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Abstract: Genomic DNA is constantly damaged by factors produced during natural metabolic
processes as well as agents coming from the external environment. Considering such a wide array of
damaging agents, eukaryotic cells have evolved a DNA damage response (DRR) that opposes the
influence of deleterious factors. Despite the broad knowledge regarding DNA damage and repair,
new areas of research are emerging. New players in the field of DDR are constantly being discovered.
The aim of this study is to review current knowledge regarding the roles of sirtuins, heat shock
proteins, long-noncoding RNAs and the circadian clock in DDR and distinguish new agents that may
have a prominent role in DNA damage response and repair.
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1. Introduction

Eukaryotic DNA is constantly threatened by insults, either endogenous or exogenous in nature.
Endogenous DNA damage results mainly from hydrolytic reactions with water and oxidative reactions
with reactive oxygen species (ROS). In contrast, exogenous DNA damage arises from the activity
of physical and chemical factors that damage DNA. These include exposure to UV light, ionizing
radiation or alkylating agents. However, the examples presented above represent a small fraction of
the actual range of DNA-damaging agents [1]. In response to such a wide array of deleterious factors,
eukaryotic cells have evolved a DNA damage response system (DDR) that allows accurate repair of
emerging damage (Figure 1) [2]. The nature of the damage determines the repair pathway choice, but
most DNA repair systems work in a related manner. DDR consists of several key steps, that include
damage sensing, signaling cascades and congruent damage repair. DDR has been previously discussed
and reviewed elsewhere [1–4]. Here, we focus on new emerging trends in DNA repair research.
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Figure 1. DNA damage response (DDR) in eukaryotes. Eukaryotic DNA response consists of systems 
of detection, signaling and repair of emerging DNA damage. The main DNA repair systems include 
direct reversal of damage, base excision repair (BER), nucleotide excision repair (NER), mismatch 
repair (MMR), Fanconi anemia pathway (FA), trans-lesion synthesis (TLS), single-strand break repair 
(SSBR) and double-strand break repair (DSBR): non-homologous end joining (NHEJ) and 
homologous recombination (HR). Double-strand breaks are signaled either by ataxia–telangiectasia 
and Rad3-related (ATR) or ataxia–telangiectasia mutated protein kinases (ATM) [2]. 

2. Sirtuins 

Sirtuins (SIRT) represent a conserved family of proteins that regulate various intracellular 
processes, including glycolysis, gluconeogenesis, lipid metabolism and DNA repair [5]. Seven 
members of the mammalian sirtuin family (SIRT 1–7) have been identified so far. Sirtuins differ in 
cellular localization: SIRT6 and SIRT7 are nuclear proteins, while SIRT1 and SIRT2 are found both in 
the nucleus and cytoplasm. On the other hand, SIRT 3–5 perform their functions mainly in 
mitochondria [6,7]. 

Sirtuins are NAD+-dependent deacetylases that remove acetyl moieties form lysine residues of 
various proteins, including histones [8]. Moreover, sirtuins may act as mono-ADP-ribosyl 
transferases that conduct post-translational modification–mono-ADP-ribosylation of proteins [9]. 
The first identified sirtuin (Sir2) gene product was shown to regulate various processes, including 
gene silencing or DNA repair in Sacharosmyces cerevisiae [10–13]. Similarly to yeast Sir2, mammalian 
homolog SIRT1 was demonstrated to modulate DNA repair. In fact, SIRT1 displayed deacetylase 
activity towards multiple acetylated histone lysines, H4K16, H3K9, H3K56, H1K26 [14], H1K9 and 
H3K14 [15], affecting chromatin condensation status. For a long time, SIRT1 was regarded as a tumor 
promotor due to its elevated activity in some kinds of cancers [16]. However, it was later observed 
that the reduced activity of SIRT1 compromised genetic instability, and, thus, it was suggested that 

Figure 1. DNA damage response (DDR) in eukaryotes. Eukaryotic DNA response consists of systems
of detection, signaling and repair of emerging DNA damage. The main DNA repair systems include
direct reversal of damage, base excision repair (BER), nucleotide excision repair (NER), mismatch
repair (MMR), Fanconi anemia pathway (FA), trans-lesion synthesis (TLS), single-strand break repair
(SSBR) and double-strand break repair (DSBR): non-homologous end joining (NHEJ) and homologous
recombination (HR). Double-strand breaks are signaled either by ataxia–telangiectasia and Rad3-related
(ATR) or ataxia–telangiectasia mutated protein kinases (ATM) [2].

2. Sirtuins

Sirtuins (SIRT) represent a conserved family of proteins that regulate various intracellular processes,
including glycolysis, gluconeogenesis, lipid metabolism and DNA repair [5]. Seven members of the
mammalian sirtuin family (SIRT 1–7) have been identified so far. Sirtuins differ in cellular localization:
SIRT6 and SIRT7 are nuclear proteins, while SIRT1 and SIRT2 are found both in the nucleus and
cytoplasm. On the other hand, SIRT 3–5 perform their functions mainly in mitochondria [6,7].

Sirtuins are NAD+-dependent deacetylases that remove acetyl moieties form lysine residues of
various proteins, including histones [8]. Moreover, sirtuins may act as mono-ADP-ribosyl transferases
that conduct post-translational modification–mono-ADP-ribosylation of proteins [9]. The first identified
sirtuin (Sir2) gene product was shown to regulate various processes, including gene silencing or
DNA repair in Sacharosmyces cerevisiae [10–13]. Similarly to yeast Sir2, mammalian homolog SIRT1
was demonstrated to modulate DNA repair. In fact, SIRT1 displayed deacetylase activity towards
multiple acetylated histone lysines, H4K16, H3K9, H3K56, H1K26 [14], H1K9 and H3K14 [15], affecting
chromatin condensation status. For a long time, SIRT1 was regarded as a tumor promotor due to
its elevated activity in some kinds of cancers [16]. However, it was later observed that the reduced
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activity of SIRT1 compromised genetic instability, and, thus, it was suggested that it may function as
a tumor suppressor [17]. It was also demonstrated that SIRT1 regulated activity of TP53 via protein
deacetylation on Lys320, Lys373 and Lys382. This interaction resulted in inhibition of apoptosis
through diminished transactivatory potential of the protein in response to DNA damage [18,19].
SIRT1 plays a crucial role in double-strand break repair (DSBR) where it activates key components
of the repair machinery, including Ku proteins, nibrin (NBS1) and Werner helicase (WRN) [20–22].
Moreover, cells defective in SIRT1 display diminished γH2AX (phosphorylated H2AX), breast cancer
type 1 susceptibility protein (BRCA1), NBS1 and RAD51 foci formation following DNA damage. This
results in impaired capability of damage repair in cells exposed to γ-radiation [17]. The possible
consequences of this impaired ability to repair double-strand breaks (DSBs) comprise numerous
translocations and chromosomal fusions [17,23]. Furthermore, effective recruitment of SIRT1 to
damaged sites requires ataxia–telangiectasia mutated protein kinase (ATM) signaling and γH2AX
foci formation [23]. Additionally, SIRT1 may be activated in CHK1-dependent phosphorylation on
Thr530 and Thr540 residues [24]. Like SIRT1, SIRT6 also regulates gene expression through histone
deacetylation. Among identified targets of SIRT6 are histone residues like H3K9 and H3K56. Histone
deacetylation allows WRN helicase to associate with DNA and effectively serves the function of
telomere structure maintenance [25,26]. In addition, SIRT6 recruits chromatin remodeling protein
SNF2h to damaged sites supporting tumor suppressor p53-binding protein 1 (TP53BP1), replication
protein A (RPA) and BRCA1 engagement in damage repair [27]. Similarly to SIRT1, SIRT6 depletion
leads to genetic instability manifested by hypersensitivity to methyl-methanesulfonate (MMS) and
ionizing radiation [25,26]. SIRT6 also plays a distinct role in non-homologous end joining (NHEJ)
through interaction with DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and Ku70/80
proteins, allowing their efficacious association with chromatin. SIRT6 can also deacetylate Lys539
and Lys543 of Ku70 protein and stimulate its activity [25,28]. SIRT6 is involved in base excision
repair (BER), where it mono-ADP ribosylates poly(ADP-ribose) polymerase (PARP1) and stimulates its
enzymatic activity. This leads to more effective signaling of single-strand breaks (SSBs) and facilitates
access of X-ray repair cross-complementing protein 1 (XRCC1) and pol β to the site of damage during
repair [29,30]. Moreover, SIRT6 was shown to stimulate MYH glycosylase and apurinic/apyrimidinic
endonuclease (APE1) during BER [31]. Furthermore, SIRT1 can take part in BER through deacetylation
of the aforementioned APE1 endonuclease and thymine DNA glycosylase (TDG) [32,33]. Besides
BER, SIRT1 has been shown to be implicated in stimulation of nucleotide excision repair (NER) via
deacetylation of Lys63 and Lys67 of xeroderma pigmentosum proteins XPA [34] and XPC [35]. Recently,
Jung et al. reported that SIRT1 could modulate expression of two key proteins involved in DNA
mismatch repair (MMR), mutS homologs (MSH2 and MSH3). Furthermore, they demonstrated that
SIRT1 inhibition triggered apoptosis of embryonic stem cells due to increased genomic instability [36].

In contrast, other members of the sirtuin family have not been examined so thoroughly. SIRT2
was implicated as involved in DNA replicative stress response (RSR). The main identified protein
target of SIRT2 remains cyclin-dependent kinase (CDK9). Like other previously mentioned sirtuins,
SIRT2 can deacetylate histone proteins like H4K16 and H3K56 [37,38]. SIRT7 has not been well studied
either. The main identified substrates of SIRT7 are histone proteins, primarily H3K18 [39,40]. In mouse
models, SIRT7 knockout led to increased acetylated H3K18 level, which contributed to reduced DSBR
through the NHEJ pathway [41]. Due to mitochondrial localization, other sirtuins may not play a direct
role in nuclear DNA repair. However, they may affect crosstalk between mitochondrial and nuclear
DNA concerning DNA repair. DDR proteins are important constituents of such signaling events and
they may represent a potential pool of sirtuin targets. However, the role of SIRT3, SIRT4, and SIRT5 in
DNA repair remains to be elucidated [42]. Mitochondrial sirtuins are responsible for maintenance of
genetic stability of mitochondrial DNA, mainly through ROS scavenging. For example, SIRT3 was
demonstrated to regulate glutathione-dependent redox balance in mitochondria [43]. In addition, SIRT3
works as a deacetylating enzyme with a preference towards H3K9 and H4K16 or Ku70 proteins [44,45].
Another well-established substrate of SIRT3, OGG1, is a member of DNA glycosylases involved in BER.
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SIRT3 can deacetylate OGG1 glycosylase and stimulate its activity. This seems to be crucial regarding
the amount and detrimental consequences of 8-oxoguanine formation in DNA [46,47]. SIRT4, on the
other hand, arrests cell cycle progression in response to DNA damage, providing more time for DNA
repair, and thus delaying apoptosis [48]. SIRT5 possesses multiple enzymatic activities but little is
known considering its role in DNA repair [49]. The role of sirtuins in DNA repair has been summarized
in Figure 2.
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Figure 2. Role of sirtuins (SIRTS) in DNA repair. Blue lines indicate deacetylation reactions. Red lines
represent other interactions between sirtuins and DNA damage response components. Most sirtuins,
excluding SIRT4 and SIRT5, possess deacetylase activity toward multiple acetylated lysine residues of
histone proteins. SIRT1 and SIRT6 have a wide range of substrates including BER (DNA glycosylases
MYH and TDG; AP endonuclease APE1) and NER components (xeroderma pigmentosum proteins
XPA and XPC), DSB proteins including KU protein, nibrin (NBS1), DNA-dependent protein kinase,
catalytic subunits (DNA-PKcs), PARP1, and other DDR-related factors such as WRN and TP53 protein.
Mitochondrial sirtuins (SIRT3, SIRT4 and SIRT5) prevent ROS-induced DNA damage in mitochondria.
SIRT3 deacetylates and stimulates the activity of OGG1 glycosylase.

Sirtuins constitute an interesting family of specialized enzymes that regulate various aspects
of DNA repair. They work both as protein activators and chromatin-structure-modifying enzymes.
Deacetylation carried by sirtuins represents a basic epigenetic mechanism. Histone modifications
including deacetylation and poly-(ADP)-ribosylation compromise an essential part of physiological
ageing processes that are involved in the pathogenesis of ageing-related diseases, including cancer.
Sirtuins may exhibit both suppressing and cancer-promoting activities; thus, understanding of
underlying sirtuin-dependent tumorigenic mechanisms can lead to development of new antineoplastic
therapies. Sophisticated crosstalk between sirtuins and DNA repair proteins represents an unknown
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area of research. From an evolutionary standpoint, it is still unclear why sirtuins evolved as a group of
proteins that regulate such a wide array of processes. Moreover, the activity of sirtuins can be reshaped
on different levels. Sirtuins, like other proteins, may undergo post-translation modifications that affect
their catalytic activity [24,50–52]. MicroRNAs can influence SIRT mRNA stability and thus decrease
SIRT levels to certain extent. This further affects complex sirtuin-dependent regulatory networks [53].

3. Long Non-coding RNAs

Long noncoding RNAs (lncRNAs) comprise an abundant group of diverse RNA molecules with
length exceeding 200 nucleotides [54]. These non-coding RNAs perform different biological functions,
including transcription regulation, modulation of chromatin structure through DNA methylation,
histone modification and chromatin remodeling, posttranscriptional regulation, modulation of protein
activity, and others extensively reviewed elsewhere [55,56]. The function of lncRNAs is highly
dependent on their subcellular localization. There are three different fractions of lncRNAs reckoning
their place of action: cis nuclear lncRNAs that are localised close to their sites of transcription, lncRNAs
that perform functions in the nucleus but regulate expression of genes distant from their own sites
of transcription (in a trans-dependent manner) and lncRNAs that need to be exported (transported)
to cytoplasm to perform their regulatory functions [54]. Furthermore, based on their immediacy to
protein coding genes, lncRNAs have been classified into several groups: sense, antisense, intronic,
intergenic transcripts and pseudogenes.

Significant scientific progress has been made regarding the role of lncRNAs in DNA repair.
LncRNAs are considered to play a prominent role in DSB repair. They have been shown to alter
DSB repair through several mechanisms: (a) through TP53 activity modulation at transcriptional and
translational level, (b) through recruitment of chromatin remodelers that modulate the access of DNA
repair proteins to the site of damage, (c) by working as scaffolds and mediators for DNA repair proteins,
and (d), last but not least, acting as sponges for various DNA-damage-associated miRNAs [57].

As previously mentioned, DSBs lead to recruitment of DNA damage sensors, such as MRN
complexes and Ku proteins, at the site of DNA damage. This is followed by firing of signaling cascades
and downstream protein activation [58]. The key component activated upon DSB is ATM protein kinase.
ATM phosphorylates H2AX histones at the site of damage, leading to γH2AX foci formation at break
sites [59]. Moreover, ATM activation leads to CHK1- and CHK2-dependent TP53 phosphorylation [2].
TP53, often perceived as a “guardian of the genome”, is one of the best-studied tumor suppressor
proteins. It has been estimated that almost half of human tumors carry a mutation in the TP53 gene.
Activation of TP53 upon DNA damage leads to either cell cycle arrest or apoptosis depending on the
nature and severity of the damage. TP53 acts as a key transcriptional regulator of different proteins
inside the cell [60]. Moreover, CHK1/2 activation leads to inhibition of cyclin-dependent kinase activity
that slows down or arrests the cell cycle in G1-S or G2-M phase [61]. The expression of lncRNAs can be
induced following DNA damage. This may occur in a TP53-dependent manner. Additionally, some
lncRNAs may regulate expression of TP53 downstream targets, further complicating the interactions.

The examples of TP53-linked lncRNAs are lincRNA-p21 [62] and PANDA [63], both located
upstream of CDKN1A (p21) gene. P21 is a protein that binds to certain CDKs, forming inactive
complexes that compromise cell cycle arrest and apoptosis. lincRNA-p21 was shown to repress
transcription induced by TP53 through interaction with heterogeneous nuclear ribonucleoprotein-K
(hnRNP-K), which constitutes an important component of repressor complexes. These complexes
are recruited to the promoters of downstream TP53 transcriptional targets and prevent effective
TP53-mediated transcription [62]. In contrast, CDKN1A upstream lncRNA, DINO, was shown to
stabilize TP53 protein and stimulate its transactivatory activity [64]. Other lncRNAs, like WRAP3α
lncRNA directly bind to TP53 mRNA after DNA damage to stabilize the protein, and thus affect its
level inside the cell [65]. LINP1, on the other hand, works as a scaffold for NHEJ proteins (Ku70–Ku80
and DNA-PKcs) during DNA repair, where it promotes the religation of broken DNA strand ends [66].
Another lncRNA worth mentioning, MALAT1, constitutes a link between sirtuins and TP53. MALAT1
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sequesters DBC1, a negative regulator of SIRT1, and thus promotes SITR1-mediated deacetylation
of TP53. This results in altered expression of TP53 target genes and TP53-linked lncRNAs [67–69].
Misteli et al. demonstrated that intergenic lncRNA DDSR1 expression could be elevated in response to
DNA-damaging drugs. DDSR1 induction is greatly dependent on ATM and NF-Kb activation but
TP53 is not necessary for its induction—nevertheless, it still may regulate its expression. Interestingly,
DDSR1 can regulate TP53-target gene expression. Moreover, DDSR1 knockdown leads to impaired
homologous recombination (HR) and upregulation of TP53-dependent gene expression, especially
of those genes that contribute to cell proliferation [70,71]. The choice between HR and NHEJ repair
pathways is further attributed to two noncoding RNAs—CUPID1 and CUPID2—located in the enhancer
region of the CCND1 gene, coding for cyclin D1 [72]. The lncRNA GUARDIN plays an important
role in genome stability maintenance. Sequestering of miRNA-23a by GUARDIN leads to sustained
expression of telomeric repeat factor 2 (TRF-2), which prevents chromosome end fusion. Furthermore,
GUARDIN regulates the stability of BRCA1 and promotes its association with BRCA1-associated
RING domain protein (BARD1) for effective HR [73]. TODRA, an antisense lncRNA transcribed
upstream of the RAD51 recombinase gene, has also been shown to be implicated in HR, where it
regulates RAD51 expression and protein activity [74]. Numerous lncRNAs have been confirmed to
play a role in DDR. These include the following lncRNAs: ANRIL [55], BARD1 9´L [75], Gadd7 [76,77],
HOTAIR [78,79] JADE [80], LincROR [81], LIRRE [82], MDC1-AS [83], NEAT1 [84], PCAT-1 [85–87],
PINCR [88], PINT [89,90], PURPL [91], PR-lncRNA-1, PR-lncRNA-10 [92], TERRA [93,94].

The importance of lncRNAs in cellular physiology is certainly unquestionable. LncRNAs play
a significant role in DNA repair through various cis and trans mechanisms. Besides the influence
of lncRNAs in gene expression, they can act as scaffolds for DNA repair proteins or work as
miRNA scavengers, affecting both the activity and abundance of DDR components. It remains
unclear how the primary and secondary structure of lncRNAs molecules affects DDR protein activity.
The growth and progress of advanced RNA-directed technologies allow researchers to explore
functions of genome “dark matter”. The greatest burden, however, is the tremendous and ambiguous
amount of data generated during RNA-seq, which requires further interpretation. Moreover, lncRNA
action is highly context-dependent, and the subcellular localization of RNA molecules seems to be
fundamental. The dynamics of how the compartmentalization is achieved constitute another question.
Plenty of studies have been carried out to clarify the role of lncRNAs in cancer. These require a
more comprehensive approach encompassing the complex signaling networks related to lncRNAs.
Determination of possible tumor-inducing and tissue-specific lncRNAs raise hopes for development of
new targeted antineoplastic agents [95].

4. Heat Shock Proteins (HSPs)

Heat shock proteins (HSPs) are a heterogeneous group of conservative chaperoning proteins
discovered by Ferruccio Ritossa in 1960 [96,97]. HSPs differ in their molecular weight (ranging from
10 to more than 100 kDa) [98]. Differences in molecular weight make it possible to divide of HSPs
into several classes. According to their molecular weight, HSPs can be grouped into several families:
HSP27 (HSPB), HSP60 (HSPD), HSP70 (HSPA), HSP90 (HSPC), and HSP110 (HSPH) [99]. HSPs have a
broad range of enzymatic activities, mostly associated with proper protein folding under both normal
and stress conditions. HSPs prevent misfolding of newly synthesized proteins and ensure their spatial
structure and function [100]. Almost all HSPs (except HSP27) have ATP-ase activity. Despite the lack of
ATP-ase activity, HSP27 may participate in protein refolding through recruitment of other chaperones
such as HSP70/HSP40 [99].

The expression of HSPs is tightly coordinated by heat shock factors (HSFs) that bind to regulatory
elements called heat shock elements (HSEs), located upstream in the HSP gene promoters [101]. Inactive
HSFs are cytosolic, monomeric proteins hyperphosphorylated in signaling cascades. Phosphorylated
HSFs translocate to the nucleus, where trimers are formed. These trimeric complexes bind to
HSEs and promote HSP expression [102]. Several factors, like hyperthermia, ionizing radiation and
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DNA-damaging agents have been shown to influence HSP expression. Heat stress is a known inductor
of mitochondrial ROS, and, thus, HSPs were speculated to be involved in ROS-induced DNA damage
response [102]. Indeed Abe et al. showed that treatment of WISH cells with hydrogen peroxide or
adriamycin resulted in HSP70 transition to the nucleus. This indicates that HSP70 might exhibit
a protective role against DNA damage and somehow facilitate DNA repair [103]. The potential
mechanisms by which HSP70 confers enhanced DNA repair properties is a result of oxidative damage
diminishing antioxidant and anti- inflammatory properties of the protein, which boosts reduction
of ROS-associated DNA damage [104]. The same HSP protein was later shown to play a significant
role in DNA repair of doxorubicin or cisplatin-treated, heat-shocked peripheral blood mononuclear
cells (PBMCs). Moreover, it was estimated that these repair enhancing properties of HSP70 may be
attributed to the observed higher expression of two MMR proteins, hMLH1 and hMSH2 [105–107].
Other HSPs have also been shown to be implicated in MMR-mediated DNA repair [108,109]. For
instance, HSP90 was shown to stabilize MSH2 protein in pemetrexed treated human lung cancer cell
lines [110]. The intimate association of HSP90 and MLH1 was also observed by Fedier et al. [111].

HSP proteins were also shown to play a significant role in radioresistance [112]. SiRNA interference
of HSPs, including HSP72 (HSPA1A), led to impaired BER glycosylase activity and enhanced sensitivity
to ionizing radiation in leukemic cells [113]. Moreover, HSPs have been shown to be involved in BER
repair directly through stimulation of key pathway components, such as endonuclease APE1 [114],
XRCC1 [115] and Polβ [116,117]. Furthermore, HSP70 (HSPA1A) was shown to associate with PARP-1,
involved in SSB repair [118]. Moreover, HSP27 (HSPB1) may participate in excision of DNA damage in
an NER-dependent manner, and subsequent downregulation of chaperone protein leads to impaired
efficacy of UVC-induced damage removal [119].

The observation that HSP72 overexpression protects cells from UVC and benzo[a]pyrene damage
accumulation and the results from other related studies suggest enhanced damage repair through
the NER pathway [120–123]. HSPs also participate in NHEJ and HR-mediated DSB repair [124].
Of particular importance, HSP90 has been identified as a master regulator of many DNA repair
components, such as BRCA1/2, RAD51, CHK1, DNA-PKsc, MRN complex, FA proteins and others, as
reviewed by Pannisi et al. and Sottile and Nadin [61,124].

Although HSPs do not participate in DNA repair directly, it was discovered that they may
modulate the activity of other DDR components. Changes in HSP expression strongly influence the
efficacy of DNA repair, and thus compromise an important target of DDR-directed anticancer therapies.
Moreover, hyperthermia has been shown to improve the treatment efficacy of many commonly used
anticancer agents, as reviewed by Takemoto [125] and Urano [126], and therefore should be further
investigated as a synergistic or adjuvant therapy in cancer treatment [127–129]. The role of HSPs in the
eukaryotic DNA damage response system is summarized in Table 1.
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Table 1. The role of HSPs in eukaryotic DDR mechanisms. The key DNA repair components were provided with types of lesions repaired during DDR [2,100]
with modifications.

DDR Mechanisms Type of DNA Lesion Key Components HSP Partner Effect on DNA Repair Reference

Direct DNA-lesion
reversal - O6 alkylguanine O6-methylguanine methyltransferase (MGMT) HSPC2 (Hsp90α),

HSPC3 (Hsp90β) MGMT Not clear [130]

Base excision repair
(BER) and single-strand

break repair (SSBR)

Chemically modified DNA bases (DNA adducts;
oxidized bases; alkylated bases; single-strand breaks)

DNA glycosylases, APE1 endonuclease, DNA
polymerases (β, δ, ε), flap endonuclease

FEN1, ligase I or ligase III, XRCC1, PARP enzymes
(PARP-1, PARP-2), DNA ends- modifying enzymes

polynucleotide kinase
(PNK), aprataxin (APTX), tyrosyl-DNA

phosphodiesterase 1 (TDP1)

HSP70
APE1 Stimulation of DNA repair [114]

Polβ Stimulation of DNA repair [116,117]

HSP90 XRCC1
Choice between DNA repair
mechanism (polymerase-β-

dependent or -independent)
[115]

HSP70 PARP1, XRCC1 Stimulation of SSBR repair [118]

Nucleotide excision
repair (NER)

Lesions that significantly disrupt the DNA double-helix
(massive DNA adducts; 6’-4’ photoproducts;

cyclobutane pyrimidine dimers (CPDs))

XP proteins, RNA polymerase, XPC-HR23B DDB1/2 HSP27 Not identified Stimulation of NER [119]

HSP70 XPA and XPG Not identified [123]

Mismatch repair (MMR) - DNA mismatches
- insertion/deletion loops

protein complexes (MSH2-MSH6, MSH2-MSH3
MLH1-PMS2 MLH1-PMS1, PLH1-MLH3), EXO1,

polymerases δ and ε,
PCNA, RFC, RPA, ligase I

HSP27/HSP70 MSH2/MLH1 Not identified [107]

HSP90 MSH2 Stabilization of the interacting
partner

[110]

Trans-lesion synthesis
(TLS)

- damaged bases that prevent replication fork
progression “Error-prone” DNA polymerases HSP90 TLS polymerases Promotes TLS activity in plants [131]

Non-homologous end-
joining (NHEJ) - double-strand breaks (DSBs)

Ku 70/80, DNA-PKcs, XRCC4, XLF/cernunnos,
ligase IV, Artemis nuclease, PNK, Aprataxin and

polymerases µ and λ

HSP27 Ku80 Prevention of Ku80-DNA-PKcs
interactions [132]

HSP90 DNA-PKcs Activation and stabilization of
DNA-PKcs for efficient repair [133]

HSP110 Ku70/Ku80
Recruitment of NHEJ proteins

(Ku70/80, DNA-PKCS) for
efficient repair

[134]

Homologous
recombination (HR)

- double-strand breaks (DSBs)
- inter- and intrastrand crosslinks (ICLs)

- stalled replication forks
- abortive topoisomerase II action

RAD51 and RAD51-related protein, RAD52, BRCA2,
RPA, FEN1, DNA polymerases, MRN, CtIP, BRCA1

HSP90
BRCA2 RAD51 foci formation and

effective DSB repair [135]

MRN MRN/ATM/ATR complex
stabilization [136]

Fanconi anemia
(FANC) pathway - inter-strand DNA cross-links FA-proteins HSP90 FANCA Stabilization of FANCA [137]

ATR mediated DDR
signaling - single-strand breaks (SSBs) RPA, ATRIP, RAD9-RAD1-HUS1 (911) complex, ATR,

MRN, CtIP, TOPBP1, Claspin HSP90 ATR
ATR is a direct client of HSP90,

exact function remains to be
elucidated

[138]

ATM mediated DDR
signaling - double-strand breaks (DSBs)

MDC1, 53BP1, RNF8 HSP27 ATM Required for ATM-mediated
DSBR repair upon radiation [139]

RNF168, BRCA1, ATM, MRN, CHK2 HSP90 ATM
Required for ATM/ATR

mediated HR repair upon
radiation and replicative stress

[140]
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5. Circadian Clock

Circadian rhythm (clock) compromises a basic mechanism that regulates many aspects of
metabolism, biochemistry and behavior of all organisms [141]. Molecular clock is composed of positive
(BMAL1, CLOCK) and negative factors (CRY 1/2, PER 1/2/3) that regulate transcription based on network
of feedback mechanisms between transcription and translation in the transcription–translational
feedback loops (TTFL). The major loop consists of circadian locomotor output cycles protein kaput
(CLOCK) and brain and muscle ARNT-like 1 (BMAL1) complexes that regulate expression of period
(PER1/2/3) and cryptochrome (CRY1/2) genes [142,143]. CLOCK and BMAL are class VII HLH proteins
that contain PAS domains [144]. They form heterodimers that bind to E-boxes (CACGTG) in the
promoters of the CRY and PER genes to effectively enhance their transcription.

After translation, CRY and PER proteins accumulate in the cytoplasm. This is followed
by their heterodimerization and translocation to nucleus, and subsequent inhibition of
CLOCK–BMAL1-mediated transcription, after a time delay. As a result, a negative feedback loop is
formed. The new cycle begins after CRY and PER proteins are degraded [145].

Moreover, CLOCK–BMAL1 complexes control expression of other genes containing E-boxes,
collectively known as clock-controlled genes (CCGs) (Figure 3) [146]. It has been estimated that
expression of 2%–10% of mammalian genes is controlled by clock genes [147].
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Figure 3. Transcription–translational feedback loop (TTFL) of the circadian clock. Circadian locomotor
output cycles protein kaput (CLOCK) and brain and muscle ARNT-like 1 (BMAL1) complexes regulate
the expression of period (PER1/2/3) and cryptochrome (CRY1/2) genes. After translation, CRY and PER
proteins accumulate in the cytoplasm. This is followed by their heterodimerization and translocation
to nucleus and subsequent inhibition of CLOCK–BMAL1-mediated transcription. CLOCK–BMAL1
complexes control expression of other clock-controlled genes (CCGs), such as the XPA gene.

The central molecular clock, a pacemaker, is located in the anterior part of the hypothalamus
called the suprachiasmatic nucleus (SCN). Peripheral clocks in individual tissues synchronize with
each other and with the master clock located in the brain to effectively regulate intracellular processes
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such as DDR [146]. This synchronization is achieved through combination of both hormonal, humoral
and neural inputs. Blue light is the strongest stimulus that entrains the central clock. Peripheral
clocks, on the other hand, react to other stimuli [146–148]. The circadian clock has been reported to be
involved in direct reversal of DNA damage through regulation of O6-methylguanine-DNA methyl
transferase and alkylguanine DNA glycosylase.

Furthermore, the circadian clock regulates both ATR- and ATM-mediated DNA damage
checkpoints involved in G1/S, G2/M cell cycle arrest and apoptosis. Several animal studies have
revealed that activity and efficiency of some DNA repair systems may undergo circadian oscillations,
and thus may function in a tissue-dependent manner. The basic example is NER. XPA protein involved
in the damage recognition step during NER was shown to undergo circadian oscillations. Moreover,
it was discovered that XPA genes contain two E-boxes in promotor regions, indicating that the level of
XPA protein inside the cell may be regulated by the circadian clock components [149]. Furthermore,
CLOCK and PER proteins have been shown to play a more direct role in DDR. CLOCK localized to
the sites of DSBs after the DNA damage was found, and, therefore, one can speculate that it may
somehow affect DSBR. PER2, on the other hand, directly associates and forms complexes with TP53
protein, preventing both ubiquitination of TP53 by MDM2 ligase and subsequent inhibition of the
protein. Moreover, PER2 may be targeted by MDM2 ligase, indicating a more intrinsic relationship
between PER proteins and TP53 [150]. Components of the molecular clock may be affected by other
previously mentioned groups of DDR-related players. For example, SIRT1 directly deacetylates clock
proteins affecting the gene expression of CCGs or directly affects the levels of acetylated histones
in the promoters of the clock genes [151,152]. Furthermore, SIRT1 may act as a nutrient sensor that
coordinates circadian clock with the energetic status of the cell [153]. SIRT1 is not the only sirtuin
involved in circadian clock regulation. SIRT6 regulates the recruitment of CLOCK: BMAL1 complexes
to the promoters of circadian genes and influences their expression [154].

6. Existing Crosstalks

As was previously mentioned, sirtuins have been shown to be involved in the circadian clock.
A wide array of crosstalks between sirtuins, lncRNAs and HSPs have been recognized. For example,
Sirt1 antisense long noncoding RNA was shown to stabilize Sirt1 mRNA, affecting SIRT1 protein
expression in cardiomyocytes [155]. MALAT1, on the other hand, was shown to interact with FOXO1
and suppress SIRT1 transcription following high-glucose-induced damage in HK-2 cells [156]. In the
same cell line, another lncRNA, TUG1, protected cells against lipopolysaccharide-induced inflammatory
damage through regulation of miR-223 and SIRT1 expression [157]. Furthermore, SIRT1 promoted
association of HSF1 with the HSP70 gene promoter by maintaining HSF1 in a deacetylated state [158].
SIRT3 was demonstrated to target HSP10 for deacetylation and thus modulate mitochondrial protein
folding following prolonged fasting conditions [159]. Moreover, the long noncoding RNA (lncRNA)
NEAT1 contains a heat shock element in the promoter region and is identified as the transcriptional
target of HSF1. Moreover, NEAT1 expression is controlled by HSF1, which binds to the heat shock
element located in the promoter region of NEAT1 lncRNA [160]. The relationships between non-coding
RNAs and heat shock response in mammals have been extensively reviewed by Place and Noonan [161].
Cui et al. reported a case where lncRNA HULC increased the expression of CLOCK protein and
downstream circadian oscillators. This may suggest the interdependence between lncRNAs and the
circadian clock [162]. Mouse-based studies also revealed that some circadian lncRNAs had analogous
circadian phase oscillations, the same as genes closely located in their proximity. These lncRNAs were
shown to be mainly expressed from enhancer regions through BMAL-dependent transcription [163].
Similarly, HSF1 was found to undergo rhythmic circadian oscillations and regulate expression of
HSPs at the onset of the circadian dark phase in rodents [164]. Furthermore, clock components such
as BMAL1 were shown to act as important clients for HSP proteins in vitro [165]. Altogether, these
findings suggest a sophisticated interplay between different classes of DNA-damage-related classes of
molecules. However, crosstalks regarding DNA damage and repair remain to be elucidated.
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7. Other Players

Other DDR-related proteins have recently been shown to play a significant role in DNA damage
and repair. A basic site processing protein, HMCES, is one of the most recently discovered pivotal
players in BER. Evolutionarily conserved HMCES forms DNA–protein crosslinks that protect abasic
sites from turning into SSBs upon action of AP endonucleases and act to secure DNA from the
consequences of error-prone DNA polymerase activity at stalled replication forks [166–168]. Recently,
the same protein was shown to be involved in DSBR repair during class switch recombination in B cells.
This further emphasizes the role of HMCES in genomic stability maintenance [169]. Another protein
involved in BER, DNA2, was shown to promote the restart of arrested replication forks by working in
concert with Werner syndrome ATP-dependent helicase (WRN) and Bloom syndrome protein (BLM).
Furthermore, it was shown that DNA2 with other factors is involved in the resection step during HR.
The extensive role of DNA2 helicase/nuclease in DNA repair was summarized elsewhere by Pawłowska
et al. and Zheng et al. [170,171]. Stefanovie et al. established another important contributor to DSBR.
A small, acidic protein called DSS was shown to play a crucial role in stimulation of RAD52 oligomer
formation and consequent strand invasion during single-strand annealing (SSA) and break-induced
replication (BIR) repair processes [172]. Moreover, new emerging functions of RAD52 in DNA repair
have been proposed by Jalan et al. [173]. Effective recruitment of many DNA repair factors can be
facilitated by PARPs. Despite extensive research carried on the role of PARPs in DNA repair, new
functions of these enzymes are being discovered. Unquestionably, they play a prominent role in DSBR,
SSBR and BER repair pathways and their activity and molecular clients are expanding [174].

8. Conclusions

Over the last decade, significant scientific progress in the understanding of DNA damage and
repair has been made. Despite extensive knowledge about the core components of DNA repair
pathways, new non-classical players in the area of eukaryotic DDR have been recognized. Sirtuins
represent an important group of DDR regulatory proteins that affect both chromatin condensation
status and repair efficacy. On the other hand, lnRNAs compromise a group of molecules with diverse
functions. The versatility of lnRNAs in the control of DNA repair results from their capacity to regulate
chromatin remodeling, allowing effective recruitment of repair components to the sites of damage,
regulation of TP53 on both transcriptional and translational level, and sponging of DDR-related
miRNAs. Chaperoning of DDR-components further affects the complexity of repair processes and
constitutes an interesting field of research. Moreover, given the number of genes regulated by the
circadian clock, new targets in DDR will surely be explored in the future. Understanding of their
individual contributions to genomic stability maintenance and comprehension of existing crosstalks
seems to be crucial and may lead to development of novel treatment strategies for cancer, age-related
diseases and more. Knowledge regarding non-classical repair pathways may comprise a path for
the development of new anticancer agents and constitute a pool of potential molecular targets for
targeted therapies.
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Abbreviations

APE1 AP endonuclease 1
APTX Aprataxin
ATM Protein kinase ataxia–telangiectasia mutated
ATR Protein kinase ataxia–telangiectasia and Rad3-related
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ATRIP ATR interacting protein
BER Base excision repair
BIR Break-induced replication
BLM Bloom syndrome protein
BMAL1 Brain and muscle ARNT-like 1
BRCA1 Breast cancer type 1 susceptibility protein
CCGS Clock-controlled genes
CDK Cyclin-dependent kinase
CHK1/2 Serine/threonine-protein kinase Chk1/2
CLOCK Circadian locomotor output cycles protein kaput
CPD Cyclobutane pyrimidine dimers
CRY1/2 Cryptochrome-1
CtIP CtBP-interacting protein
DDB1/2 DNA damage-binding protein
DDR DNA damage Response
DNA2 DNA replication ATP-dependent helicase/nuclease DNA2
DNA-PKCS DNA-dependent protein kinase, catalytic subunit
DSB Double-strand break
DSS1 DSS1 protein
EXO1 Exonuclease 1
FANC Fanconi anaemia pathway
FEN1 Flap endonuclease 1
HLH Helix–loop–helix motif
HMCES 5-Hydroxymethylcytosine binding, ES-cell-specific
hnRNP-K Ribonucleoprotein-K
HR Homologous recombination
HR-23B UV excision repair protein RAD23 homolog B
HSF Heat shock factor
HSP Heat shock protein
ICLs Inter-/intrastrand crosslinks
lncRNA Long-noncoding RNA
MDC1 Mediator of DNA damage checkpoint protein 1
MGMT O6-methylguanine methyltransferase
MLH1 MutL homolog 1
MMR Mismatch repair
MMS Methyl-methanesulfonate
MRE11 MRE11 homolog, double-strand break repair nuclease
MRN MRE11, RAD50 and NBS1 complex
MSH2/3/6 MutS homolog 2/3/6
MYH MutY homolog
NBS1 Nibrin
NER Nucleotide excision repair
NHEJ Non-homologous end joining
OGG1 8-oxoguanine DNA glycosylase
PARP Poly(ADP-ribose) polymerase
PAS Per-Arnt-Sim domain
PBMCs Peripheral blood mononuclear cells
PCNA Proliferating cell nuclear antigen
PER1/2/3 Period circadian protein homolog 1
PMS Mismatch repair endonuclease PMS2
PNK Polynucleotide kinase
RAD51 RAD41 recombinase
RFC Replication factor C
RNF168 Ring finger protein 168
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ROS Reactive oxygen species
RPA Replication protein A
SCN Suprachiasmatic nucleus
SIRT Sirtuin
SNF2h Sucrose nonfermenting-like 5
SSA Single-strand annealing
SSB Single-strand break
SSBR Single-strand break repair
TDG Thymine DNA glycosylase
TDP1 Tyrosyl-DNA phosphodiesterase 1
TLS Trans-lesion synthesis
TOPBP1 DNA topoisomerase 2-binding protein 1
TP53 Cellular tumor antigen p53
TP53BP1 Tumor suppressor p53-binding protein 1
TTFL Transcription–translational feedback loop
WRN Werner syndrome ATP-dependent helicase
XP Xeroderma pigmentosum protein
XRCC1 X-ray repair cross-complementing protein 1
γH2AX Phosphorylated histone protein H2AX
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