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Heartbeat Complexity Modulation 
in Bipolar Disorder during Daytime 
and Nighttime
Mimma Nardelli   1, Antonio Lanata   1, Gilles Bertschy2, Enzo Pasquale Scilingo   1 & 
Gaetano Valenza1

This study reports on the complexity modulation of heartbeat dynamics in patients affected by bipolar 
disorder. In particular, a multiscale entropy analysis was applied to the R-R interval series, that were 
derived from electrocardiographic (ECG) signals for a group of nineteen subjects comprised of eight 
patients and eleven healthy control subjects. They were monitored using a textile-based sensorized 
t-shirt during the day and overnight for a total of 47 diurnal and 27 nocturnal recordings. Patients 
showed three different mood states: depression, hypomania and euthymia. Results show a clear loss 
of complexity during depressive and hypomanic states as compared to euthymic and healthy control 
states. In addition, we observed that a more significant complexity modulation among healthy and 
pathological mood states occurs during the night. These findings suggest that bipolar disorder is 
associated with an enhanced sleep-related dysregulation of the Autonomic Nervous System (ANS) 
activity, and that heartbeat complex dynamics may serve as a viable marker of pathological conditions 
in mental health.

Bipolar disorder is recognized as a chronic illness with a lifetime prevalence of 1–3% and is considered one of 
the world’s ten most disabling conditions1,2. This disease is characterized by pathological mood changes, being a 
significant source of disquietude, suffering, and disability, often ending in suicide.

Pathological mood states in bipolar disorder include depression, mania or hypomania, mixed state, and euthy-
mia. More specifically, depressive states are characterized by sadness, anxiety, feelings of guilt, loss of interest in 
activities and suicidal thoughts in some cases. Mania is characterized by a pathologically-elevated mood, with 
extreme happiness and irritability3, whereas hypomania is a less severe form of mania. During a mixed state, 
patients experience both manic and depressive sympthoms at the same time. The euthymic state is characterized 
by a normal affective balance2.

Given the high cost of treatment and repercussions for patients, relatives and caregivers, bipolar disorder is 
perceived as a major social problem4. Despite its prevalence and high cost of treatment5 (also due to the high 
number of mis-diagnosis and additional indirect costs, e.g., those due to work loss6), diagnosis of bipolar disorder 
is still ill-defined. Likewise, for the great majority of mental disorders, diagnosis relies on the clinician’s exper-
tise and background, supported only by scores gathered from psychometric scales and structured interviews2. 
Furthermore, patients with mood disorders might experience a very heterogeneous pattern of symptoms related 
to the phenomenology, severity, number, and duration of the symptomatic episodes, as well as the time interval 
between them.

The diagnosis of bipolar disorder is based on clinical observation of a patient’s behavioral mood episodes, 
according to standardized criteria described in the fifth edition of the Diagnostic and Statistical Manual of Mental 
Disorders (DSM-V)7 and the tenth edition of the International Classification of Diseases (ICD-10)8. These criteria 
differentiate the diagnosis according to the presence, sequence and history of critical mood episodes. According 
to DSM-V classification, the diagnosis of depressive episodes is made if the patient exhibits five out of nine pos-
sible symptoms. In line with this approach, a patient who has had only four symptoms of depressive episodes 
is considered remitted, although partially remitted. Similar cutoffs are applied for the diagnosis of other types 
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of mood episodes and clearly can lead to biased interpretation and inconsistency. Given the complexity of the 
clinical presentation of mood disorders, no laboratory or neuroimaging test is currently available to diagnose the 
disease9. Also due to possible comorbid somatic diseases, such as cardiovascular diseases10–12, obesity13, metabolic 
syndromes, hyperlipidemia, hypertension and diabetes14, so far neither biological markers nor physiological cor-
relates have been found to be specific and sensitive enough for current clinical practice15.

Several research attempts have been recently made to try to overcome this important limitation. They consider 
bipolar disorder as a multi-system disorder, which involve the brain and body16. Previous studies have highlighted 
significant changes associated with mental disorders and Autonomic Nervous System (ANS) activity and, more 
specifically, on Heart Rate Variability (HRV)17–23 when compared with a healthy control group.

It is worthwhile noting that HRV represents the beat-to-beat variation of the RR intervals around their mean17 
and can be considered as the output of a nonlinear system, given the multiple ANS signaling occurring at the 
level of the sinoatrial node for cardiovascular control24. Consequently, the quantification of heartbeat complex 
dynamics has been proven to provide relevant information on psychophysiological and pathological states25 and 
their variation according to external stimuli, aging and the presence of disease25–29. Usually, a high complexity 
in heartbeat dynamics is associated with a healthy cardiovascular system, underlying long-range correlations 
which follow fractal properties, whereas a reduced heartbeat complexity often reflects some anti-homeostatic 
behaviours30–32.

Recent evidence suggests that such a quantification of HRV irregularity should be performed at different 
timescales in order to estimate complexity33–35. A multi-scale approach for the quantification of signal regularity 
was first introduced by Zhang36, and its application to cardiovascular systems by Costa et al.33,35. Traditional 
entropy algorithms, such as Approximate Entropy (ApEn) and Sample Entropy (SampEn), may assign a higher 
value of entropy to time series during certain pathological conditions, for instance atrial fibrillation35, that are 
presumed to represent less complex dynamics30. A possible reason for this may be the fact that these measures are 
based on a single scale and biased by the specific physiological noise underlying the phenomena of interest. To 
this extent, MultiScale Entropy (MSE), a technique derived from SampEn analysis37, produces a value that reflects 
the mean rate of information at each level of resolution. MSE algorithm has been successfully applied in several 
medical applications38–41 including mental disorders28,42.

We have been particularly inspired by a study showing a significant increase of HRV regularity in patients 
with major depression with respect to the healthy controls, as quantified through MSE indices on data gath-
ered from nighttime recordings43. Therefore, in a preliminary study we tested the hypothesis of having such a 
heartbeat complexity modulation also among pathological mood states associated with bipolar disorder28. The 
present study improved on MSE-related methodological issues as well as demonstrated that depressive state in 
bipolar disorder is associated with a higher irregularity level than hypomania, and a lower irregularity level than 
euthymia28.

Here we extend this hypothesis to patients including data gathered from daytime recordings as well as data 
gathered from healthy subjects undergoing daytime and nighttime recordings. This allowed us to study patterns 
of heartbeat complexity in bipolar disorder during the day with respect to night, as well as to investigate whether 
the euthymic state is associated with a lower heartbeat irregularity, rather than a healthy state. Long-term cardio-
vascular monitoring was performed using a comfortable, textile-based wearable system developed in the frame-
work of European project PSYCHE (Personalised monitoring SYstems for Care in mental HEalth), where patients 
and healthy volunteers did not have to follow a specific experimental procedure27,29.

Methodological details related to signal processing and experimental setup as well as experimental results, 
conclusion and discussion follow below.

Methods
Experimental protocol.  The experimental protocol implemented in this study was developed as a part of 
the European project PSYCHE. The acquisition system and details of the experimental procedure can be found 
in27–29.

The study was conducted at the University Hospital of Strasbourg. Daytime acquisitions were performed from 
8 am to 8 pm, whereas nighttime acquisitions were performed from 8 pm to 7.30 am. All subjects were enrolled 
and signed the informed consent the day before data recording. All recordings were performed over a 12-hour 
period because of the battery autonomy of the recording device, known here as the PSYCHE platform27–29.

This monitoring platform consists of a comfortable, textile-based sensorized t-shirt embedded with electrodes 
developed by Smartex s.r.l., which is able to acquire electrocardiogram (ECG) with a sampling rate of 250 Hz. 
Data acquisition occurred entirely in the electronics of the wearable platform, where data were conditioned and 
digitalized. ECG signals were pre-filtered through a tenth order band-pass finite impulse response filter with 
cut-off frequencies of 0.05–35 Hz, approximated by the Butterworth polynomial. Textile electrodes could lose 
contact with the patient body because of movement, therefore an algorithm for automatic movement artifact 
removal was applied to the recorded data as reported in27. Then, an R-peak detection procedure was carried out 
according to the Pan-Tompkins algorithm44.

Bipolar subjects were recruited in the out-patient University clinic of Strasbourg according to the following 
traits as defined in the same project PSYCHE:

•	 age between 18 and 65;
•	 presenting bipolar or cyclothymic disorders according to the Diagnostic and Statistical Manual - 4th edition 

(DSM-IV TR) criteria, with low risk of suicide, i.e. no thoughts of death and no previous attempts45;
•	 absence of cognitive impairment and substance abuse;
•	 either in a hypomanic phase or a moderately depressive phase period.
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Note that the mixed state was not considered as a possible status in the first study period. Moreover, patients 
with Major Depressive Disorder (MDD) were not included in the sample.

All the subjects signed the informed consent for the PSYCHE project that was approved by the Ethical 
Committee of Strasbourg. All experimental procedures and analyses were carried out in accordance with such 
approved guidelines and regulations.

Eight patients were selected for this study and their demographic information is reported in Table 1.
Diagnoses were performed by board-certified psychiatrists and clinical psychologists. The protocol planned 

a study entry visit when the patient was experiencing a depressive or hypomaniac state. The initial diagnosis 
of the current bipolar episode was determined by clinicians according to DSM-IV-TR criteria. Patients were 
studied with an average frequency of 2–3 times a month. Patients were evaluated and monitored from the day of 
hospital admission until remission, i.e., until they reached euthymic state. In this study no more than six evalu-
ations per patient were performed. The evolution of a mood state to another, such as transition from hypoma-
nia to depressive state or euthymic state, was assessed using scores from quantitative psychopathological rating 
scales. This was a purely clinical evaluation that disregarded any physiological/biochemical reference analysis. 
The mood label associated with each patient evaluation was assigned independently with respect to the previous 
ones. The euthymic state was defined as having a score below threshold on a quantitative psychopathological 
rating scale: for depressive symptoms, below 8 on the 16-item Quick Inventory of Depressive Symptomatology, 
Clinician-Rated QIDS-C16, and for manic symptoms below 6 on the Young Mania rating scale, YMRS29,46. The 
same thresholds were also used to define a change in mood state. During the study, treatment choice remained at 
the discretion of the clinician as well as the change of treatment in case of lack of response.

The set of patient acquisitions was comprised of 16 night recordings (6 in depressive state, 5 with euthymia 
and 5 with hypomanic mood) and 36 day recordings (13 related to depressive state, 9 to euthymic and 14 to hypo-
manic state).

We also analyzed the heartbeat dynamics of a group of 11 healthy female subjects.
Subjects in the control group, in the age range of 18–45, were not affected by:

•	 any past or current psychiatric disorders as evidenced in the Mini International Neuropsychiatric Interview 
(MINI) during a psychological examination and an assessment with the QIDS (exclusion if the score was 
higher than 6);

•	 personal history or family history of psychiatric disorders;
•	 any physical disorder;
•	 chronic medication.

The set of healthy subject acquisitions was comprised of 11 daytime and 11 nighttime recordings.

MultiScale entropy analysis.  The MSE algorithm is based on the application of the SampEn tech-
nique to coarse-grained time series constructed from the original signal by averaging the data points within 
non-overlapping windows of increasing length, τ. Given a time series {x1, …, xi, …, xN} and a scale factor τ, each 
element of a coarse-grained series {y(τ)} is calculated using the equation
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where the length of each coarse-grained time series is equal to the length of the original time series divided by τ. 
The second step consists of the computation of SampEn algorithm in these series37,47.

This technique involves two parameters: m, a positive integer, which is the size of the compared patterns, and 
r, a positive real number, which is multiplied by the standard deviation of the series and represents the margin of 
tolerance in the comparison.

Starting from the vectors x(1), x(2), …, x(N − m + 1) in m  defined by x(i) = [u(i), u(i + 1), ..., u(i + m − 1)], 
the distance between two vectors x1 and xj is calculated according to the definition given by Takens in his studies 
on high-dimensional deterministic systems48,49:

Patient Age Gender Illness duration BD subtype Num. day trials Num. night trials

Pz01 39 M 1.0 yr II 6 2

Pz02 51 M 14.5 yrs I 5 3

Pz03 39 M 14.8 yrs I 4 2

Pz04 27 M 10.2 yrs I 6 2

Pz05 54 F 11.1 yrs II 3 2

Pz06 33 M 14.6 yrs I 1 1

Pz07 37 F 12.8 yrs I 6 3

Pz08 29 M 5.9 yrs I 5 1

Table 1.  Patients demographic and clinical information, including age, gender, illness duration, bipolar 
disorder (BD) subtype, and the number of day and night trials.
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SampEn is calculated with the expression

C
C

SampEn(m, r, N) ln (4)

m

m

1
= −

+

where Cm is given by:

C r
C r

N m
( )

log ( )
1 (5)

m i
N m

i
m

1
1

= ∑
− +

=
− +

Results from the MSE analysis are reported plotting the curve where each value of SampEn, calculated over 20 
scales, is represented as a function of the related scale factor τ. The time scale range, from 1 to 20, is the standard 
suggested in the literature as related to MSE analysis33,35,43. It has been suggested in33,35, considering the 20th time 
scale as the asymptotic resampling value to study heartbeat multiscale fluctuations. Moreover, the same range was 
used to discern depressed from non-depressed subjects using nighttime ECG recordings43.

Regarding the choice of parameters m and r, in this study we followed the procedure suggested in50. Of note, 
previous studies investigating different methods for the calculation of parameter r demonstrated that this proce-
dure was the most effective and appropriate for heartbeat complexity analysis in bipolar disorder28.

More specifically, this calculation foresaw searching for the value of r which maximized the calculation of 
ApEn in the range 0.01 ≤ r ≤ 1.2. The highest value ApEn(rk) was interpolated with the preceding and the follow-
ing values, ApEn(rk−1) and ApEn(rk+1), with a parabola and the position of the vertex of the parabola gave the 
value of rmax. Therefore, ApEn(rmax) quantified the highest information difference between vectors of dimensions 
m and m + 1. The value of the pattern dimension, m, was set at 2, according to the most common value used in 
the literature.

Furthermore, to summarize the MSE results over all scales, we evaluated the so-called Complexity Index (CI) 
by calculating the area under the MSE curve27,43. This procedure was performed using numerical integration 
via the trapezoidal method. The area under curve was calculated for short scales, from 1 to 8, and higher time 
scales, from 1 to 20. The eighth scale was considered as the threshold for short time-scales according to a previous 
study dealing with MSE application for the assessment of mental disorders43. This cutoff value limits the scales 
expressing the dynamics in the high-frequency band. The traditional cutoff used in HRV frequency analysis is 
indeed 0.15 Hz, so given that the mean of RR interval lengths in43 was 0.81 seconds, we considered scales from 
1 to 8 as short time-scales. The role of sympathetic and parasympathetic control of heart rate complexity upon 
different time-scales has been recently investigated in rats51,52. These studies demonstrated that short scales in the 
MSE curve express the effect of the vagal control of the heart and suggest that regulatory mechanisms other than 
baroreflex might contribute to nonlinear HRV features observed at short time scales. The sympathetic control 
keeps the unpredictability of RR fluctuations at higher scales, and a high sympathetic tone contributes to limiting 
nonlinear HRV components via a vagal withdrawal at short time scales. Nevertheless, the combined blockade of 
cardiac autonomic receptors produces an increase of irregularity at short scales and highlights a higher robustness 
of the MSE curve profile rather than the single entropy value to provide an index of heart rate dynamics51.

Statistical Analysis.  For each index, Kruskal-Wallis non-parametric tests were employed to investigate sig-
nificant differences among healthy control states and pathological mood states including euthymia, depression, 
and hypomania. In this case, the null hypothesis was associated with having no differences in medians among 
samples. Mann-Whitney non-parametric U-tests were used to compare data of two different groups, for example, 
euthymia versus hypomania, through post-hoc statistical analysis, using Bonferroni’s correction. Of note, the use 
of such non-parametric tests was justified by having non-gaussian distributions associated with samples, tested 
with Shapiro-Wilk procedure53.

Statistical analysis was performed separately on daytime and nighttime segments to investigate differences 
among mood states. Moreover, differences between daytime and nighttime segments for each patient/mood state 
were also studied.

Results
For each acquisition, we analyzed the longest artifact-free segment and expressed all the group-wise results as 
median and median absolute deviation (MAD).

Heartbeat Complexity modulation in Healthy Subjects and Bipolar patients during daytime 
and nighttime.  MSE values from healthy subjects and bipolar patients are shown in Figs 1 and 2 for daytime 
and nighttime, respectively. In both figures, it is possible to note that a higher irregularity level is associated with 
the healthy state with respect to the pathological ones.

Specifically concerning daytime monitoring, overall comparable entropy values were found for the healthy 
and the euthymic states, whereas a significant lower irregularity level was associated with the hypomanic and 



www.nature.com/scientificreports/

5SCIEntIfIC REPOrTS |  (2017) 7:17920  | DOI:10.1038/s41598-017-18036-z

depressive states. The Kruskal-Wallis test revealed significant statistical differences over all scales with p < 0.001, 
with the exception of the first scale which was associated with p < 0.03. Post–hoc Mann-Whitney tests did not 
reveal significant differences between the healthy and euthymic states (p > 0.05). On the other hand, significant 
differences between healthy and depressive states at all scales (p < 0.05) and between healthy and hypomanic 
states at scales from 2 to 20 (p < 0.01) were found. Euthymic states were significantly different from depressive 
state at scales {2–4, 6, 7, 11–14, 16–19} (p < 0.05) and from hypomanic states at scales {2–4, 6, 17} (p < 0.05). 
Entropy values from depressive and hypomanic states did not show significant differences at all scales.

Concerning nighttime monitoring, the Kruskal-Wallis test revealed significant differences among the four 
states with p < 0.01 at all scales. Post–hoc Mann-Whitney tests did not reveal significant differences between the 
healthy and euthymic states (p > 0.05). Significant differences between healthy and depressive states at 9 scales 
{1–4, 6–8, 12, 13} (p < 0.01), and between healthy and hypomanic states at all scales (p < 0.01) were also found. 
Euthymic states were not significantly different from depressive states, and from hypomanic states at scales {1, 
6–20} (p > 0.05). Entropy values from depressive and hypomanic states showed significant differences at scale 1 
(p < 0.05).

Figure 1.  MSE of heartbeat dynamics in healthy control subjects and bipolar patients during daytime 
monitoring. Values are expressed as median ± MAD.

Figure 2.  MSE of heartbeat dynamics in healthy control subjects and bipolar patients during nighttime 
monitoring. Values are expressed as median ± MAD.
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Complexity Index Analysis.  To summarize the results achieved throughout all MSE scales and to provide a 
meaningful index for pathological mood state assessment using cardiovascular dynamics exclusively, a complex-
ity index (CI) analysis was carried out. Results are shown in Table 2, and summarized in Fig. 3.

Specifically concerning daytime monitoring, we applied Kruskal-Wallis tests on CI values calculated over the 
MSE scales among the four samples. We found significant differences considering both the short-time and-higher 
time scales (p < 10−5). Healthy state was not significantly different from the euthymic state. Healthy state was 
significantly different from the depressive and hypomanic states with p < 0.001 for short and higher time scales. 
Euthymic state was significantly different from the depressive and hypomanic states with p < 0.05 for short and 
higher time scales. Depressive and hypomanic states did not show significant CI-related differences.

Short Time Scales Higher time scales

Diurnal acquisitions

Control group 18.89 ± 1.03 52.11 ± 3.10

Euthymic 17.25 ± 1.42 48.40 ± 5.05

Depressive 13.06 ± 1.38 35.35 ± 5.86

Hypomanic 13.08 ± 1.55 39.25 ± 3.97

p-value 8.30e−6 5.51e−6

Nocturnal acquisitions

Control group 17.99 ± 1.42 47.43 ± 1.01

Euthymic 15.18 ± 3.85 38.11 ± 2.40

Depressive 11.71 ± 1.50 31.39 ± 3.26

Hypomanic 9.14 ± 1.18 22.17 ± 4.17

p-value 6.99e−4 8.81e−4

Table 2.  CI calculated on the MSE graphs for diurnal and nocturnal periods, values are median ± MAD.

Figure 3.  Bar graphs of complexity index analysis on short (calculated using time-scales from 1 to 8, top 
panel), and higher (calculated using time-scales from 1 to 20, bottom panel) time scales. The results of statistical 
tests are expressed with the symbols: ****p < 0.001, ***p < 0.01, **p < 0.03, *p < 0.05. C = control group, 
E = euthymic, D = depressive, H = hypomanic.
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Concerning nighttime monitoring, Kruskal-Wallis tests revealed significant differences among all states on 
CI short scales and higher scales (p < 0.001). Healthy state was significantly different from the depressive states 
with p < 0.03 for short time scales, and significantly different from the hypomanic states with p < 0.01 for short 
and higher time scales. However, healthy state was not significantly different from the euthymic state. Euthymic 
state was significantly different from the hypomanic states with p < 0.05 for short and higher time scales, whereas 
depressive and hypomanic states showed significant differences with p < 0.03, for higher scales.

Heartbeat Complexity modulation between daytime and nighttime.  We observed that heart-
beat dynamics became more regular during the nighttime with respect to daytime. Specifically, a decrease in 
the entropy values during the manic and euthymic states, with a reduction of more than 40% in the higher time 
scales, compared to decrease of less than 10% in the control group were observed. Furthermore, Mann-Whitney 
non-parametric statistical tests revealed significant differences between daytime and nighttime periods for all 
mood states with p < 0.05. In Table 3 results from the statistical analysis related to CI values are shown.

Likewise, significant differences were found investigating daytime and nighttime heartbeat dynamics for each 
mood state across all scales (see Table 4). p-values from Mann-Whitney non-parametric statistical tests were 
below the threshold of 0.05 in almost all cases, with the exception of some short time-scales for the control group 
and some higher time-scales for the depressive group.

Discussion
In this study, we investigated how heartbeat complex dynamics is affected by pathological mood states in bipolar 
disorder during the day and night.

Previous studies already proposed the use of MSE methods to examine differences between depressive state 
patients and healthy subjects42,43,54, with a significantly reduced heartbeat irregularity associated with pathological 
states. Of note, the decrease of irregularity level has often been associated with advanced aging and other diseases 
such as congestive heart failure55–58. We built on these studies to further investigate heartbeat complexity mod-
ulation among pathological mood states in bipolar disorder such as depression, hypomania and euthymia, also 
comparing MSE-related indices with data from a healthy control group.

Our findings confirm the results of Leistedt et al., who compared patients affected by major depression and 
healthy subjects during the night43. We demonstrated that bipolar depressive mood is also associated with a 
decrease in the HRV irregularity with respect to the euthymic state, being statistically significant across the 
short-time scales. Healthy subjects showed higher entropy values with respect to all pathological mood states at 
the higher scales. This is in line with outcomes highlighted by Costa et al. who analyzed the MSE curves of healthy 
young and elderly subjects, using nighttime recordings35. Also in this case, the difference between the two groups 
was significant only over short scales, which are related to the high-frequency modulation of the cardiac rhythm. 
Their results showed lower values of entropy in the elderly group and were consistent with the loss of parasympa-
thetic modulation with age59. At a speculation level, trends we reported for depressive state subjects support the 
link between aging and depression, already known in the literature60. We found a reduced heartbeat irregularity 
not only between healthy and depressive states, but also between depression and hypomania when compared with 
euthymic and healthy states. Such a cardiovascular complexity modulation was more evident analyzing nighttime 
recordings. Euthymic and depressed patients exhibited values of entropy which were statistically different only 
during the day. During the nighttime period the signals acquired in hypomanic patients were demonstrated 
to be distinguishable from the euthymic subjects both for short and higher scales. Depression and euthymia 
were not different, according to the statistical tests, when the short scales were analyzed during the night. At 
a speculation level, this outcome can be explained with some sleep-related functioning in bipolar patients61,62. 
Particularly, a previous study demonstrated that 70% of the euthymic patients with bipolar disorder exhibited a 
clinically-significant sleep disturbance such as insomnia61. Insomnia and hypersomnia are also the most typical 
sleep-related disorders associated to bipolar depression63.

Changes in HRV complexity between day and night have already been reported in the literature. Exemplarily, 
Costa et al. studied young healthy subjects, elderly healthy subjects and heart failure subjects35. In all these groups 
they found statistically significant differences between day and night, using the MSE algorithm. In the healthy 
young subjects group the entropy decreased during the night, whereas in elderly and pathological subjects an 
increase of complexity was found.

Our results are in agreement with lower entropy observed during the night with respect to day across all mood 
states. Although evidence in animal studies has suggested that α-adrenoceptors, the cholinergic system, as well 
as adenosine 3′,5′-cyclic monophosphate are responsible for complex cardiovascular fluctuations24,64,65, the actual 
correlates of autonomic activity on complex cardiac control are still unknown.

Our study does present some limitations. The first is that we considered female healthy control subjects only. 
This surely limits the generalization of our results, which might be different when considering a representative 
sample of the healthy population including both male and female subjects. Inclusion criteria for healthy subjects 

Control group Euthymic Depressive Hypomanic

CI (short time scales) 0.030 (d) 0.001 (d) 0.017 (d) 0.019 (d)

CI (long time scales) 0.003 (d) 0.001 (d) 0.029 (d) 0.014 (d)

Table 3.  p-values from the Mann-Whitney test comparing CI values between daytime and nighttime periods, 
over short and higher time scales. Symbols (d) and (n) indicate that SampEn value increased during the day or 
during the night, respectively. Bold indicates p-values lower than 0.05.
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foresaw a slightly different age range (18–45) than patients (27–54) and, although minimally, this might slightly 
bias the MSE results.

Moreover, although a complexity modulation between healthy subjects and euthymic state occured, there 
was no statistical significance associated with this comparison after correction for multiple comparison. This 
could be due to the low number of subjects involved in the study, as well as to the very high inter-subject varia-
bility associated with bipolar disorder. Importantly, to improve on the homogeneity of the pathological group, 
we reduced the number of patients according with illness duration and type of disease, removing Pz01 and Pz08 
data to reduce illness duration variability, or removing Pz01 and Pz05 data for a bipolar disease type I sample. We 
found that the control group showed a significantly higher complexity than euthymic group during the night (see 
Supplementary Material for further details). Future endeavours comparing different types or clinical history of 
bipolar disease are thus needed, maybe investigating whether baseline HRV complexity could be an indicator of 
bipolar disease severity.

Daytime and nighttime evaluations were based on absolute timing considerations only. No quantitative meas-
ures were taken into account to evaluate REM latency and sleep stages. Furthermore, some of the patient record-
ings took place in a research center 80 kilometers from the clinical center and home. They had to be autonomous 
to travel on their own to the research center. For security reasons, we excluded patients at risk of suicide attempts, 
such as personal antecedents or current ideation, and with severe depression or full mania. A substantial part of 
patients with MDD is actually a candidate of bipolar disorder, i.e. ‘Latent Bipolar Disorder’, but were not included 
in the sample. Finally, while summarizing the MSE results through CI allows for a more concise description of 
the results, this might be associated with the loss of some information. We also remark that one of the experi-
mental results shown in this article (MSE in bipolar patients during nighttime only) was already reported in our 
previous methodological endeavour28, and has been included here for comparative purposes and completeness 
of description exclusively.

Despite these limitations, although preliminary, our findings surely suggest that bipolar disorder is associated 
with an enhanced sleep-related dysregulation of the ANS activity and the use of heartbeat complex dynamics as 
viable markers of pathological mental conditions. This conclusion is supported by previous evidence suggesting 
nonlinear analysis of physiological signals to support care in mental health66–68, thus possibly overcoming the use 
of scores from structured tests only.

Indeed, there is compelling evidence of disrupted circadian rhythms in individuals with mood disorders63,69,70. 
In particular, sleep disturbance and circadian dysregulation are critical pathophysiological elements in bipolar 
disorder69, and our findings could help answer the many questions related to their underpinning mechanisms. 
Moreover, a bidirectional relationship between daytime affect regulation and nighttime sleep has been recently 
recognized, also because neurotransmitters in brain regions implicated in mood regulation exhibit circadian 
rhythms63,69,70. A previous study also suggested that the multiscale influences of the suprachiasmatic nucleus on 
heart rate fluctuations in rats cannot be explained by a simple pacemaker of 24 hours rhythmicity71. To this extent, 
future endeavours can be directed to the study of heartbeat dynamics in bipolar subjects over 24 hours in order to 
check the intrinsic circadian variation of HRV among different mood states.

Controls Euthymic Depressive Hypomanic

MSE (scale 1) 0.049 (n) 0.012 (d) 0.001 (d) 0.0003 (d)

MSE (scale 2) 0.042 (d) 0.001 (d) 0.029 (d) 0.002 (d)

MSE (scale 3) 0.694 (d) 0.001 (d) 0.007 (d) 0.034 (d)

MSE (scale 4) 0.013 (d) 0.001 (d) 0.017 (d) 0.026 (d)

MSE (scale 5) 0.149 (d) 0.001 (d) 0.012 (d) 0.034 (d)

MSE (scale 6) 0.009 (d) 0.001 (d) 0.012 (d) 0.019 (d)

MSE (scale 7) 0.001 (d) 0.001 (d) 0.017 (d) 0.019 (d)

MSE (scale 8) 0.042 (d) 0.001 (d) 0.012 (d) 0.019 (d)

MSE (scale 9) 0.0003 (d) 0.029 (d) 0.022 (d) 0.014 (d)

MSE (scale 10) 0.018 (d) 0.002 (d) 0.029 (d) 0.019 (d)

MSE (scale 11) 0.001 (d) 0.001 (d) 0.072 (d) 0.005 (d)

MSE (scale 12) 0.018 (d) 0.001 (d) 0.106 (d) 0.005 (d)

MSE (scale 13) 0.005 (d) 0.001 (d) 0.179 (d) 0.007 (d)

MSE (scale 14) 0.001 (d) 0.001 (d) 0.282 (d) 0.005 (d)

MSE (scale 15) 0.001 (d) 0.004 (d) 0.046 (d) 0.005 (d)

MSE (scale 16) 0.001 (d) 0.004 (d) 0.058 (d) 0.005 (d)

MSE (scale 17) 0.003 (d) 0.001 (d) 0.179 (d) 0.005 (d)

MSE (scale 18) 0.0001 (d) 0.004 (d) 0.152 (d) 0.002 (d)

MSE (scale 19) 0.001 (d) 0.001 (d) 0.106 (d) 0.005 (d)

MSE (scale 20) 0.001 (d) 0.004 (d) 0.179 (d) 0.003 (d)

Table 4.  p-values from the Mann-Whitney test comparing SampEn estimates between daytime and nighttime 
periods over all the 20 time scales. (d)Indicates that SampEn value increased during the day, (n) points out an 
increase of SampEn during the night. Bold indicates p-values lower than 0.05.
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Our results are also in line with the theory hypothesizing that psychiatric diseases are multi-system disor-
ders, associated with a degeneration of the physiological systems and consequent cardiovascular diseases, cancer 
and accelerated aging72. It is thought that cardiovascular irregularity arises from the interaction of several neu-
ronal signaling and multi-feedback operating over a wide range of temporal and spatial scales, possibly associ-
ated with the neuroendocrine regulation. A previous study, in fact, underlined the role of β-adrenoceptors and 
α-adrenoceptors as factors which influence the nonlinear and fractal dynamics of heartbeat64.

Future endeavors will be directed to the exploitation of these results in conjunction with other significant 
changes associated with pathological mood swings in bipolar disorder. Moreover, since recent studies have pro-
posed alternative approaches to measure the irregularity of short-term physiological series, for instance distri-
bution entropy (DistEn)73, future work will focus on the application of these promising algorithms for entropy 
calculation in the field of mood disorders and emotion recognition.
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