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What Are the Advantages of This System
Compared to Other Infection Models?

In many ways, the zebrafish represents a hybrid between

mouse and invertebrate infection models. Powerful forward-

genetic tools that have made invertebrates justifiably famous are

not only relatively accessible in the zebrafish, but have been

exploited to yield new insights into human infectious diseases,

including leprosy and tuberculosis [1]. Transgenic technologies

have enabled detailed, non-invasive in vivo visualization of

macrophages and neutrophils in pitched battle with bacteria and

fungi [2,3]. Reverse genetics with morpholinos, vivo-morpholi-

nos, and zinc-finger nucleases (but unfortunately not homologous

recombination, which for the moment remains out of reach in

this organism) enable examination of the roles of specific genes

during infection. Flexible genetic systems such as Gal4-UAS and

Cre-Lox permit tissue-specific transformation and ablation ([3];

Figure 1).

These technologies can be applied to hundreds of embryos in a

single day. Zebrafish embryos at the one- to four-cell stage are

microinjected with morpholinos to target translation or splicing of

specific transcripts, or to limit microRN (mRNA) activity. This

knockdown can be effective for up to 10 days post-fertilization,

allowing relatively long-term imaging of infection in the

background of specific gene knockdowns. Similarly, early

microinjection with mRNA for the Tol2 transposase along with

DNA constructs bracketed by Tol2 repeats results in remarkably

efficient transgenesis. From injection to the establishment of a

stable transgenic line can be less than eight weeks.

Is the Zebrafish Immune System Similar to the
Human?

The short answer is yes, very similar. We share a similar

developmental program, a comparable set of specialized

immune cells including B and T cells, and a similar suite of

immune signaling molecules. Recent studies on the monocytic

phagocyte system, dendritic cells, and eosinophils show that the

more we study the zebrafish immune system, the more

similarities we find. Although zebrafish have both innate and

adaptive arms of immunity, as in mammals, the adaptive arm

takes longer to develop, and therefore innate immunity is the

sole protector of young fish up to 4 weeks old. Thus, initial

host–pathogen interactions can be studied in isolation in the

zebrafish larva. There are some important differences, partic-

ularly in the adaptive immune response where sites of

maturation differ and there are distinctIg subtypes[4,5].

Nevertheless, zebrafish are naturally infected by many of the

same classes of pathogens that affect mammals. Thus,

fundamentally conserved frameworks of host–pathogen inter-

actions can be studied in a facile model.

How Can the Transparency and Small Size of
Zebrafish Be Exploited?

The most impressive feature of this model is the ability to

perform non-invasive, high-resolution, long-term time-lapse and

time-course experiments to visualize infection dynamics with

fluorescent markers. This sets zebrafish apart from both in vitro

and mammalian in vivo infection models, as summarized in

Table 1. A variety of genetically encoded probes, fluorescent

physiological indicator chemicals, cell type–specific fluorescent

transgenes, photoactivatable proteins, and pathogen-encoded

conditional reporters (for example, indicating oxidative stress or

phagocytosis; Figure 1) has lit up mechanisms of bacterial, fungal,

and viral pathogenesis. A particularly elegant use of the see-

through fish is to photoactivate fluorescent proteins [2], prodrugs

(Cre-ER; [6]), or ‘‘killer’’ proteins(KillerRed; [7]) to spatially

restrict the desired effect. The transparency of wild-type larvae

and casper mutant adults [8] provides a unique portal for

observing and testing the impact of molecular perturbation on true

infection dynamics in the intact host.

The large clutch size and the unusual ability to create gynogenetic

diploids has allowed the first forward genetic screen to identify

vertebrate host determinants of immunity to mycobacterial

infection [1]. Other recent work demonstrates the utility of high-

throughput screening to identify mycobacterial mutants with altered

virulence [9,10], whilst recent advances in automated screening

now enable high-content screening of embryos [11,12]. Embryos

and young larvae are relatively permeable to small molecules, and

the zebrafish embryo is small enough to develop in a well of a 384-

well plate. High-throughput chemical genetic screens are made

easier by direct introduction of chemicals into the water, and can be

applied to identify novel antimicrobial drugs [13].
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Another remarkable opportunity of this small transparent model

comes from its complex anatomy, which enables infection through

multiple routes of infection in an intact host with a complex

immune system. Thus, fish viruses can be inoculated through

immersion or microinjection, mycobacterial infection can be

modeled by localized hindbrain injection or direct injection into

Figure 1. A sampling from the zebrafish toolbox. (A) Selective ablation of macrophages. Transgenic fish with macrophage-specific expression
of Gal4 [2] and Gal4-dependent expression of nitroreductase-mCherry fusion protein were incubated at 3 dpf with 5 mM metronidazole or vehicle for
24 hours. Neither transgenics nor controls exposed to metronidazole had any loss of viability or developmental defects. Ablation efficiency of
macrophages is .90% (R. Gratacap and R. Wheeler,unpublished data). Scale bar = 100 mm. (B) OXYellow Candida albicans reports on oxidative stress
in vivo. Zebrafish larvae were infected in the hindbrain with OXYellow C. albicans (expressing mCherry constitutively and EGFP under the oxidative
stress-induced catalase promoter) and imaged at 24 hours post-infection. Green/red ratio quantifies oxidative stress (K. Brothers and R. Wheeler,
unpublished dat). Scale bar = 10 mm. (C) Cryptococcus neoformans infects zebrafish embryos. Zebrafish were infected with EGFP-expressing C.
neoformans and imaged. Clusters of fungi are seen in the tail (S. Johnston and R. Ma, unpublished data). Scale bar = 100 mm.
doi:10.1371/journal.ppat.1002349.g001

Table 1. Advantages of embryonic zebrafish model for study of innate immune-pathogen interaction.

Limitations of In Vitro Phagocyte Challenge Advantages of Larval Zebrafish Model

Purification of immune cells can perturb function Purification unnecessary

Media does not recapitulate tissue-specific in vivo nutrients In vivo nutrients

No soluble factors (e.g., opsonins, cytokines) from other cell types Normal soluble components

No contact activation or inhibition by other cell types Normal tissue environment

No effect of extracellular matrix interactions Normal extracellular environment

Cannot monitor dissemination of infection Tissue-to-tissue dissemination can be imaged

Limitations of In Vivo Mouse Infection Advantages of Larval Zebrafish Model

Too large to examine infection host-wide at high resolution Possible to image entire live fish

Opaque skin and organs limit fluorescent imaging below ,100 mm Fish larvae are transparent

Elimination of macrophage function pleiotropic Temporary macrophage ablation feasible

Very limited high-resolution, non-invasive imaging of pathogen or immune
morphology

High-resolution, non-invasive imaging facile throughout the host

doi:10.1371/journal.ppat.1002349.t001
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the bloodstream, and pseudomonad interaction can be examined

in the gastrointestinal tract as well as in the hindbrain and through

intravenous injection. This versatility emphasizes the unique

position of this model for understanding infection dynamics.

What Limits Use of the Zebrafish to Model
Infection, and How Can These Limits Be Turned
into Advantages?

The use of any model host necessitates a trade-off in order to ask

new experimental questions. For instance, there are some

important anatomical differences between zebrafish and mammals

(gills instead of lungs, hematopoesis in the anterior kidney instead

of bone marrow, lack of discernable lymph nodes, and a very

different reproductive system) that constrain the range of infections

that can be successfully studied in the zebrafish. In comparison to

traditional model systems for pathogenesis, most notably the

mouse, there is a lack of antibody reagents available. Antibodies

raised against well-conserved mammalian proteins often demon-

strate cross-reactivity with zebrafish orthologs, and there are

concerted efforts in the zebrafish community to increase the

number of antibodies raised specifically against zebrafish proteins.

Nonetheless, this remains a current limitation of the model. The

zebrafish larva grows well at water temperatures between 22uC
and 33uC and lacks adaptive immunity until approximately 1

month post-fertilization. Thus, the zebrafish is well-suited to the

study of cold-adapted or broad host-range pathogens [1], whilst on

the positive side the ability to rear fish at different temperatures

allows manipulation of infection that is not possible with other

vertebrate model hosts [14]. The natural lack of adaptive

immunity early in development limits the possibility of examining

innate-adaptive crosstalk in the transparent embryo. But on the

other hand, this developmental feature has permitted an

unprecedented elucidation of innate immune functions that

regulate immunity to Mycobacterium marinum, a fish pathogen

closely related to the global human pathogen Mycobacterium

tuberculosis. Furthermore, if adaptive immune function is to be

tested, transparent ‘‘casper’’ adult fish can be used to image

fluorescent events non-invasively [8]. As a general rule, zebrafish

are also more tolerant of serious abnormalities than mammalian

models (for instance, animals with essentially no cardiac function

are viable for a few days after hatching), providing a unique

opportunity to study mutants that are not available in rodent

models [15].

What Are Unexpected Findings Pioneered Using
the Zebrafish System and Validated in Mammals?

The unique power of the zebrafish model has led to several

breakthroughs in our understanding of infectious disease. Studies

of M. marinum, in particular, have yielded novel insight into the

role of specific eicosanoids in host defense [1], the role of

macrophages in promoting pathogen dissemination [16], infec-

tion-induced antibiotic tolerance [17], and the role of the ESX

secretion system in granuloma formation [18]. In the case of

mycobacteria, conserved virulence mechanisms and host suscep-

tibility determinants identified during zebrafish infection have

been validated in M. tuberculosis and human susceptibility.

Zebrafish are now being used to model infections as disparate as

Leptospira and Cryptococcus (Figure 1). As new models progress past

the methodology phase, we are starting to gain real-time insight

into host–pathogen interactions as varied as viral-induced

hemorrhaging [14], CFTR-dependent immune responses to

bacteria [19], and NADPH oxidase-mediated control of fungal

filamentation [20]. These, and many more studies than could be

mentioned here, should shed new light on a broad range of host–

pathogen interactions driving human infectious diseases.
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