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Abstract: Drug resistance in oral cancer is one of the major problems in oral cancer therapy because
therapeutic failure directly results in tumor recurrence and eventually in metastasis. Accumulating
evidence has demonstrated the involvement of non-coding RNAs (ncRNAs), such as microRNAs
(miRNAs) and long non-coding RNAs (lncRNAs), in processes related to the development of drug
resistance. A number of studies have shown that ncRNAs modulate gene expression at the tran-
scriptional or translational level and regulate biological processes, such as epithelial-to-mesenchymal
transition, apoptosis, DNA repair and drug efflux, which are tightly associated with drug resis-
tance acquisition in many types of cancer. Interestingly, these ncRNAs are commonly detected in
extracellular vesicles (EVs) and are known to be delivered into surrounding cells. This intercellular
communication via EVs is currently considered to be important for acquired drug resistance. Here,
we review the recent advances in the study of drug resistance in oral cancer by mainly focusing on
the function of ncRNAs, since an increasing number of studies have suggested that ncRNAs could be
therapeutic targets as well as biomarkers for cancer diagnosis.

Keywords: oral cancer; miRNA; lncRNA; EMT; extracellular vesicles

1. Introduction

Oral cancer is a cancer of the tongue, gums, buccal mucosa, lips, palate and floor of
the mouth, and more than 90% of cases are diagnosed as oral squamous cell carcinoma
(OSCC) [1]. Among head and neck cancers, oral cancer has a high incidence, and tongue
cancer accounts for half of all oral cancers (Figure 1) [2–4]. The survival rates and prognoses
for advanced and metastatic cancers are poor, and the annual number of deaths related
to oral cancer is estimated to be approximately 180,000 [5,6]. In addition, oral cancer has
a significant impact on daily life. Surgical resection is commonly used as the first-line
treatment for oral cancer, while radiation therapy, chemotherapy, and immunotherapy
are used alone, or in combination for cases of advanced or unresectable oral cancer [7,8].
Chemotherapy for oral cancer is commonly based on cisplatin (CDDP), 5-fluorouracil
(5-FU), and paclitaxel alone, or in combination. Tumors that are initially sensitive to these
drugs often develop resistance to them, which reduces their effectiveness, limits their
therapeutic efficacy and is a major cause of recurrence and metastasis. Unfortunately,
despite the application of various therapies developed in the past few decades, the five-
year overall survival rate of OSCC has remained at approximately 50% [9]. Drug resistance
(or chemoresistance) can be divided into two types: intrinsic drug resistance and acquired
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drug resistance [10,11]. Intrinsic drug resistance refers to the presence of resistance factors
in the majority of tumor cells prior to drug administration, while acquired drug resistance
refers to resistance that develops due to the expression of resistance factors during drug
treatment. Resistance to these anticancer drugs is still a major problem in cancer treatment
and will continue to be a major issue in the future.
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Figure 1. Sites of Oral Cancer and Frequency of Occurrence. Tongue cancer: Cancer that occurs in the
front two-thirds of the tongue (the movable part of the tongue). Gingival cancer: Cancer that forms
in the mucous membrane of the dead flesh. Cancer of the lip and buccal mucosa: Cancer that forms
on the inside of the lips and cheeks. Cancer of the hard palate: Cancer that forms in the mucous
membrane of the roof of the mouth.

Previous studies have shown that drug resistance mechanisms that can interfere with
therapeutic efficacy are related to altered drug efflux, DNA damage repair, inhibition of
apoptosis, mutation of drug targets, epithelial-mesenchymal transition (EMT) and cancer
stem cells (CSCs) [12–15]. A number of these factors are involved in the acquisition of drug
resistance, and understanding the mechanisms involved should lead to the discovery of new
strategies to improve anticancer efficacy. Recently, evidence has shown that approximately
98% of the human genome is transcribed into RNA that has no protein-coding potential
and, hence, is termed non-coding RNA (ncRNA) [16,17]. One kind of ncRNA, microRNA
(miRNA), is an endogenous small ncRNA of 18–22 nt in length, which was first discovered
in 1993 in the lin-4 locus of C. elegans [18]. These small molecules bind to the 3’UTR
of the target mRNA in a sequence-specific manner, thereby inhibiting mRNA shedding
and translation [19]. In contrast, long non-coding RNA (lncRNA) is a novel class of
RNA with a length of greater than 200 nucleotides. The human genome is pervasively
transcribed, producing thousands of lncRNAs. Although MALAT1 was well-characterized,
most lncRNAs have a low abundance and instability and lack typical signatures of selective
constraints [20,21]. In addition, these ncRNAs are encapsulated by the lipid bilayers
of extracellular vesicles (EVs) [22] and can exist stably in the bloodstream and transmit
biological information to recipient cells. With the discovery and identification of ncRNAs,
the functions of dysregulated ncRNAs in OSCC development and drug resistance are
gradually being widely recognized [23]. Notably, ncRNAs exhibit both tumor-promoting
and tumor-suppressive activity. Here, we summarize the latest evidence associated with
drug resistance in OSCC and the underlying mechanisms of cell-to-cell communication
via ncRNAs.
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2. Epithelial-to-Mesenchymal Transition: EMT

Epithelial-to-mesenchymal transition (EMT) is an important biological feature in the
developmental process and in wound healing, in which epithelial cells lose their polarity
and intercellular tight junctions and acquire mesenchymal-like cell traits accompanied
by invasion and migration capabilities [24,25]. In cancer cells, EMT promotes increased
tumor-initiating ability and metastatic potential. Furthermore, the phenotypic change
of EMT endows increased resistance to several therapeutics [26]. Several EMT signaling
pathways have been implicated in drug resistance in cancer cells, and cells that undergo
EMT exhibit characteristics similar to those of cancer stem cells (CSCs), such as increased
drug efflux pump expression and apoptosis resistance [27]. Therefore, targeting EMT
is considered to be a new opportunity to overcome drug resistance in cancer. EMT is a
reversible phenomenon and is characterized by downregulation of the epithelial marker
E-cadherin and upregulation of the mesenchymal marker vimentin [25]. Various EMT-
activating transcription factors (EMT-ATFs) are strongly involved in the regulation of
EMT. These factors regulate the entire EMT program in addition to transforming cells
into a mesenchymal phenotype, giving cancer cells stem-like properties. These migrating
cancer stem cells are a subpopulation of self-renewing tumor cells that can quickly adapt to
changes in the surrounding environment. Additionally, EMT is not only important in the
development of primary tumors, but also promotes metastasis. Cells that have undergone
EMT are more resistant to chemotherapy than other tumor cells, leading to the root cause
of recurrence [28–30]. These EMT-ATFs, including those in the Snail, TWIST, and ZEB
families, bind specifically to the E-cadherin promoter via an E-box and recruit cofactors
and histone deacetylases to inhibit E-cadherin transcription [31]. Snail is also well known
to be induced via specific pathways, including the TGF-β, Notch, TNF-α, Wnt and hypoxia
pathways [32–35]. Snail also suppresses Raf kinase inhibitory protein (RKIP), an inhibitor
of nuclear factor-kappa B (NF-κB) [36]. In addition, Twist plays an important role in EMT
by inducing ZEB1 expression in cooperation with Snail. Twist maintains lung cancer cells
in a mesenchymal state through the PTEN/PI3K/AKT pathway and inhibits the effects of
cisplatin [37].

It has been reported that the expression of let-7d is decreased and that the expression
of Twist and Snail is increased in OSCC cell lines. Furthermore, overexpression of let-7
significantly suppresses cisplatin resistance and 5-FU resistance in OSCC cells, suggesting
that let-7 negatively regulates EMT and is involved in the regulation of chemotherapeutic
resistance [38]. Knockdown of ZEB1 and Snail expression via small interfering RNAs
(siRNAs) can improve the sensitivity of cancer cells to chemotherapy. Therefore, under-
standing the regulatory mechanisms of the ZEB1 machinery is important in overcoming
drug resistance in oral cancer [39]. ZEB1 is regulated by several ncRNAs, such as those
in the miR-200 family [40–46]. miR-200 family members directly bind to ZEB1 and ZEB2
mRNAs in many types of cancers, including oral cancer, and induce EMT by decreasing
ZEB1 and ZEB2 expression. Additionally, the sequences of miR-200 family members, such
as miR-200a, miR-200b and the related miR-429, are located within a 7.5-kb polycistronic
primary miRNA transcript [44]. In epithelial cells, these miR-200 family members can be
expressed and downregulate the ZEB1/SIP1 complex. Conversely, in mesenchymal cells,
ZEB1 and SIP1 suppress the expression of miR-200 family members through a conserved
pair of ZEB-type E-box elements located proximal to the transcription start site. These
double-negative feedback loops play a pivotal role in controlling ZEB1/SIP1 and miR-200
family expression, which regulates the cellular phenotype and has direct relevance to the
roles of these factors in tumor progression. Furthermore, hypermethylation of the ZEB1
and ZEB2 promoters plays an important role in the regulation of EMT during carcinogen-
esis. The same ncRNA-mediated EMT-inducing mechanism has been observed in oral
cancer [42,46,47]. Miyazaki et al. reported that CD44s induced EMT by repressing miR-200c
and upregulating ZEB1 [47].

In addition to regulation by miRNAs, regulation of EMT via lncRNAs has been
extensively reported. Lu et al. showed that the lncRNA HOTAIR promoted the cancer
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stemness and metastasis of oral carcinoma stem cells through modulation of EMT. Silence
of HOTAIR in oral carcinoma stem cells significantly inhibited their cancer stemness,
invasiveness and tumorigenicity in xenograft mouse models. By contrast, overexpression
of HOTAIR in OSCC enhanced their metastatic potential and EMT characteristics [48]. As
another example of the ncRNA-mediated regulation of ZEB1 in mesenchymal breast tumor
cells, lncRNA-PNUTS serves as a competitive sponge for miR-205 during EMT [49]. The
expression of lncRNA-PNUTS is elevated and correlates with the mRNA level of ZEB1. A
number of lncRNAs have been identified as EMT modulators in oral cancer [48–109]. The
details of these lncRNAs are summarized in Table 1. Thus, the expression levels of these
EMT-ATFs are regulated by many ncRNAs, including miRNAs and lncRNAs, resulting in
EMT, and these ncRNAs are subsequently involved in the development of drug resistance.

Table 1. EMT inducing lncRNAs in OSCC.

lncRNAs Expression Target and (Function) Cancer Type Reference

HOTAIR up (upregulation of the cancer stemness, invasiveness and
tumorigenicity) OSCC [48]

PNUTS up miR-205 OSCC [49]
LINC01303 up miR-429 OSCC [50]
LINC00460 up (PRDX1 promoted the transcription of LINC00460) HNSCC [51]

miR-4443 HNSCC [52]
miR-320b/IGF2BP TSCC [53]

MALAT1 up (upregulation of P-glycoprotein) OSCC [54]
(downregulation of MMP-9) TSCC [55]

miR-101/EZH2 OSCC [56]
miR-125b/STAT3 OSCC [57]

PVT1 up miR-194-5p/HIF1a OSCC [58]
miR-150-5p/GLUT-1 OSCC [59]

CYTOR up miR-1252-5p and miR-3148 OSCC [60]
NEAT1 up miR-365/RGS20 OSCC [61]

HOXA11-AS up miR-98-5p/YBX2 OSCC [62]
miR-518a-3p/PDK1 OSCC [63]

LOLA1 up (activation of the AKT/GSK-3β pathway.) OSCC [64]
AC007271.3 miR-125b-2-3p/Slug/E-cadherin OSCC [65]
LINC01296 up SRSF1 OSCC [66]
ADAMTS9-

AS2 up miR-600/EZH2 OSCC [67]

SNHG16 up miR-17-5p/CCND1 OSCC [68]
miR-302b-3p/SLC2A4 OSCC [69]

AATBC up miR-1237-3p/PNN/ZEB1 nasopharyngeal
carcinoma [70]

MIR4435-
2HG up miR-296-5p/Akt2/SNAI1 OSCC [71]

UCA1 up miR-124/JAG1 TSCC [72]
PART1 down miR-503-5p TSCC [73]

LINC00319 up miR-199a-5p/FZD4 OSCC [74]
TIRY up miR-14 OSCC [75]

ZNF667-AS1 up (inhibition of TGF-β1) OSCC [76]
SNHG12 up SNHG12/miR-326/E2F1 OSCC [77]

HOXC13-AS up miR-378g OSCC [78]
PRKG1-AS1 up (acceleration of the cell growth, invasion, and migration) OSCC [79]
AFAP1-AS1 up miR-145/HOXA1 OSCC [80]

HAS2-AS1 up HIF-1α hypoxic
OSCC [81]

CRNDE up (activation of the Wnt/β-catenin signaling pathway) OSCC [82]
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Table 1. Cont.

lncRNAs Expression Target and (Function) Cancer Type Reference

MYOSLID up (suppression of the Slug, PDPN and LAMB3 expression) OSCC [83]
LINC02487 down USP17/SNAI1 OSCC [84]
LINC01116 up miR-136/FN1 OSCC [85]
FOXD1-AS1 up miR-369-3p/FOXD1 HNSCC [86]

KRT16P3 up (modulation of JAK2/STAT3 signaling pathway) TSCC [87]
MEG3 down miR-421/E-cadherin HNSCC [88]

miR-21 OSCC [89]
miR-548d-3p/SOCS5/SOCS6 OSCC [90]

HCP5 up miR-140-5p/SOX4 OSCC [91]
ZEB1-AS1 up miR-23a-3p OSCC [92]

CILA1 up (activation of the Wnt/β-catenin signaling pathway) TSCC [93]
LINC00958 up miR-627-5p/YBX2 OSCC [94]

miR-185-5p/YWHAZ OSCC [95]
miR-211-5p/CENPK TSCC [96]

IGFL2-AS1 up miR-1224-5p/SATB1 TSCC [97]
H19 up miR-675-5p/PFKFB3 OSCC [98]

HNF1A-AS1 up (activation of the Notch signaling pathway) OSCC [99]
LINC00664 up miR-411-5p/KLF9 OSCC [100]

HOTTIP up (downregulation of the Bcl-2, upregulation of the Bax) TSCC [101]
miR-124-3p/HMGA2 TSCC [102]

AC132217.4 up KLF8/AC132217.4/IGF2 OSCC [103]
ZEB2-AS1 up (activation of TGF-β1-induced EMT) HNSCC [104]

MIAT up (activation of Wnt/β-catenin signaling pathway) TSCC [105]
NKILA down (inhibition of the NF-κB signaling pathway) OSCC [106]

SLC16A1-AS1 up (inhibition of G0/G1 cell cycle arrest) OSCC [107]
PTTG3P up miR-142-5p/JAG1 TSCC [108]

FOXC2-AS1 up miR-6868-5p/E2F3 TSCC [109]

3. Apoptosis

Apoptosis is a programmed form of cell death that is inherent in cells and has been
reported to be important in tumorigenesis and the chemotherapeutic response. Any change
in the molecules or pathways associated with apoptosis results in inhibition of apoptosis
and resistance to chemotherapeutic agents [110]. Apoptosis is highly regulated by Bcl-
2 family members, which consist of antiapoptotic and proapoptotic proteins. Previous
studies have reported that Bcl-2, Bcl-XL, and Mcl-1, which are antiapoptotic proteins,
are overexpressed in cisplatin-resistant OSCC cell lines [111]. Interestingly, it is possible
to promote apoptosis by downregulating the expression of these proteins; Bcl-XL can
promote apoptosis by regulating upstream regulators [112,113]. Mcl-1 is regulated by
STAT3 and AKT-mediated GSK3b signaling, and chemical inhibitors have been shown
to be able to restore the apoptotic process [114]. Similar to these proteins, proapoptotic
proteins are also known to be involved in chemotherapeutic resistance, and Bax has been
shown to be downregulated in cancer tissues from cisplatin-resistant OSCC patients and in
cisplatin-resistant OSCC cell lines. Bax is a downstream gene in the p53/AKT pathway,
and inhibition of Akt promotes apoptosis [115,116]. Inhibitors of apoptosis (IAPs) are
known to have a baculoviral IAP repeat (BIR) domain, comprised of 70–80 amino acids,
that binds to and inhibits caspases, thereby suppressing cell death. X-linked inhibitor of
apoptosis (XIAP) is an IAP that is a negative regulator of apoptosis and has been shown to
antagonize the apoptotic cascade by directly inhibiting caspases [117]. Survivin is also a
member of the IAP family and has been implicated in chemoresistance by its inhibitory
effect on apoptosis mediated through binding to caspases. In previous studies, it has been
reported that survivin expression is upregulated in HNSCC and is positively correlated
with malignant characteristics, suggesting that it could be a biomarker for cancer [118].
Notably, p53 is a tumor suppressor, and mutated p53 is unable to induce apoptosis and is
involved in chemotherapeutic resistance. Clinical evidence suggests that the prevalence of
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p53-mutated tumors is higher in patients who fail to respond to neoadjuvant therapy than
in those who do respond [119]. As described above, changes in the expression of apoptotic
proteins and proapoptotic proteins result in drug resistance in cancer cells.

A number of ncRNAs are involved in the regulation of these proteins to permit escape
from the effects of anticancer drugs. The expression of miR-155 is elevated in OSCC patient-
derived tissues [120]. This upregulated miR-155 directly binds to FOXO3a, which is a
well-defined tumor suppressor gene. The expression of miR-155 was significantly higher
but FOXO3a mRNA and protein expression was obviously lower in cisplatin-resistant oral
cancer cell lines than in the parental cells. Inhibition of miR-155 expression upregulated
FOXO3a expression, suppressed proliferation, promoted apoptosis and enhanced cisplatin
sensitivity in oral cancer cells. FOXO3a is also regulated by miR-223 [121].

The miR-371/372/373 miRNA cluster is located on human chromosome 19q13.4,
which is frequently acquired in head and neck cancers [122]. Additionally, expression of
miR-372 and miR-373 is correlated with poor prognosis in OSCC patients. Simultaneous
silencing of miR-371/372/373 in SAS cells was found to decrease their oncogenic potential,
increase their cisplatin sensitivity, activate p53 and upregulate the expression of Bad and
DKK1. In contrast, upregulation of the miR-371/372/373 cluster slightly enhanced the
expression of AKT, β-catenin and Src, leading to promotion of their oncogenic effects and
drug resistance. Additionally, miR-372 regulates zinc finger and BTB domain containing
7A (ZBTB7A), which is a transcriptional regulator and is involved in regulating a great di-
versity of physiological and oncogenic processes [123]. ZBTB7A modulates the expression
of the death receptors TRAIL-R1, TRAIL-R2, Fas and p53. The ZBTB7A-TRAIL-R2 cascade
is involved in both the extrinsic and intrinsic cisplatin-induced apoptosis-related pathways.
MMP2 expression was found to be higher in OSCC tissues than in adjacent tissues, but
miR-29a expression was lower in OSCC tissues than in adjacent tissues. Exogenous overex-
pression of miR-29a significantly inhibited OSCC cell invasion and apoptosis resistance by
inhibiting MMP2 directly [124]. The long non-coding RNA urothelial cancer associated 1
(UCA1) is generally regarded as an oncogene in some cancers [125]. UCA1 expression was
found to be upregulated in OSCC cells, which facilitated proliferation, enhanced cisplatin
chemoresistance, and suppressed apoptosis. UCA1 could interact with miR-184 to repress
its expression. Downregulation of miR-184 partially reversed the tumor-suppressive and
cisplatin chemosensitizing effects of UCA1 knockdown in cisplatin-resistant OSCC cells.
UCA1 acts as a miR-184 sponge, and downregulation of miR-184 then modulates the
expression of SF1. Modulation of SF1 accelerates cancer cell proliferation, increases cis-
platin chemoresistance and partially suppresses apoptosis. The expression of the lncRNA
CEBPA-DT/CEBPA/BCL2 is upregulated in cisplatin-resistant OSCC cells compared with
the parental cells [126]. Downregulation of CEBPA-DT enhances cisplatin sensitivity and
facilitates apoptosis in cisplatin-resistant OSCC cells. In addition, CEBPA-DT regulates
cisplatin chemosensitivity through CEBPA/BCL2-mediated apoptosis.

In tongue squamous cell carcinoma (TSCC), miRNA processing-related lncRNA
(MPRL) is significantly upregulated in TSCC cell lines treated with cisplatin and transacti-
vated by E2F1 [127]. MPRL controls mitochondrial fission and cisplatin sensitivity through
miR-483-5p. Cytoplasmic MPRL directly binds to pre-miR-483 within the loop region and
inhibits pre-miR-483 recognition and cleavage by the TRBP-DICER complex, leading to
downregulated generation of miR-483-5p and upregulated expression of the miR-483-5p
downstream target FIS1. High expression of MPRL and pre-miR-483 and low expression
of miR-483-5p were found to be significantly associated with chemosensitivity and better
prognosis in TSCC patients. In addition to these miR-483-5p and MPRL, Rin Z et al. showed
that upregulation of CILA1 promotes EMT phenotype, invasiveness and chemo-resistance
in TSCC cells, whereas the inhibition of CILA1 expression induces mesenchymal-epithelial
transition (MET) and chemo-sensitivity [93]. The expression level of CILA1 is correlated
with poor prognosis in TSCC patients. It indicates that ncRNAs, which up-regulated in
cancer patients, are also useful as biomarkers.
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Moreover, not only cancer cells, but also cells within the cancer microenvironment
are regulated by lncRNAs and are involved in drug resistance [128]. Midkine (MK) is a
heparin-binding growth factor that promotes carcinogenesis and chemoresistance. MK
induces cisplatin resistance in OSCC cells. Cancer-associated fibroblasts (CAFs) secrete
increased levels of MK, which abrogates cisplatin-induced cell death. Moreover, MK
increases the expression of the lncRNA ANRIL in tumor cells. lncRNA ANRIL knockdown
in tumor cells inhibits proliferation, induces apoptosis and increases cisplatin cytotoxicity
in tumor cells via impairment of the drug transporters MRP1 and ABCC2, which can be
restored by treatment with human MK in a caspase-3/BCL-2-dependent manner. Other
apoptosis-related lncRNAs are summarized in Table 2: XIST [129], HOXA11-AS [130],
KCNQ1OT1 [131,132], CASC2 [133,134], HOTAIR [135]. Thus, targeting lncRNAs, not only
in cancer cells, but also in cells in the surrounding cancer microenvironment, may be a new
therapeutic approach for OSCC.

Table 2. lncRNAs associated with anti-apoptosis in OSCC.

lncRNAs Expression Target and (Function) Cancer Type Reference

UCA1 up miR-184/SF1 OSCC [125]
CEBPA-DT up CEBPA/BCL2 OSCC [126]

MPRL up miR-483-5p/FIS1 TSCC [127]

ANRIL up (Midkine increased the expression of
lncRNA ANRIL in the tumor cells) CAFs with OSCC [128]

XIST up miR-27b-3p OSCC [129]
HOXA11-AS up miR-214-3p/PIM1 OSCC [130]
KCNQ1OT1 up miR-211-5p/Ezrin TSCC [131]

miR-185-5p/Rab14 OSCC [132]
CASC2 down miR-21/PDCD4 OSCC [133]

miR-31-5p/KANK1 OSCC [134]

HOTAIR up (the downregulation of the expression of
MAP1LC3B, beclin1, ATG3 and ATG7) OSCC [135]

4. DNA Damage and Repair

When DNA damage occurs, an intrinsic DNA damage response mechanism normally
suppresses or completely disrupts DNA synthesis, inhibits cell cycle progression and
activates the DNA repair pathway [136]. Abnormalities in the DNA repair pathway
have been linked to cancer development and progression, and chemotherapeutic agents
induce cell death by directly or indirectly causing DNA damage. However, cancer cells
are known to reduce their susceptibility to chemotherapeutic agents by enhancing their
DNA repair ability or preventing the induction of cell death [137]. DNA damage repair
is mainly carried out via mismatch repair (MMR), nucleotide excision repair (NER), base
excision repair (BER), interstrand crosslink repair (ICR), homologous recombination (HR)
repair, translesion DNA synthesis (TLS) and nonhomologous end joining (NHEJ) [138,139].
Previous studies have reported that alterations in genes and pathways associated with NER
are associated with cisplatin-resistant phenotypes in many cancers, including gastric and
ovarian cancers [140]. Cisplatin-resistant TSCC is known to exhibit increased expression
of excision repair cross complementation group 1 (ERCC1), a key component of the NER
pathway, and previous studies have shown that silencing ERCC1 reverses resistance to
cisplatin in gastric and ovarian cancers. Studies have shown that silencing ERCC1 reverses
resistance to cisplatin in gastric and ovarian cancers [141]. Furthermore, it was reported that
patients with low levels of ERCC1 who received cisplatin chemotherapy had a statistically
significant improvement in survival compared to patients with high levels of ERCC1 who
received cisplatin chemotherapy [142]. HR is also known to be a pathway that can preserve
the entire DNA sequence. DNA damage caused by chemotherapeutic agents has been
shown to lead to the development of drug resistance through DNA repair by RAD51,
an HR repair protein that is important for identifying homologous sequences on sister
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chromatids [143]. It has been reported that BRCA1, or breast cancer type 1 protein, which is
involved in cell cycle checkpoint activation, is also involved in DNA double-strand break
(DSB) repair. It has been reported that BRCA1 is an important regulator of RAD51 function.
Cancers lacking BRCA1 are susceptible to cisplatin because of the accumulation of DSBs
due to the inability of DNA repair by HR. However, it has been reported that cancers with
BRCA1 mutation acquire resistance to cisplatin due to secondary mutations that restore
BRCA1 function [144]. Similar to HR repair, DSBs can also be repaired by NHEJ, which
plays an important role in functional genomic reconstruction after DNA damage. TRIP13 is
a member of the AAA + ATPase family of proteins and is known to bind to repair proteins
such as KU70, KU80, and DNA-PKcs [145]. During NHEJ, KU70 and KU80 are activated by
recruiting DNA-PKcs, and XRCC4 and artemins are then incorporated to form the DNA-PK
complex. These results suggest that TRIP13 may provide the energy necessary for the
formation of the DNA-PK complex and that TRIP13 may be involved in cell survival by
promoting NHEJ. It has also been reported that head and neck squamous cell carcinoma
(HNSCC) cells overexpressing TRIP13 are resistant to chemotherapy and radiation.

Thus, a variety of genes are associated with DNA repair, resulting in drug resistance.
These genes are also regulated by some ncRNAs in oral cancer. Moreover, BRD4, a member
of the bromodomain and extra-terminal domain (BET) protein family, plays a pivotal
role in promoting DNA repair as well as regulating super-enhancers and transcriptional
activation of oncogenes in cancer. The BRD4 gene is recognized as a promising target
for cancer therapy. Notably, miRNA mimics can simultaneously target several tumor-
promoting genes, and BRD4 may be useful as a therapeutic target for tumor-suppressive
miRNAs [146]. By screening more than 2000 miRNA mimics, miR-1293, miR-876-3p, and
miR-6571-5p were identified as tumor-suppressive miRNAs targeting BRD4. Notably,
miR-1293 also suppressed DNA repair pathways by directly suppressing the DNA repair
genes APEX1 (apurinic-apyrimidinic endonuclease 1), RPA1 (replication protein A1) and
POLD4 (DNA polymerase delta 4, accessory subunit). Simultaneous suppression of BRD4
and these DNA repair genes synergistically inhibited tumor cell growth. Vomeronasal
type-1 receptor 5 (VN1R5), which is associated with cisplatin resistance, is highly expressed
in cisplatin-resistant HNSCC cells and tissues [147]. Expression of the lncRNA lnc-POP1-1
is transcriptionally regulated by VN1R5, which activates the transcription factor specificity
protein 1 (Sp1) via the cyclic AMP (cAMP)/protein kinase A (PKA) pathway. lnc-POP1-1
was found to bind directly to the minichromosome maintenance deficient 5 (MCM5) protein
and inhibit the ubiquitination of the MCM5 protein, thereby slowing its degradation, then
facilitating the repair of DNA damage caused by cisplatin. Although it is still unclear which
lncRNAs are involved in DNA repair in oral cancer, the involvement of lncRNAs in EMT
and other drug resistance-related phenotypes suggests that many lncRNAs may also be
involved in DNA repair.

5. Stem Cells and Changes in Drug Efflux (Drug Transporters)

Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), have been re-
ported to exist in a variety of cancers, including head and neck cancers [148]. CSCs are
a subpopulation of tumor cells with self-renewal and tumorigenic properties that divide
unequally to form heterogeneous cell populations, which often transform into invasive
and metastatic types of tumors and are thought to be the cause of recurrence and metas-
tasis [149,150]. They are also capable of inducing cell cycle arrest and are considered to
possess the ability to confer resistance to chemotherapeutic agents and radiotherapy [151].
Although the developmental origin of CSCs is still elusive, it has been suggested that
the accumulation of genetic mutations in normal stem cells may result in enhanced self-
renewal and transformation, or that mutations in progenitor cells or mature cells may
result in dedifferentiation, leading to the acquisition of self-renewal properties and tumori-
genicity [152,153]. CSCs may acquire resistance to chemotherapy via several mechanisms:
overexpression of ATP-binding cassette (ABC) transporters and antiapoptotic molecules,
abnormal activation of signaling pathways, acquisition of multidrug resistance due to



Biomolecules 2022, 12, 284 9 of 22

enhanced DNA repair activity, and the presence of a tumor microenvironment (TME)
that protects tumor cells from drugs. There is a wide range of possibilities, such as the
formation of a niche to protect tumor cells from drugs via the tumor microenvironment
(TME) or dormancy (inactivity) in the body, followed by activation (after several years
or decades) [154,155]. In the tumor microenvironment surrounding cells, mesenchymal
stem cells (MSCs) could affect cancer cells to enhance their stemness [156–158]. Cancer
cells co-cultured with MSCs exhibited upregulated expression of the lncRNA AGAP2-AS1,
which enhanced cancer stemness [158]. AGAP2-AS1 forms a complex with HuR, and
this complex binds to CPT1, leading to RNA stability. In addition, AGAP2-AS1 acts as
miR-15a-5p sponge.

One of the main causes of chemotherapeutic resistance in CSCs is an increase in the
expression of genes encoding drug efflux pumps, which promotes the efflux of anticancer
drugs from tumor cells and decreases the intracellular drug concentration, leading to
multidrug resistance. Among the transporters involved in these changes, the adenosine
phosphate (ATP)-binding cassette (ABC) transporter family is well known. All ABC trans-
porters are composed of two nucleotide-binding domains (NBDs) and two transmembrane
domains (TMDs) and are responsible for transporting a wide range of substrates, such
as amino acids, ions, sugars, lipids, and drugs [159]. TMDs play a role in recognizing
substrates and mediating their passage through the cell membrane, and the diversity of
TMDs indicates differences in substrate specificity. The ABC transporter genes are classified
into seven subfamilies (A to G). Among these transporters, ABCB1 (P-glycoprotein/P-
gp/MDR1), ABCC1 (multidrug resistance protein 1/MDR1), and ABCG2 (breast cancer
resistance protein/BCRP) have been extensively reported in many studies [160]. The most
common indicator of multidrug resistance is P-glycoprotein (P-gp), which is a product of
the multidrug resistance gene (MDR1) and a 170 kDa transmembrane phosphoglycopro-
tein that functions as an ATP-dependent efflux pump [161]. Notably, P-gp may eliminate
paclitaxel and vincristine from P-gp-positive OSCC cells. Additionally, taxanes, alkaloids,
podophyllotoxins, and other molecules of plant origin are the main substrates of P-gp in
cancer cells [162]. In one study, P-gp expression in OSCC was predominantly increased
in recurrent tumors compared to primary tumors, and P-gp expression was significantly
correlated with the severity of dysplasia. These results suggest that the expression level of
P-gp may be a prognostic indicator in patients with OSCC [163]. Furthermore, ABCC1 is
also a member of the ABC subfamily and acts on organic anions such as glutathione, glu-
curonic acid, and drugs bound to sulfate as substrates [164]. It is known to be upregulated
in OSCC cell lines treated with vincristine or CDDP and is correlated with chemoresistance
and poor prognosis. The third drug transporter is BCRP, which is encoded by ABCG2. It
has been shown that the expression of ABCG2 is increased in 5-FU- and CDDP-resistant
OSCC cells compared to OSCC cells that are sensitive to these drugs [165]. Notably, BCRP
may also be a marker for stem cell-rich side population (SP) cells, which have been reported
to be tumorigenic, express stem-like genes, and be resistant to chemotherapy. In OSCC, SP
cells were found to express higher levels of ABCG2 than non-SP cells, suggesting that high
expression of BCRP in SP cells promotes the progression of drug resistance, proliferation
and tumor invasion [166]. The expression of the lncRNA LINC00963 was found to be
upregulated in oral cancer tissues, and knockdown of this lncRNA led to a decrease in
stemness via suppression of ABCG2 [167].

Therefore, although few studies have shown a relationship between ncRNAs and
CSCs in oral cancer, the development of therapies that target CSCs could be considered to
mitigate chemoresistance.
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6. Other ncRNAs: circRNAs and piRNAs in Drug Resistance

In addition to miRNAs and lncRNAs, a number of ncRNAs such as circular RNAs
(circRNAs) and PIWI-interacting RNAs (piRNAs) have been reported. Of note, circRNAs
are characterized by closed loop structures without a polyadenylated tail, leading to the
under-estimation of the existence of circular RNAs in previous polyadenylated transcrip-
tome analyses [168]. One of the most important mechanisms of circRNAs is their function
as a sponge of miRNAs [168–170]. Furthermore, circRNAs strongly inhibit their target
miRNAs, which leads an increase in the expression level of the mRNA that miRNAs target.
Accumulating evidence suggests that circRNAs are also involved in drug resistance in
cancer [171–175]. The expression level of circRNA_0025202 is downregulated in tamoxifen-
resistant MCF-7 cells [171]. A large cohort of breast cancer showed that low expression
of circRNA_0025202 is correlated with lymphatic metastasis and histological grade. In
normal tissue, circRNA_0025202 acts as a sponge for miR-182-5p. Downregulation of
miR-182-5p induces the expression and activity of FOXO3a, which enhances tumor in-
hibition and tamoxifen sensitization effects. In gastric cancer patients, the expression of
circCUL2 was negatively regulated [172]. One of the targets of circCUL2 is miR-142-3p;
this miRNA induces autophagy via inhibition of ROCK2. As another function of circRNAs,
circRNA-SORE is upregulated in sorafenib-resistant hepatocellular carcinoma cells and its
depletion substantially increases sorafenib sensitivity [173]. Additionally, circRNA-SORE
binds the master oncogenic protein YBX1 in the cytoplasm, which prevents YBX1 degrada-
tion. Thus, circRNA-SORE contributed to stabilization of YBX1 protein. Notably, circRNAs
also play an important role in the OSCC [176–181] and circ_0000140 was downregulated
in OSCC [176]. Furthermore, circ_0000140 acts as a sponge for miR-31, then, upregulates
its target gene LATS2, which is associated with EMT. Significantly, circIGHG/miR-142-
5p/IGF2BP3 axis, and circEPSTI1/mir-942-5p/LTBP2 axis, circUHRF1/miR-526b-5p/c-
Myc/TGF-β1/ESRP1 axis were also shown to promote EMT [177–179]. Furthermore,
circ_0001461/miR-145/TLR4/NF-kB axis promotes the resistance of TNF-a-induced apop-
tosis [181].

Moreover, piRNAs constitute small ncRNA molecules of approximately 24–31 nt in
length and bind to the PIWI protein family to regulate many pathways at the transcrip-
tional or post-transcriptional level [182,183]. Notably, piRNAs are mostly expressed in
the germline and their main function is transposon silencing, although their function in
mammalian somatic tissues is not so clear. Aberrant expression of piRNAs in cancer cells
has been detected and is expected to be used as a biomarker; however, little is known about
the function of piRNAs in cancer cells [184–187]. For instance, piRNA-30473 is involved in
the upregulation of WTAP, an m6A mRNA methylase. An increased m6A level contributes
to the tumorigenesis in diffuse large B-cell lymphoma [184]. The involvement of piRNAs
in drug resistance has also been reported [185,186]. Doxorubicin (DOX) resistant fibrosar-
coma cells express piR-39980. In DOX sensitive cells, inhibition of piR-39980 induces DOX
resistance by suppressing RRM2 and CYP1A2 [185]. RRM2 enhances DNA repair in DOX
resistant cells, while CYP1A2 decreases intracellular DOX accumulation. Another example
of drug resistance associated piRNA is that the expression level of piRNA-36712 is low in
breast cancer [186]. Furthermore, piRNA-36712 is associated with the downregulation of
SEPW1 in normal breast tissue. In cancer cells, downregulation of piRNA-36712 mediates
the upregulation of SEPW1, and then suppresses p53 and promotes EMT. In addition, syner-
gistic anticancer effects with the paclitaxel and DOX was observed when piRNA-36712 was
used in combination. In this way, understanding the function of piRNAs is also important
to overcome the drug resistance. Several piRNAs have been reported to be involved in
OSCC [187], but no reports existed on drug resistance. Thus, future analysis of piRNAs in
OSCC will be of great value.
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7. Extracellular Vesicles: EVs

Given that the TME is a critical factor in increased drug resistance, understanding
cell-to-cell communication through ncRNAs is important for understanding drug resistance.
Exosomes are classified as small extracellular vesicles (sEVs) with a diameter ranging from
30 to 150 nm (average, 100 nm) and are of endosomal origin. EVs, including exosomes,
are secreted by most types of cells. EVs are enclosed by a lipid bilayer and carry various
biomolecules, such as proteins, glycans, lipids, metabolites, RNA and DNA [188]. When
EVs are taken up by other cells, these cargoes are transferred and influence the phenotype
of the recipient cells. Thus, EVs are appreciated as essential mediators of cell-to-cell
communication. In the field of cancer biology, EVs have been found to play crucial roles
in cancer metastasis [189] and drug resistance [190–195]. In oral cancer, EVs also mediate
drug resistance by transferring their cargoes to recipient cells [196–202].

As described above, miRNAs are important for drug resistance in oral cancer. Con-
sidering that many miRNAs are contained in EVs, it is very important to understand
cell-to-cell communication via EVs. Kirave et al. showed that the expression of miR-155
was upregulated in OSCC cells, and miR-155 was also highly detected in EVs [203]. This
exosomal miR-155, derived from cisplatin-resistant cells, transformed cisplatin-sensitive
cells to cisplatin-resistant cells. In contrast, downregulation of exosomal miR-30a was
found to be involved in OSCC recurrence [204]. In this study, miR-30a was found to
directly bind to Beclin1, which is associated with autophagy. EVs derived from cisplatin-
resistant cells with high miR-30a expression decreased the Beclin1 level. More importantly,
these EVs resensitized the resistant cells to cisplatin. These results indicate that exosomal
miR-30a suppressed OSCC, although cancer cells could sometimes escape the effects of
tumor-suppressive miRNAs. Additionally, miRNAs encapsulated in EVs can also act as
sponges for miRNAs [205]. Circ-SCMH1 was found to be upregulated in cisplatin-resistant
OSCC tissues and cells; circ-SCMH1 was an EV cargo, and cisplatin-resistant OSCC cell-
derived EVs facilitated circ-SCMH1 upregulation in the parental cells. Circ-SCMH1 directly
sponged miR-338-3p and indirectly regulated LIN28B, a target gene of miR-338-3p. Exo-
somal lncRNA APCDD1L-AS1 conferred resistance to 5-FU via the miR-1224-5p/NSD2
axis in OSCC [206]. The expression of the lncRNA ZFAS1 attenuated miR-421 expression in
OSCC, leading to the acquisition of cisplatin resistance [207].

As EVs play a pivotal role in cancer drug resistance, EV-targeted therapies are currently
being developed. Khoo et al. showed that inhibition of EV secretion from cisplatin-
resistant cells restored cisplatin sensitivity [208]. Epidermal growth factor receptor (EGFR)
signaling is frequently increased in OSCC; thus EGFR is molecularly targeted by the
therapeutic antibody cetuximab [209]. Cetuximab has only a partial effect; thus, some
cancer cells survive. The surviving cells then secrete more EGFR-expressing EVs than
normal cells. These EGFR-expressing EVs act as decoys for cetuximab, which causes
cetuximab resistance. Thus, it is important to consider not only cancer cells but also
EVs secreted by cancer cells when considering therapeutics. Furthermore, EVs from tumor
microenvironment cells, including CAFs, also affect cancer drug resistance [196,210]. In head
and neck cancer, exosomal miR-196a derived from CAFs was found to regulate CDKN1B
and ING5 [211]. Depletion of exosomal miR-196a restored cisplatin sensitivity in head and
neck cancer cells. In contrast, normal cell-derived EVs have the potential to suppress tumor
progression [212–215]. Notably, miR-200c was packaged into EVs derived from normal
tongue epithelial cells (NTECs), which were transferred into docetaxel-resistant cells,
and the transferred miR-200c influenced docetaxel resistance by inhibiting TUBB3 and
PPP2R1B [212]. Therefore, EV-mediated cell-to-cell communication could be a potential
therapeutic option (Figure 2).
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have the potential to inhibit tumor progression. In contrast, EVs derived from chemoresistant cells
promote the conversion of chemosensitive cells into chemoresistant cells.

8. Conclusions

Understanding the molecular mechanisms of drug resistance is critical for improving
patient prognosis in oral cancer, consequently, a large number of studies have been con-
ducted worldwide. Since miRNAs are well known to be associated with cancer biology and
are easy to analyze, researchers have intensively and extensively focused on investigating
miRNAs for the past two decades. Conversely, due to their low abundance and difficulty
of analysis, examination of lncRNAs has been delayed; however, recent technological
advances in next-generation sequencing have paved the way for investigating lncRNAs in
cancer. As described above, ncRNAs are involved in processes related to drug resistance
acquisition, such EMT, apoptosis, DNA repair, and CSC development (Figure 3). Therefore,
targeting both ncRNAs themselves and their signaling targets could be a better therapeutic
strategy for preventing or overcoming drug resistance.

Moreover, ncRNAs, particularly miRNAs, have been identified as being packaged into
EVs. Notably, ncRNAs packaged as EVs function as natural intercellular communication
tools. As they can be readily detected in body fluids, such as serum, plasma, saliva and
urine, EVs have attracted considerable attention as liquid biopsy biomarkers. This kind of
biomarker could be used in a precision medicine approach, not only to detect cancer at an
early stage, but also to predict the responsiveness to anticancer drugs, the acquisition of
drug resistance, and the possibility of recurrence.
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