not depend on angiographic findings alone, but also
on evidence for myocardial ischemia. In that study, significant
angiographic lesions were not always related to an evolving
stenotic process, as some resolved over time. For the angiographic
lesions that normalized over time, the initial SPECT was normal
while it was always abnormal for the progressive lesions. Similar
studies show the usefulness of NMPI (SPECT or PET) in
TGA/ASO adolescents with an impact on decision-making (39,
43, 44). However, the performance of a perfusion test seems
relevant only in symptomatic patients or in those with a
postoperative history of myocardial ischemia and should be
combined with anatomic imaging (MRI, CT or angiography)
(40, 41, 45).

Kawasaki Disease
Kawasaki disease (KD) is an acute pediatric vasculitis of unknown
etiology that results in coronary artery aneurysms in up to 25% of
untreated cases (46) and 5% of appropriately treated cases (47).

Coronary stenoses may also develop during the healing phase or
late after the acute episode (48). The utility and safety of NMPI
as a non-invasive monitoring modality for coronary stenosis
progression in KD has been demonstrated (49, 50). The most
recent North American and Japanese KD guidelines discuss the
use of NMPI in the long-term follow-up. They recommend that
inducible myocardial ischemia testing (stress testing) is indicated
every 1–5 years in patients who have or had coronary aneurysms
(including small and/or resolved aneurysms) or in patients with
symptoms or ventricular dysfunction (Class IIa; Level of Evidence
B) (46, 51). However, these guidelines do not recommend when
to perform stress echocardiography versus stress MRI or stress
nuclear imaging.

In children with a history of KD, 99mTc SPECT provides
a sensitivity of 90% and a specificity between 85 and 100%
in detecting stress-induced ischemia related to significant
coronary stenosis (52, 53) and allows to monitor the worsening
or improvement of angiographic stenoses over time (50).
The sensitivity of the 201Tl SPECT for this indication is
equivalent (54).

In KD, regardless of a history of aneurysms, 12–19% of
patients have an abnormal NPMI pattern with permanent
and/or stress-induced perfusion defects during the follow-up
(55–57). Interestingly, in over the 370 patients included in
three different studies (55–57), there was the same proportion
of perfusion defects in patients with and without history of
coronary aneurysms. The authors propose that these findings
may be related to microcirculatory damage occurring during
KD, independent of involvement of the larger coronary arteries.
In adolescents with a history of KD during infancy, N-13
ammonia perfusion PET demonstrated a decrease in coronary
flow reserve after adenosine-induced vasodilatation compared
with controls, implying the presence of long-term coronary
endothelial dysfunction (58). These data show the ability of
NMPI techniques to study the coronary physiology at the
microvascular level and the importance of the long-term follow-
up and cardiovascular secondary prevention in all patients with
a history of KD.

Cardiomyopathies
In hypertrophic cardiomyopathy (HCM), myocardial ischemia
has been suggested to contribute to the pathophysiology of the
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disease, and appears to be related to decreased subendocardial
perfusion in the hypertrophied segments, compression of
intramural small vessels and myocardial bridging (59).
Microvascular ischemia is thought to be involved in the
development of adverse ventricular remodeling, and diastolic
and systolic dysfunction, impacting clinical outcomes in adults
and children (60–64). NMPI can contribute as a reliable non-
invasive methods for the detection of myocardial ischemia,
adding to risk stratification and treatment (59, 62). However, the
current guidelines suggests that stress echocardiography should
be preferred in these patients since it also allows to diagnose LV
outflow tract obstruction which is a common concern in this
population (65).

In pediatric dilated cardiomyopathies, NMPI can rarely be
useful to non-invasively rule out underlying ischemic process,
which is an uncommon etiology in children. For pediatric
diseases affecting coronary microvascular perfusion such as sickle
cell anemia with LV dilatation and/or dysfunction, it can help
to differentiate between the possible mechanisms causing left
ventricular damage (66). In these patients, microcirculatory
abnormalities can be a rare cause of atrioventricular block, which
can be demonstrated by NMPI despite normal angiography (67).

Heart Transplantation
One of the long-term complications of heart transplantation
(HT) is the development of cardiac allograft vasculopathy
(CAV). In children, CAV is a major cause of death and
retransplantation (68, 69). The disease involves both distal
and proximal coronary arteries and is associated with
functional anomalies such as systolic dysfunction and
increased filling pressures (69). Coronary arteriography is
the recommended technique for follow up in adult and pediatric
HT recipients. However, CAV diagnosis is challenging, even with
angiography, due to the involvement of the distal vasculature
and microvascular changes (70). Indeed, Maiers et al. showed
that the most accurate strategy to diagnose CAV was through
a multimodality approach combining echocardiography,
myocardial perfusion assessment including stress SPECT and
coronary angiography (71).

Lung Perfusion
Lung perfusion scintigraphy (LPS) performed with 99mTc
labeled macroaggregated albumin (MAA) is the most widely
used nuclear imaging technique to quantify lung perfusion
and relative flow distribution (72, 73). The labeled particles
are distributed according to the pulmonary flow into both
lungs and the results are expressed as a percentage of total
pulmonary flow for each lung (13). LPS is still considered as
the clinical reference technique for the evaluation of pulmonary
blood flow distribution (74–76) and has been used in children
with CHD for over 50 years, at any age (77). Quantitative
LPS is based on multiple planar acquisitions (at least anterior
and posterior projections) with no specific preparation and
no need for sedation, even in infants (75). Instead of planar
acquisitions, SPECT can be used to obtain 3D imaging of the
pulmonary perfusion and is recommended by some investigators
who highlight the better image contrast (higher sensitivity) for

equivalent safety (78, 79). SPECT however can require sedation
in younger children to ensure immobility of about 15 min versus
2 min needed for planar LPS (74).

The main indication for LPS is the assessment of
hemodynamic impact of pulmonary vascular abnormalities
including pulmonary artery or vein stenosis, pulmonary
emboli (Figure 3), arterio-venous fistula, and aorto-pulmonary
collaterals (13, 80–82). In pulmonary arteries stenosis, LPS
provides key information about the hemodynamic impact of the
stenosis. The North American guidelines for pediatric cardiac
catherization defined as significant stenosis when there is relative
flow discrepancy between the 2 lungs of 35%/65% or worse
(83). LPS also is one of the imaging techniques that can be used
for etiological assessment of pulmonary arterial hypertension
(PAH) in children (84, 85). In pulmonary vein stenosis, the
LPS sensitivity is 72% and specificity is 83% for all veins when
compared with the angiographic findings (86). When compared
to phase contrast MRI, LPS has advantages and limitations with
similar diagnostic accuracy when performed by trained teams
(87). The major benefit of LPS is the simple and fast execution
without the need for sedation at any age. Interpretation errors,
often related to confounding factors impacting pulmonary
flow, can be avoided by careful choice of the injection site (i.e.,
preferential caval flow to one lung in Fontan circulation) and
by knowing the surgical history (74, 88). A rare but potential
remaining pitfall is the symmetrical bilateral pulmonary artery
stenosis which can result in symmetrical relative perfusion to
both lungs (75). Lastly, the major intrinsic limitation of LPS is
the ionizing radiation. The current doses are low [0.5–2 MBq/kg
(13)] but MRI can be preferred to avoid this radiation exposure
in children (87, 89).

Inflammation and Infection
Endocarditis
18F-FDG PET/CT
Nuclear imaging and more specifically 18F-fluorodeoxyglucose
(18F-FDG) PET allows visualization of inflammatory processes
through the mapping of cellular glucose uptake. The 18F-FDG is
a glucose analog in which the carbon-2 hydroxyl is replaced by
fluorine-18, a radioisotope that decays to oxygen-18 by positron
emission. The heart metabolizes both carbohydrates and free fatty
acids and absorbs a large amount of 18F-FDG. A preparatory
low carbohydrate diet and a fasting period are required to
suppress the physiologic myocardial 18F-FDG uptake, making
free fatty acids the predominant cardiac energy source and
improving the contrast effect (90). 18F-FDG PET/CT is used
in children to interrogate various malignancies, based on the
high glycolytic activity in malignant cells (91). Inflammatory
imaging also has relevant applications in pediatric cardiology,
particularly to diagnose infective endocarditis (IE), vasculitis
and heart tumors.

Overall IE incidence in CHD patients is 1.33 per 1,000
person-years with a high proportion of right-sided IE (92, 93).
Prosthetic valves derived from bovine jugular veins are one of the
most risky substrates for IE (94). Pacing device and ventricular
assist device infections are also commonly represented in this
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FIGURE 3 | Lung perfusion planar scintigraphy. (A) Normal lung perfusion scintigraphy. (B) Pulmonary perfusion defect in the right upper lobe in patient with
pulmonary embolism.

population (95). The latest European and North American
guidelines emphasize the role of the 18F-FDG PET/CT in
prosthetic valve endocarditis (PVE) diagnosis (96, 97). However,
it is not recommended in the work-up of native valve endocarditis
due to poor sensitivity in this setting (98). Although these
recommendations were based on studies including left heart
valve prostheses, recent works has validated the performance
of PET/CT for right heart prostheses and conduits, implanted
pacing devices and VADs in children and adults (99–104). As
for all nuclear imaging techniques, there is no age limit to

perform a cardiac 18F-FDG PET/CT for suspected PVE, with
the youngest patient described in the literature being 1 year old
(105). So far, no study has evaluated 18F-FDG PET/CT imaging
for diagnosis of PVE in a specific pediatric population but there
is no reason to believe that the performance would differ in
the pediatric subgroup, when the appropriate protocols can be
applied (99).

The addition of the PET/CT to the Duke criteria substantially
increases the diagnostic yield of this score (sensitivity from
70 to 97%) (96) with a special interest in conditions where
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the sensitivity of echocardiography is typically low, such
as infections of pulmonary outflow prostheses, VAD or
intracardiac leads, where the presence of vegetations is
relatively uncommon or difficult to image (95, 99, 106).
In addition, PET/CT can diagnose septic embolization
with higher sensitivity than CT and can also help to
identify culprit lesion (99, 107). The main limitations of
cardiac PET/CT in children are its availability, the need
for preparatory fasting and the radiation dose [up to
25 mSV for a whole-body PET/CT in children (108)].
However, radiation dose has decreased considerably in
recent years with recent PET/CT technologies, such as digital
PET/CT, allowing to decrease the injected activity of the
radiopharmaceutical (109).

Radiolabeled Leukocytes Scintigraphy
Amongst the nuclear imaging techniques used in diagnosis of
infectious diseases, radiolabeled leukocyte scintigraphy (RLS)
is technically more demanding but also more specific for
bacterial infection than 18-F FDG PET/CT (110, 111). Although
not widely used in clinical practice, its performance in the
diagnosis of infections of unknown origin in children has
been recognized, also in neonates (112, 113). This technique,
however, is based on a complex procedure including manual
cellular marking of the patients’ leukocytes, either using 111In-
oxine or 99mTc hexamethylpropyleneamine oxime (HMPAO),
and repeated acquisitions over 2 days with a long imaging
duration (114, 115). Leukocyte turnover is slower in infectious
processes, which distinguishes it from inflammation. Typically,
the diagnosis of infection is made when there is a stable or
enhancing focus of leukocyte accumulation between the early (4–
6-h) and delayed (18–24-h) images (114). RLS has been included
in the most recent modified Duke criteria as a major criterion for
the PVE diagnosis (96).

Cardiac Malignancy
Although nuclear imaging is widely used in pediatric oncology,
its use in the field of pediatric cardiac tumors is still very
limited. Pediatric cardiac tumors are benign in 90% of cases
and the diagnosis is largely based on echocardiography and/or
MRI (116, 117). In case of atypical presentation and concern
for malignancy, 18F-FDG PET/CT could potentially help to
differentiate between benign and malignant processes. It can
also identify the primary lesion in metastatic disease and is
of use in staging the hematological malignancies. It can help
to select biopsy location or even guide radiotherapy (118).
Data on the use of 18F-FDG PET/CT in pediatric cardiac
tumors are, however, missing. A few cases of identification
of myocardial metastases based on whole body 18F-FDG
PET/CT have been reported (119, 120) but no study has
specifically investigated the role of nuclear imaging in diagnosis
of pediatric cardiac tumors.

Assessing Ventricular Systolic Function
Multigated acquisition (MUGA) of the cardiac blood pool,
also called equilibrium radionuclide ventriculography, is the
traditional nuclear imaging modality to assess ventricular systolic

function to quantify ventricular ejection fraction. This method
requires the labeling of the patient’s red blood cells with a
radionuclide (usually 99mTc), which can be done in vivo or
in vitro. The cardiac chambers are then visualized based on
the radioactive emission and the LV volume is measured over
the cardiac cycle to assess the ejection fraction. This technique
was first validated in adults in the early 1970s (121) but also
performed in children with CHD for decades (122–124). Systolic
function can also be assessed by contouring the myocardial
wall and not the chamber as in ventriculography. This second
technique is used to evaluate LV ejection fraction during NMPI
examinations, using the same radiopharmaceutical injection
(45, 66).

Finally, even though radionuclide ventriculography is
available and reliable in children, there is no relevant indication
given the existence of non-irradiating techniques such as
echocardiography and MRI which also allow a more precise
study of the cardiac function.

Shunts Quantification
Left-to-Right Shunts
The aortic (Qs) to pulmonary (Qp) flow ratio (Qp/Qs) is a
key parameter in the management of patients with intracardiac
shunts in pediatric cardiology. Nuclear imaging can be useful
to directly measure shunt flow and provide a non-invasive
Qp/Qs assessment. The technique involves the rapid injection
of a compact bolus of radionuclide (usually 99mTc agents)
while monitoring the transit through the heart and lungs with
the gamma camera. Planar acquisitions are performed with
a high sampling rate and dedicated collimator to magnify
the images. For quantification, the time-radioactivity curves
are generated from regions of interest: superior vena cava to
assess the quality of the bolus and periphery of the right,
left or both lungs (pulmonary curve) for shunt detection and
quantification (125). The normal pulmonary curve has a first
large peak related to the first pass of the bolus to the lungs
and a second smaller peak which represents the physiological
recirculation. In left-to-right shunts, the second peak is much
earlier, creating a shoulder in the downslope of the first peak
because of abnormal early recirculation through the shunt
(126). The quantification of the Qp/Qs is computer-assisted,
based on the curve fitting method and a gamma variate
extrapolation (125).

While it remains a simple and reliable way to non-
invasively quantify the Qp/Qs, its use has become obsolete
in current clinical practice as non-radiation based techniques
have largely replaced nuclear methods for shunt assessment
(127, 128).

Right-to-Left Shunts
Using the same principle as described above, right-to-left
shunts can be detected by first-pass method, which reveals a
premature appearance of radioactivity in the left chambers.
The time-radioactivity curves are generated from regions of
interest over the carotid artery to quantify the shunt impact
(125). The most widely used radiopharmaceutical is 99mTc-
labeled macroaggregated albumin particles, such as those used
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for the assessment of pulmonary perfusion. These particles are
physiologically trapped in the lungs but in case of right-to-left
shunt, they are distributed over the systemic flow and retained in
the systemic capillary networks relative to the Qp/Qs ratio. The
magnitude of the shunt is obtained by comparing lung with brain
counts or with total extrapulmonary activity on a whole-body
image (73). While reliably technique, it has been largely replaced
by other imaging tools.

Autonomic Imaging
Postoperative alteration of the cardiac autonomic innervation
is frequently described after cardiac surgery and is likely due
to direct damage of the cardiac nervous system. This can
also be caused by prolonged aortic cross-clamp and coronary
manipulations leading to autonomic fiber ischemia (129, 130).
Heart transplantation results in complete cardiac denervation
with clinical manifestations including higher heart rate, increased
blood pressure and systemic vascular resistance with impaired
orthostatic responses (131). Nuclear imaging allows investigation
of the abnormal cardiac autonomic innervation by using
radiotracers analogs of norepinephrine. Different studies have
been conducted to investigate the correlation between abnormal
cardiac norepinephrine uptake and clinical events, both in
adults (132) and children (133). Interestingly, in ischemic
cardiomyopathies, autonomic imaging may better predict life-
threatening ventricular arrythmias than parameters as LVEF
(132). Some teams have also shown that the heterogeneity
of meta-iodobenzylguanidine (MIBG) uptake was correlated
with risk of arrhythmia in patients with tetralogy of Fallot
(134) or in congenital long QT syndrome (135). In another
hand, Possner et al. have shown that the incomplete cardiac
reinnervation late after the arterial switch operation for
TGA can at least partially explain the reduced myocardial
perfusion response to sympathetic pharmacological stimulation
in these patients (130). However, the prognosis and the
clinical impact of the pathological patterns of norepinephrine
cardiac uptake remain incompletely understood and autonomic
nuclear imaging is not routinely performed in cardiology and
pediatric cardiology.

Cardiac autonomic imaging has also been used in vasovagal
syncope work-up as exaggerated MIBG LV uptake is considered
as a good marker of sympathetic hyperactivity in children with
suspected neurocardiogenic syncope (136). Although it is rarely
used in practice to manage these patients, these data support

the benefit of cardioselective β-blocking agents in the therapy of
recurrent syncope in children.

LIMITATIONS

Each nuclear imaging technique has its advantages and
limitations, in technique or application, as detailed in previous
sections. The main common limitation is the risk related to
ionizing radiation and its long-term impact. The underlying
neoplastic risk appears particularly important in children due
to the increased radiosensitivity of this population with higher
mitotic activity and longer potential for exposure over the life
span (137). This risk is higher in children with chronic diseases,
such as congenital heart disease (CHD), who undergo long
hospital stays with multiple diagnostic or therapeutic irradiating
procedures (138).

To quantify and compare the doses of ionizing radiation
induced by nuclear imaging, it is necessary to express them
in equivalent dose. This parameter, expressed in mSv, depends
on the nature of the radiation and the absorbed dose (the
energy received per unit of mass). Finally, the effective dose
is the equivalent dose corrected by a tissue weighting factor
to consider the specific sensitivities of the different irradiated
organs. This effective dose is calculated for the whole body
and used to assess the biological risk related to the radiation
exposure. Effective doses therefore vary widely depending on the
nuclear imaging techniques, the radiopharmaceutical used and
the patient’s characteristics.

There are continuing efforts to determine, standardize, and
reduce ionizing radiation exposure and dosage in pediatric
nuclear imaging protocols (139–142). For most pediatric studies,
radiopharmaceutical optimal doses are based on an adult
references activity according to the patient’s weight and/or the
body surface area (BSA) and pediatric-specific guidelines are
available (141–143).

Over the last decade, significant decreases in radiation
exposure has been made possible by the technological advances
in camera sensitivity and image processing (144, 145) and
more accurate risk-benefit assessment through computational
absorbed-dose models (146). The development of hybrid imaging
combining nuclear imaging and MRI is another important step
in reducing the CT component of the total radiation dose
(147–150).

TABLE 2 | Characteristics of most relevant nuclear imaging applications in pediatric cardiology.

Myocardial perfusion Myocardial viability Lung perfusion Inflammation imaging

Main indication Congenital or acquired coronary abnormalities Pulmonary arteries stenosis Material-related endocarditis

Technique SPECT PET SPECT PET Planar scintigraphy PET

Radioisotopes Tc-99m agents Tl-201 Rb-82 N13-NH3 Tl-201 18F-FDG Rb-82 99mTc-MAA 18F-FDG

Alternative imaging First-pass perfusion MRI LGE MRI 4D flow MRI ∅

Radiation dose +++ ++ +++ ++ + ++++

18F-FDG, 18F-fluorodeoxyglucose; MAA, macroaggregated albumin; MRI, magnetic resonance imaging; N13-NH3, ammonia-N13; LGE, late gadolinium enhancement;
PET, positron emission tomography; Rb-82, rubidium-82; SPECT, single-photon emission computed tomography; Tl-201, thallium-201; Tc-99m, technetium-99m.
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An additional limitation of nuclear imaging in pediatrics is its
accessibility. Depending on the radiotracers used, the availability
of a cyclotron in the hospital or the hospital’s proximity to a
nuclear reactor can be essential and makes certain techniques
available in only a few centers.

CONCLUSION

Following technical improvements in ultrasound and the
emergence of additional imaging techniques such as 4D
flow MRI or stress MRI, nuclear imaging is now a second-
or third-line modality for many indications in pediatric
cardiology. According to the literature review, the main current
indications for nuclear imaging in children are (Table 2):
1/myocardial perfusion and viability imaging in the setting
of congenital or acquired coronary abnormalities, 2/lung
perfusion imaging to quantify the impact of pulmonary
arteries stenosis and indicate intervention, 3/inflammation
imaging in the setting of prosthetic valve or device-related
endocarditis when the diagnosis is uncertain by other
techniques. As nuclear imaging can provide unique information
on cellular metabolism, molecular processes, and/or blood
flow distribution, it should be part of the armamentarium

of available imaging modalities for clinical assessment in
pediatric cardiology.
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