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Background. The prognosis of pancreatic adenocarcinoma (PAAD) is extremely poor and has not been improved. Thus, an effective
method to assess the prognosis of patients must be established to improve their survival rate. Method. This study investigated
immune-related genes that could be used as potential therapeutic targets for PAAD. Level 3 gene expression data from the
PAAD cohort and the relevant clinical information were obtained from The Cancer Genome Atlas (TCGA) database. For
validation, other PAAD datasets (DSE62452) were downloaded from the Gene Expression Omnibus (GEO) database. The
PAAD datasets from TCGA and GEO were used to screen immune-related genes through the Molecular Signatures Database
using gene set enrichment analysis. Then, the overlapping immune-related genes of the two datasets were identified.
Coexpression networks of the immune-related genes were constructed. Results. A signature of three immune-related genes
(CKLF, ERAP2, and EREG) was identified in patients with PAAD. The signature could be used to divide the patients with
PAAD into high- and low-risk groups based on their median risk score. Multivariate Cox regression analysis was performed to
determine the independent prognostic factors of PAAD. Time-dependent receiver operating characteristic (ROC) curve analysis
was conducted to assess the prediction accuracy of the prognostic signature. Last, a nomogram was established to assess the
individualized prognosis prediction model based on the clinical characteristics and risk score of the TCGA PAAD dataset. The
accuracy of the prognostic signature was further evaluated through functional evaluation and principal component analysis.
Conclusions. The results indicated that the signature of three immune-related genes had excellent predictive value for PAAD.
These findings might help improve personalized treatment and medical decisions.

1. Introduction

Pancreatic cancer is a leading cause of death in developed
countries, and it is a common malignant tumor worldwide
[1]. The main tumor type of pancreatic cancer is pancreatic
adenocarcinoma (PAAD), which accounts for approximately
85% of cases [2]. The prognosis of pancreatic cancer is
extremely poor, and the 5-year survival rate is estimated to
be less than 5% [1]. Pancreatic cancer is expected to surpass
breast cancer and become the third leading cause of cancer
death [3]. Studies have predicted that the mortality rate of
pancreatic cancer in malignant tumors worldwide will have

ranked second by 2030 [4]. An important reason for the
low survival rate of pancreatic cancer is that most patients
are diagnosed at the end stage of the disease [5]. Smoking,
high-fat diet, obesity, alcoholism, diabetes, and chronic pan-
creatitis are risk factors for pancreatic cancer [6–8]. The
pathogenesis of familial pancreatic cancer is closely related
to CDKN2A, BRCA1, BRCA2, and PALB2 [9]. The only pos-
sible treatment for pancreatic cancer is surgical resection, but
only a few patients with early-stage pancreatic cancer are eli-
gible to undergo resection [10]. Chemotherapy, targeted
therapy, and immunotherapy for pancreatic cancer treat-
ment improve a patient’s survival time [11]. Immunotherapy
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has become a new pillar of cancer treatment for more than a
decade, and it has offered new hope for reducing the morbid-
ity and mortality of this refractory disease [12]. The develop-
ment of immunotherapy for PAAD treatment faces
challenges because of the poor immunogenic nature of
PAAD [13]. Nevertheless, a large percentage of patients with
PAAD may benefit from immunotherapy in the future [14].
With remarkable progress in bioinformatics, prognostic gene
expression characteristics have been extensively developed
for PAAD [15]. The development of tumor molecular biol-
ogy has further promoted tumor therapy based on
immune-related genes. Therefore, the abnormal expression
of immune-related genes may have prognostic value for
patients with PAAD and provide a new basis for administer-
ing tumor immunotherapy for PAAD. In this study,
immune-related genes associated with the prognosis of

PAAD were identified on the basis of RNA-seq data from
TCGA through the Molecular Signatures Database
(MSigDB) [16], and a risk score model for PAAD prognosis
was constructed. A prognostic nomogram that combined
prognostic gene trait risk models and clinical prognostic fac-
tors was established to predict overall survival (OS). The reli-
ability of this method was verified through the GEO database.

2. Materials and Methods

2.1. Datasets Source. The level 3 gene expression data from
the PAAD cohort and corresponding clinical information
were obtained from the data portal of TCGA (https://portal
.gdc.cancer.gov/, accessed October 11, 2019). Relevant clini-
cal information, such as gender, age, radical resection, grade,
alcohol history, survival, and outcome, was also obtained
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Figure 1: Kaplan-Meier curves of three prognostic immune-related genes in PAAD. The order is as follows: (a) CKLF, P = 0:059; (b) ERAP2,
P = 0:032; and (c) EREG, P = 0:033.
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from the data portal of TCGA. For validation, gene expres-
sion microarray datasets (DSE62452) were downloaded from
the Gene Expression Omnibus (GEO, https://http://www
.ncbi.nlm. https://nih.gov/geo/). The data used in this study
were downloaded from GEO and TCGA, so data were
acquired and applied in accordance with GEO and TCGA
publishing guidelines and data access policies. Therefore,
no additional approval from an ethics committee was
required.

2.2. Immune-Related Gene Screening. A list of immune-
related genes was extracted from the datasets of immune sys-
tem process (M13664) and immune response (M19817) from
MSigDB (http://software.broadinstitute.org/gsea/msigdb/
index.jsp) [16]. The expression data of these genes were
screened from the PAAD cases of TCGA and GEO.
Immune-related prognostic genes were further evaluated
with univariate Cox proportional hazard regression by using
a “survival” package (version 2.44-1.1) on the R platform
(version 3.6.1). Genes with P < 0:05 and |hazard ratio (HR)|
>1.00 were considered to be prognostic risk genes, and their
expression levels were significantly associated with OS in
PAAD.

2.3. Signature Development. The prognostic immune-related
genes were analyzed using multivariate Cox regression anal-

ysis with OS as the dependent variable to evaluate their roles
in predicting PAAD survival. A prognostic risk score model
was prepared via the linear combination of the expression
levels of immune-related genes with the multivariate Cox
regression coefficient (β) as the weight [17]. The risk scores
were calculated using the prognostic gene signatures. The
risk score formula was as follows: risk score = expression of
gene1 × β1 + expression of gene2 × β2 +⋯expression of
gene n × βn [18, 19]. A total of 142 cases were divided into
high- and low-risk groups based on the median risk score.
|HR| >1.0 and P < 0:05 were selected among the TCGA and
GEO datasets as a cut-off. Then, three genes were chosen
for signature development. A receiver operating characteris-
tic (ROC) curve was established over time on the R platform
to assess the accuracy of the risk score model for predicting
the prognosis of PAAD [20].

2.4. Functional and Pathway Enrichment Analyses. The func-
tional enrichment analyses of the immune-related genes
mainly involving Gene Ontology (GO) terms and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway anal-
ysis were carried out using the “cluster Profiler” R package
[21]. GO analysis revealed the functions of the immune-
related genes in biological processes (BP), cellular compo-
nents (CC), and molecular functions (MF), and the KEGG

Table 1: Clinical and pathologic characteristics of PAAD patients and prognostic analysis.

Variables Events Total (n = 142) MST (days) HR (95% CI) P value

Age (years) 0.344

≤60 22 45 593 1

>60 56 97 568 1.270 (0.774-2.086)

Gender 0.441

Female 40 67 532 1

Male 38 75 614 0.838 (0.536-1.312)

Alcohol historya 0.742

No 27 49 532 1

Yes 43 81 598 1.084 (0.670-1.756)

Tumor stageb 0.660

I 5 13 598 1

II 70 122 568 1.292 (0.519-3.221)

III + IV 3 6 545 1.086 (0.252-4.667)

Histologic gradec 0.140

G1 8 19 627 1

G2 44 82 603 1.425 (0.648-3.135)

G3 + G4 26 40 473 1.632 (0.734-3.628)

Radical resectiond 0.014

R0 43 81 627 1

R1 + R2 + RX 32 53 394 1.812 (1.126-2.916)

Risk score 0.009

Low 33 71 691 1

High 45 71 486 1.852 (1.165-2.944)

Abbreviations: PAAD: pancreatic adenocarcinoma; MST: media survival time; HR: hazard ratio; CI: confidence interval.
Notes: aInfomation of alcohol history were not acquired in 12 patients; binfomation of tumor stage were not acquired in 1 patient; cinfomation of histologic
grade were not acquired in 1 patient; dinfomation of radical resection were not acquired in 8 patients.
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Figure 2: Continued.

4 BioMed Research International



analysis showed the pathway enrichment of the immune-
related genes. P < 0:05was considered statistically significant.

2.5. Predictive Nomogram Construction and Validation. A
prognostic signature based on the expression of immune-
related genes was comprehensively analyzed to further assess
the prognostic model. After collinearity was tested, a Nor-
man diagram was predicted using a stepwise Cox regression
model to predict the 1-, 3-, and 5-year OS rates of the patients
with PAAD the datasets from TCGA and GEO. Kaplan-
Meier analysis and area under the curve (AUC) comparison
of the ROC curve were applied to predict and observe the
OS rate for assessing the performance of the prognostic
nomogram. We not only compared the clinical outcomes of
the low-risk and high-risk groups but also evaluated the
prognostic value of PAAD with a risk score through a nomo-
gram. The potential application of risk scores in the predic-
tion of clinical status was also explored.

2.6. Statistical Analysis (OS Curve). Kaplan-Meier survival
analysis by log-rank test was conducted to identify the
immune-related genes associated with the prognosis of
PAAD. Univariate, multivariate, and Cox regression analyses
and principal component analysis (PCA) were performed in
R and SPSS version 22.0 (Chicago, IL, USA). Univariate and
multivariate Cox regression analyses as well as performed to
assess survival. HRs and 95% confidence intervals (CIs) were

calculated to identify OS-associated genes. Statistical signifi-
cance was set at P < 0:05.

3. Results

3.1. Identification of Immune-Related Genes with Prognostic
Value. The clinical information and gene expression profiles
of 142 PAAD cases were downloaded from the database from
TCGA for further analysis. A total of 332 immune-related
genes were selected from MSigDB v4.0 [16] (immune system
process, immune response); (http://www.broadinstitute.org/
gsea/msigdb/index.jsp). For validation, gene expression
microarray datasets (DSE62452; https://www.ncbi.nlm.nih
.gov/geo/query/acc.cgi?acc=GSE62452) were downloaded
from the GEO dataset. Immune-related genes were screened
in the same way. Immune-related prognostic genes were fur-
ther evaluated via univariate Cox proportional hazard regres-
sion by using the survival software package. Coexpression
networks of the identified immune-related genes were con-
structed. Then, three genes (chemokine-like factor [CKLF],
endoplasmic reticulum aminopeptidase 2 [ERAP2], and epir-
egulin [EREG]) that indicated a high risk in the TCGA, and
GEO databases were highlighted (Table S1). The Kaplan-
Meier analysis results of CKLF, ERAP2, and EREG are
shown in Figure 1.

3.2. Prognostic Model Construction and ROC Curve Analysis.
A signature of three immune-related genes was developed
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Figure 2: Prognostic risk score model analysis of three prognostic immune genes in PAAD patients. In the database from TCGA, from top to
bottom are (a) the risk score, (b) patient survival status distribution, and (c) three hub gene expression heat maps for the low- and high-risk
groups. In the GEO database, from top to bottom are (d) the risk score, (e) patient survival status distribution, and (f) three hub gene
expression heat maps for the low- and high-risk groups.

5BioMed Research International

http://www.broadinstitute.org/gsea/msigdb/index.jsp
http://www.broadinstitute.org/gsea/msigdb/index.jsp
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62452
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62452


using a risk score method [18, 19]. The risk score formula
was as follows: risk score = expression of CKLF × ð0:9452Þ
+ expression of ERAP2 × ð0:2968Þ + expression of EREG × ð
0:3896Þ. The 142 patients in the database from TCGA were
divided into high- and low-risk groups based on their median
risk score. Survival analysis showed that the OS of the
patients in the high-risk group was shorter (high risk and

low risk: 486 vs. 691 days) than it was in the low-risk group.
The risk of death significantly increased in the patients with
high-risk scores (P value = 0:009; HR = 1:852; 95%CI =
1:165 – 2:944; Table 1, Figures 2(a) and 2(b)). In addition,
the risk heat maps of the gene expression profiles of CKLF,
ERAP2, and EREG indicated that the expression levels of
these genes were higher in the high-risk group than in the
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Figure 3: Kaplan-Meier curves for low-risk and high-risk populations in different databases. ROC curve for predicting survival in PAAD
patients by the risk score (a) Kaplan-Meier curves for low- and high-risk groups using the database from TCGA (P = 0:008). (b) The ROC
curve for predicting the survival rate of PAAD based on the risk score of the TCGA database. (c) Kaplan-Meier curves for low- and high-
risk groups in GEO (P < 0:001). (d) The ROC curve for predicting the survival rate of PAAD based on the risk score of the GEO database.
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low-risk group (Figure 2(c)). Validation by the GEO database
further confirmed that the survival rate of the high-risk score
group was lower than that of the low-risk group
(Figures 2(d)–2(f)). The Kaplan-Meier curves of the OS rates
of the patients with PAAD from the different groups were
stratified in terms of the signature from the TCGA and
GEO datasets. In the database from TCGA, the OS of the
low-risk group was longer than that of the high-risk group
(P = 0:008, Figure 3(a)). The same result was obtained from
the GEO database (P < 0:001, Figure 3(c)). Time-dependent
ROC curve analysis was carried out to assess the prediction
accuracy of the prognostic signature. Our results showed that
the prognostic signature from the database from TCGA in
the current study performed well in predicting 1-, 2-, and
3-year survival rates. The area under the curve values for 1-
, 2-, and 3-year survival were 0.687, 0.632, and 0.612, respec-
tively (Figure 3(b)). The prognostic signatures of the GEO
database also performed well in predicting 1-, 2-, and 3-
year survival rates (Figure 3(d)).

3.3. Predictive Nomogram Construction and Validation. A
comprehensive nomogram survival analysis was conducted
to investigate the relationship between the risk scores and
clinical characteristics of OS for patients with PAAD. A
nomogram was drawn with RMS and its auxiliary packages
based on the clinical information of PAAD and the risk score.

The results confirmed that the prognostic markers of the risk
score significantly influenced the risk points, whereas other
clinical features had a lower effect on the risk points
(Figure 4). In our nomogram, the shortcoming was that the
prognostic signature of tumor stage could not perform well
in PAAD.

3.4. Low- and High-Risk Groups Displayed Different Immune
Status. PCA was performed to study the differences between
low- and high-risk populations based on the expression pro-
files of all genes, immune-related genes, and risk-related
genes (Figures 5(a)–5(c)). Our results indicated that low-
and high-risk groups were usually distributed in different
directions. According to the prognostic signature of
immune-related genes, patients in the high-risk group could
be clearly distinguished from patients in the low-risk group.
Therefore, the immune status of PAAD with a specific gene
signature was different from other genes.

3.5. Functional Enrichment Analysis of Genes. Immune-
related genes were subjected to functional enrichment analy-
sis by applying the cluster Profiler R package. The immune-
related genes from the database from TCGA in the BP group
were mainly enriched in T cell activation and regulation of
leukocyte activation. The genes in the CC group were signif-
icantly enriched on the side of the membrane and the
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the database from TCGA.
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external side of the plasma membrane. The genes in the MF
group were mainly enriched in cytokine receptor activity
and cytokine receptor binding (P < 0:05; Figure 6(a)). KEGG
analysis suggested that most of the immune-related gene
pathways were significantly linked to cytokine-cytokine
receptor interaction, Th17 cell differentiation, and hemato-
poietic cell lineage (P < 0:05; Figure 6(b)). The workflow of
this study is shown in Figure 7.

4. Discussion

Pancreatic cancer is a common cause of death and has poor
prognosis. The 5-year survival rate of patients with this dis-
ease is approximated to be less than 5% [1]. PAAD is treated
with numerous strategies, including surgery, neoadjuvant
therapy, chemotherapy, targeted molecular therapy, radia-
tion therapy, and immunotherapy. However, the effects of
treatment methods are limited, and novel methods for PAAD
treatment should be further explored to provide patients with
personalized treatment and improve their survival. With
remarkable progress in bioinformatics, the mining of TCGA
databases has been increasingly applied to predict cancer
prognosis in many studies [15, 22, 23]. In the current study,
we attempted to identify immune-related genes that contrib-
uted to the OS of patients with PAAD using a database from
TCGA.

First, two datasets (TCGA and DSE62452) were collected
to study the prognosis of immune-related genes in patients
with PAAD. A total of 332 immune-related genes were
extracted from a database from TCGA. Immune-related
genes were also extracted from DSE62452 and identified by
constructing a coexpression network of immune-related
genes. Genes with P < 0:05 and |HR| >1.00 were considered
to be prognostic risk genes. Then, three identified genes,
CKLF, ERAP2, and EREG, were found to be associated with

a high risk in the databases from TCGA and GEO. The signa-
ture of three immune-related genes was developed using a
risk score method, and the patients with PAAD were divided
into low- and high-risk groups based on their median risk
score. The results showed that the prognosis of the patients
in the high-risk group was worse than that in the low-risk
group. Multivariate Cox regression analysis was conducted
to determine the independent prognostic factors of PAAD.
Then, the prognostic signature was comprehensively ana-
lyzed on the basis of immune-related gene expression.
Kaplan-Meier analysis and the AUC comparison of the
ROC curve confirmed that the three immune-related gene
signatures were reliable for OS prediction. Next, a nomogram
was established and integrated with a signature of three
immune-related genes and clinical data, and OS was accu-
rately predicted. The PCA results revealed that the prognos-
tic signature of immune-related genes could clearly
distinguish patients in the high-risk group from those in
the low-risk group. The KEGG pathway analysis indicated
that most of the immune-related genes were significantly
associated with cytokine-cytokine receptor interaction,
Th17 cell differentiation, and hematopoietic cell lineage.
Therefore, the nomogram could be used as a progression
indicator and predictor of the OS of patients with PAAD.

In our current study, three genes associated with poor
prognosis of PAAD were identified: CKLF, ERAP2, and
EREG. CKLF is a protein-encoding gene whose product is a
cytokine. Cytokines are small proteins that play important
roles in immune and inflammatory responses. The protein
encoded by CKLF is an effective chemoattractant of neutro-
phils, monocytes, and lymphocytes [24, 25]. Some studies
have shown that high neutrophil levels are associated with
the prognosis of patients with PAAD [26, 27]. CKLF has four
isoforms, designated CKLF1–4; among them, CKLF1 has the
highest expression level [24]. Previous reports suggested that
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Figure 5: Principal component analysis between low-risk and high-risk groups based on different classification methods. (a) All genes. (b)
Immune genes. (c) Risk genes.
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CKLF1 expression may play an essential role in the develop-
ment of atopic dermatitis [28] and psoriasis [29]. The GO
annotation related to this gene included chemokine activity.
Chemokines not only participate in cancer-associated
inflammation but also promote tumor development and pro-
gression [30]. CKLF1 is highly expressed in malignant ovar-
ian cancer, providing a new basis for the clinical diagnosis
and treatment of tumors [31]. Therefore, the high CKLF
expression in PAAD might be the cause of PAAD pathogen-
esis and progression.

The GO annotations related to ERAP2 included metallo-
peptidase and aminopeptidase activities. Human ERAP2 was
initially identified as a homolog of human placental leucine
aminopeptidase or insulin-regulated aminopeptidase [32].
ERAP2 increases susceptibility to autoimmune diseases,
infectious diseases, and cancer because of its genetic variabil-
ity [33]. ERAP2 is associated with several immune-mediated
diseases, including ankylosing spondylitis, psoriasis, and

Crohn’s disease [32, 34]. ERAP2-related pathways include
class I MHC-mediated antigen processing and presentation
and the innate immune system. Data from the cBioPortal
website (http://www.cbioportal.org) showed that ERAP2 is
highly expressed in pancreatic cancer. ERAP1 and ERAP2
may be important targets that enhance T and NK cell-
mediated immune responses against established cancers [35].

EREG is closely related to pancreatic cancer development
[36]. EREG is a member of the epidermal growth factor
(EGF) family of peptide growth factors [37]. The stimulation
of the EGFR pathway also promotes tumor cell migration,
adhesion, and metastasis [38]. AREG and EREG are required
for autocrine EGFR signaling, indicating that EREG plays an
important role in tumor progression [39]. EREG is expressed
in a variety of adult tissues, and its increased expression or
activity appears to promote the progression of several differ-
ent human malignancies [40]. Studies have shown that EREG
enhances the migration and chemotaxis ability of adipose-
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Figure 6: Functional enrichment analysis results of immune genes. (a) GO term enrichment results. (b) KEGG pathway analysis.
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derived stem cells [41]. In colorectal cancer, EREG serves as a
biomarker of anti-EGFR therapy [42]. The inhibition of
EGFR signaling in pancreatic cancer may lead to a decrease
in the growth and invasion of pancreatic tumors [43]. Previ-
ous studies revealed that EREG is upregulated in pancreatic
cancer and stimulates the growth of pancreatic cancer cells
[36]. Thus, our research method could be reliably used to
identify prognosis-related genes for PAAD.

These risk genes could be potential molecular targets for
PAAD treatment. The results of gene screening demon-
strated that EREG was associated with the prognosis of pan-
creatic cancer, so our approach could be used to accurately
screen prognostic genes. For the newly discovered CKLF
and ERAP2, further experiments are needed to determine
whether they are related to the prognosis of PAAD and verify
our results. Cancer immunotherapy, which relies on the
immune system to eliminate primary tumors, has shown
unique advantages for cancer treatment [44]. The 2018 Nobel
Prize in physiology or medicine was awarded to pioneers in
the field of cancer immunotherapy, which has been a tremen-
dously successful area of work [45]. Tumor immunotherapy
has been widely explored in various fields, such as
nanotechnology-enhanced immunotherapy [46, 47].

With the continuous improvement of immunotherapy
technology, the indication of PAAD immunotherapy needs
to be further studied. Immunotherapy is recommended for
patients with pancreatic cancer with MSI/MMR molecular
characteristics and distant metastasis [48]. Most patients
diagnosed with PAAD for the first time are in advanced
stages, missed the best time for surgical treatment, or the
patient cannot tolerate surgery. PAAD is composed of dense
connective tissue and highly infiltrating immune cells, which
is very easy to induce chemotherapy resistance [49]. After
treatment with conventional chemotherapy drugs, the
patient’s survival status and quality of life did not improve
significantly. Therefore, in order to obtain a better prognosis
for patients, immunotherapy can be selected according to the
immune microenvironment of PAAD. Some studies have

shown that the establishment of an “immune score” system
for expressing pancreatic cancer could be used to assess the
degree of immune cell infiltration in the tumor immune
microenvironment [50]. Improving our understanding of
how PAAD immune and stromal components interact and
the tumor microenvironment can help improve our immu-
notherapy [51, 52]. Future strategies using immunotherapy
to treat pancreatic cancer include changing immune check-
point inhibitors from monotherapy to combination therapy
and combining immunotherapy with chemotherapy, radia-
tion therapy, and targeted therapy [53]. Due to the obvious
heterogeneity among individuals with PAAD, the uses of
immunotherapy will be based on the results of genetic test-
ing, so that a personalized treatment plan can be imple-
mented to improve the efficacy of the treatment [54]. In the
future, gene sequencing technology is expected to detect
and identify high-risk immune genes of PAAD and provide
new directions for precise immunotherapy of PAAD.

Immune-related genes are associated with survival and
may be used as biomarkers to assess the suitability of various
immunotherapies. Our immune prognosis gene signature
provided a novel idea and methods related to the molecular
mechanism and prognosis prediction of PAAD. This signa-
ture might help solve the problem of poor immunogenicity
in PAAD and improve the effectiveness and safety of cancer
immunotherapy. Fortunately, because of remarkable
advancements in whole-genome sequencing technology and
bioinformatics, some high-throughput tumor databases have
been generated and can be used for public academic research.
The pathways involved in the prognosis of PAAD can also be
further studied. The risk gene signaling pathway of PAAD
can be inhibited to achieve the purpose of immunotherapy.
The nomogram also indicated that the risk score of our prog-
nosis genes could reliably predict the OS of patients with
PAAD. However, our study had certain limitations com-
pared with previous studies. First, our clinical information
was mainly obtained from databases from TCGA and GEO.
Some patients’ clinical information was incomplete, and

Principal components 
analysis GO and KEGG analysisReceiver operating 

characteristic

Constructing a multivariate Cox 
 regression analysis model

TCGA dataset (downloading RNA expression 
data and related clinical information)

Screening for immune genes (immune-related 
genes were extracted from the molecular 

signatures database)
Screening for

immune-related genes

GEO dataset for validation 
(downloading raw date 

of DSE62452)

Kaplan–Meier survival analysis
(extraction of common prognostic genes)

Figure 7: Flow chart of data preparation processing analysis and validation.
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detailed data on patient prognosis were unavailable. Second,
a signature of three immune-related genes was generated,
and a normal tissue control was not prepared. As such, our
data were not convincing enough to establish a prognostic
model. The expression level of prognosis-related genes and
their molecular mechanisms in the pathogenesis and pro-
gression of PAAD should be further explored experimentally.
The screened genes could be verified through real-time PCR
and Western blot.

5. Conclusions

In summary, we constructed immune-related gene coexpres-
sion networks and identified a signature of three immune-
related genes that had prognostic value for patients with
PAAD. The prognosis for patients in the high-risk group
was worse than that in the low-risk group. Further research
on these immune-related genes would help fully understand
the potential links of the immune system and responses to
the prognosis of PAAD. The prognostic nomogram could
reliably predict the OS of patients with PAAD and might be
used as a guide for the diagnosis and immunotherapy of
PAAD. However, our results were not further verified exper-
imentally because of the limitations of this investigation, so
more in-depth studies should be conducted to reveal the rela-
tionship between the prognosis of PAAD and immune-
related genes.
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