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Isolation from external time cues allows endogenous circadian rhythmicity to be
demonstrated. In this study, also filmed as a television documentary, we assessed
rhythmic changes in a healthy man time isolated in a bunker for 9 days/nights. During
this period the lighting conditions were varied between: (1) self-selected light/dark
cycle, (2) constant dim light, and (3) light/dark cycle with early wake up. A range
of variables was assessed and related to the sleep-wake cycle, psychomotor and
physical performance and clock-time estimation. This case study using modern
non-invasive monitoring techniques emphasizes how different physiological circadian
rhythms persist in temporal isolation under constant dim light conditions with different
waveforms, free-running with a period (τ) between 24 and 25 h. In addition, a significant
correlation between time estimation and mid-sleep time, a proxy for circadian phase,
was demonstrated.

Keywords: circadian, time isolation, wrist temperature, mid-sleep, performance, phase advanced, dim light,
clock-time estimation

INTRODUCTION

Keeping our physiological and behavioral processes temporally organized is essential for
maintaining a good state of health and wellbeing. The circadian timing system needs to be reset
every day since its endogenous period (τ) is not exactly 24 h (Middleton et al., 1996; Hiddinga et al.,
1997; Carskadon et al., 1999; Czeisler et al., 1999; Burgess and Eastman, 2008). Thus, our circadian
system utilizes cyclic environmental cues (zeitgebers) such as the light/dark cycle to synchronize
the central pacemaker located in the suprachiasmatic nuclei (SCN) on a daily basis and remain
entrained to the 24 h day. The circadian system will free-run (oscillate with its endogenous period)
in constant conditions.

Variables that have been shown to oscillate in a circadian manner in humans include core and
skin body temperature (Aschoff, 1983; Carskadon et al., 1999; Wyatt et al., 1999; Hanneman, 2001),
melatonin (Lockley et al., 1997; Dijk et al., 1999; Zeitzer et al., 1999) and cortisol (Linkowski
et al., 1993; Skene et al., 1999; van de Werken et al., 2014) production, blood pressure (Shea et al.,
2011), sleep (Aschoff, 1993; Dijk and Czeisler, 1995; Wyatt et al., 1999), subjective sleepiness (Wu
et al., 2015), and mood (Koorengevel et al., 2000; Murray et al., 2002, 2009; Wirz-Justice, 2003).
Other variables that exhibit circadian rhythmicity are those related to intellectual or cognitive
performance, such as concentration, reaction time, memory, etc. (reviewed in Dijk et al., 1992;
Jewett et al., 1999; Schmidt et al., 2007; Wu et al., 2015), as well as other aspects related to physical
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performance (reviewed in Teo et al., 2011). Another rhythmic
variable that has rarely been studied is the perception of
time, although early work showed that the ability to estimate
short (5–10 s) time intervals fluctuated throughout the day
(Aschoff, 1998).

Adequate exposure to zeitgebers is essential for
synchronization with the external environment but also
internally to ensure a normal phase relationship among these
rhythmic variables. However, nowadays, a high percentage of
the population are not exposed to a strong light/dark cycle
either spending the majority of their time indoors with low
light contrast between day and night (Roenneberg et al., 2003),
or performing shift work (Straif et al., 2007). Shift work and
the associated circadian misalignment and shortened sleep
has been linked with a short term impact on performance,
productivity and safety as well as a long term impact on health
(Möller-Levet et al., 2013; Eckel et al., 2015), predisposing people
to chronodisruption (reviewed in Bonmati-Carrion et al., 2014)
due to the misalignment between social time (including
work schedule and leisure time), behavior (sleep/wake,
feeding/fasting) and internal biological time (endogenous
circadian phase). Chronodisruption has been associated with
a higher prevalence of different health impairments, including
metabolic syndrome (Garaulet and Madrid, 2010; Reiter et al.,
2011), cardiovascular disease (Knutsson and Bøggild, 2000),
cognitive impairment (Cho et al., 2000) and different types of
cancer [breast (Davis et al., 2001; Schernhammer et al., 2001),
colorectal (Schernhammer et al., 2003) and prostate (Conlon
et al., 2007; Kubo et al., 2006)].

Protocols and tools to study endogenous circadian
rhythmicity and entrainment are continuously being developed.
In the 1930s, Nathaniel Kleitman was the first to explore the
endogenous nature of circadian rhythms in humans (Kleitman
et al., 1938). In 1965, Jürgen Aschoff, another pioneer in the
study of biological rhythms, extended the study of the circadian
timing system in humans (Aschoff, 1965). Volunteers lived in
a bunker (in groups or individually) for long periods of time,
without access to any external temporal cues to synchronize
their internal clocks, although in some experiments participants
could self-select their light/dark cycle (Aschoff, 1965, 1967).
This, and subsequent experiments, confirmed the endogenous
origin of human circadian rhythms, establishing one of the
principles of circadian biology (Aschoff, 1967). Isolation studies
were also performed by Pöppel and Giedke, who also explored
diurnal variation of time perception (Pöppel and Giedke, 1970).
More recent experiments on healthy volunteers in continuous
dim light (Middleton et al., 1996, 1997) and blind people with
no perception of light (Lewy and Newsome, 1983; Lockley
et al., 1997, 2007; Skene and Arendt, 2007) have also allowed
free-running circadian rhythms in humans to be characterized.
All of these more recent experiments, however, have included
social contact and knowledge of clock time.

Another approach to study the periodicity of human circadian
rhythms is the forced desynchrony (FD) protocol (Minors and
Waterhouse, 1981; Schmidt et al., 2007; Stack et al., 2017),
pioneered by Kleitman (1987). This protocol exposes participants
to a “day” that is significantly longer (e.g., 28, 40 h) or

shorter (e.g., 20 h) than the 24-h day. Since the imposed
daylength is outside the range of entrainment (the clock cannot
be synchronized to these daylengths), circadian rhythms free-
run at their endogenous period (τ). This protocol, however,
also normally involves social contact between participants
and/or researchers. Therefore, an experiment under constant
dim light conditions with social isolation and no knowledge
of clock time would provide additional insight into human
circadian rhythmicity.

Although this case study was originally designed as part of
a television documentary (Body Clock: What makes us tick?)
that aimed to disseminate chronobiology knowledge and research
to the general public, the unique social and time isolation, and
dim light conditions in the bunker, as well as the continuous
physiological monitoring that occurred, provided an excellent
opportunity to study the human circadian clock while revisiting
the first bunker experiments mentioned above. In addition, the
chronodisruption conditions experienced during the light/dark
cycle with early wake up (third stage, involving an abrupt
curtailment of sleep) is not often performed under temporal and
social isolation.

The scientific objective of the protocol was to study rhythmic
changes in a person living in social/environmental isolation over
three conditions (baseline light/dark cycle, constant dim light
and a light/dark cycle with early wake up). Wrist temperature,
motor activity and light exposure were assessed, and the sleep-
wake cycle derived, using a novel ambulatory monitoring (ACM)
system (Kronowise) (Madrid-Navarro et al., 2019). Another
aim of the study was to evaluate the estimation of clock
time, a variable rarely assessed, in parallel with assessments
of subjective sleepiness, reaction time, memory/concentration,
grip strength, sprint time and mood. We hypothesized that
most of the physiological variables measured would follow
a circadian variation, tending to free-run (exhibit non-24 h
periodicity) under constant conditions. We also expected
an acute impairment of waking performance following the
light/dark cycle with early wake up.

MATERIALS AND METHODS

Participant
The participant was a healthy, non-smoking, 40-year-old male
who was invited to participate in the BBC television documentary
study (Cook, 2018). Full details of the study protocol and
procedures were explained to the participant prior to the start
of the study and he was provided with a written document
describing the study protocol. This document explained the
different stages he would undergo but not exactly when they
would happen. The participant was aware he could withdraw
from the experiment at any time and written informed consent
was obtained. The participant also underwent an independent
psychological assessment to ensure he was a suitable subject for
the experiment. All research protocols were approved by the
BBC’s compliance department, who reviewed the experiment
design and ethical issues. All research was performed in
accordance with relevant guidelines and regulations. A full risk
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assessment was carried out by the documentary producers,
that was reviewed by an independent external risk assessment
company (First Option – health and safety specialists who advise
the television industry). The participant was also offered follow
up support if needed.

Protocol
Throughout the 10 day study, the participant remained in a
bunker with no direct human contact and no knowledge of
actual clock time (i.e., no telephone, internet, television, radio,
or natural light). The experiment consisted of three consecutive
phases: self-selected light/dark cycle (Stage 1), constant dim
light (Stage 2) and light/dark cycle with early wake up (with
consequent sleep curtailment) (Stage 3). The experiment was
performed in May–June 2018 in South West England.

The experimental phase is shown in Figure 1 and consisted of:

Stage 1
Self-selected light/dark cycle (57 h, 2.4 days). Light sources were
a mixture of bright LED panels and halogen desk lights (color
temperature approximately 3200 K). When the lights were on,
this resulted in similar brightness to a well-lit indoor room
at night. When the lights were off, the room was completely
dark (0 lux). A bright infra-red light source was present in the
bedroom to allow infra-red video recordings to be obtained in
the 0 lux conditions. The light switch was controlled remotely by
the research team, but the participant chose when he wanted the
lights on or off.

Stage 2
Dim light phase (107 h, ∼4.5 days). Light sources were set to be
<10 lux throughout the bunker using primarily dimmed halogen
lamps (3200 K). This light level was maintained constantly from
Day 3 of the experiment at 19:10 h (local time) until Day 8

(Night 7) at 06:00 h. Again, infra-red lights were used in several
rooms to provide illumination for infra-red cameras. If needed,
the participant also wore a very dimly lit head torch to help him
get around the darkest areas of the bunker.

Stage 3
Light/dark cycle with early wake up, comprised the re-
introduction of a light/dark cycle with a forced early awakening
(52 h, ∼2.2 days). To simulate an early start shift work schedule
the volunteer was awoken at 06:00 h local time on Nights 7–9 with
a telephone call and the researchers turning on the room lights.
On Night 7 this was approximately 3.5 h into his sleep period
(sleep restriction). Following this he was then free to choose his
activities including when to go to sleep (when he was ready, he
asked the team to turn off the lights).

Throughout the study, the participant remained in isolation
with no time cues. Apart from a brief phone call at the beginning
of Stages 2 and 3 with a researcher, he had no verbal or visual
contact with the team. He was free to choose the timing of all his
activities (sleep/wake, meals, exercise etc.) throughout the study
(except being woken up early in Stage 3). Upon request, he was
provided with ready-made meals of his choice up to the daily total
Kcal recommended for an adult male. He controlled his own meal
times, as well as the times when he performed the tests.

The participant had no access to any light-emitting devices
apart from a small camera with the screen (2 × 4 cm, 2◦ 51′
0.85′′ visual angle) brightness set at the minimum. This was used
for self-filming and to record his feelings throughout the study.
He also had some paper books and he could exercise by using
weights, press ups, and running up and down the corridor.

Ambulatory Circadian Monitoring
The participant continuously wore a small, watch-like device
for Ambulatory Circadian Monitoring, “Kronowise 3.0”

FIGURE 1 | Experimental Design. (A) Protocol of the experiment with the duration of each stage (57 h, Self-selected Light/dark cycle; 107 h, Constant Dim Light;
and 52 h, Light/dark cycle with early wake up), (B) variables measured continuously throughout the experiment, (C) diagram of tests performed and the seven
approximate times (blue arrows) within each waking period.
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(Kronohealth SL, Spain) (Arguelles-Prieto et al., 2019) on his
non-dominant hand to reduce possible masking of motor activity
on the measured variables.

Wrist skin temperature, light exposure (in three spectral
bands: visible (400−700 nm), short-wavelength between 460–
490 nm and infrared >800 nm) and triaxial motor acceleration
were continuously recorded. From triaxial acceleration, (i)
acceleration of movement, (ii) wrist posture (tilt of the x-axis)
and (iii) time in movement were assessed. Time in movement
was calculated as the time, in periods of 0.1 s, in which a
movement in any of three axes was detected, this information
being particularly useful to discriminate between sleep and wake
states (Madrid-Navarro et al., 2019). The sample rates were
1 Hz for wrist skin temperature and light exposure, 10 Hz
for acceleration and 0.033 Hz (1 reading per epoch) for wrist
position. The data were then processed and saved into 30 s epochs
throughout the experiment.

Communication with the ACM Kronowise device was
established using Kronoware 10.0 software (Kronohealth SL,
Spain) via a USB port. This software allows visual inspection of
the data before analysis to eliminate artifacts and the calculation
of basic circadian and sleep parameters. Data were converted
into a text file to be analyzed by the chronobiological software
“Circadianware,” implemented on the on-line Kronowizard
platform1 (University of Murcia).

Sleep Detection
The sleep parameters (sleep onset, offset, duration) and light-
associated parameters (lights off related to when the volunteer
prepared for sleep and lights on related to wake up) were
estimated using the Kronowizard website (see text footnote 1,
University of Murcia) and based on the TAP (wrist Temperature,
motor Activity and body Position integrated variable) algorithm
(Ortiz-Tudela et al., 2010). Thus an epoch was scored as sleep
when TAP was under a default threshold (0.28), previously
validated by polysomnography (PSG) (Ortiz-Tudela et al., 2014).
Mid-sleep time, derived from the Kronowise data, was used as the
estimation of circadian phase.

Performance, Subjective Sleepiness and
Mood Tests
The participant completed a variety of performance tests at self-
selected times throughout each day of the study. The variables
tested included reaction time (Fitlight TrainerTM, FITLIGHT
Corp., Denmark), memory/concentration [paper-based digit
symbol substitution test, DSST (Rosano et al., 2016)], grip
strength (Camry 200 lbs/90 kgs Digital Hand Dynamometer,
Camry R© Scale, United States) and sprint time over a distance of
11 meters (TC Timing Systems, Brower Timing©). In addition,
subjective sleepiness [Karolinska Sleepiness Scale (Akerstedt and
Gillberg, 1990)] and mood [assessed using 4 visual analog scales
1–9 (Lockley et al., 2008; Revell et al., 2006) ranging from very
alert (1) – very sleepy (9), very cheerful (1) – very miserable (9),
very calm (1) – very tense (9), very elated (1) – very depressed
(9)] were assessed.

1https://kronowizard.um.es/

The participant was asked to perform seven sets of tests each
waking day. He was required to do the first one as soon as he
woke up; the second, during the middle of his subjective morning,
followed by the third one before lunch. The next one needed to be
completed during the middle of his afternoon, and the last three
sets were required to be done before dinner, during the middle
of his evening and just before going to bed, respectively. Three
attempts were recorded for each test at each time point and the
mean calculated.

Estimation of Clock Time
At each test time for performance, subjective sleepiness and mood
assessments, the participant was asked “What time is it?” Clock
times (both actual and estimated) were converted into time (h)
since wake up (time zero) and the difference between them
calculated. In order to correlate with the midpoint of sleep, the
differences between actual and estimated times were averaged
for each study day.

Analyses
Each variable recorded by Kronowise (Kronohealth SL, Spain) in
30 s epochs was averaged hourly to be able to compare these data
with the performance test data. Mid-sleep time was calculated as
the midpoint of the sleep period as detected by the KronoWare
(Kronohealth SL, Spain) software.

To calculate the period of ACM variables during Stage 2
(constant dim light), El Temps software (version 1.228, copyright
Diez-Noguera, University of Barcelona) was used. For non-ACM
variables, period was calculated by averaging the time between
maximum values throughout that stage.

To calculate amplitude or difference between day and night,
mean waveforms were calculated (not shown) for each variable
according to the inferred sleep onset for the preceding night,
considering time as “Hours After Sleep Onset” (HASO). Each
variable was averaged from 00:00 to 08:00 h (HASO) for night
time and from 09:00 to 23:00 h (HASO) for daytime and then the
difference between them was calculated.

Statistics
Averaged data from the different days within each experimental
stage are expressed as mean± SD.

Correlations were also performed between variables recorded
by Kronowise and the performance tests results. All calculations
and statistical analyses were performed using SAS version 9.4.

RESULTS

The conditions of this experiment allowed us to demonstrate
circadian rhythmicity in a range of variables (Figure 2) and
to calculate the free-running periodicities (τ) of these variables
during the constant dim light conditions (Stage 2: 107 h,
∼4.5 days): wrist temperature (τ 24.16 h), motor activity (τ
25.16 h and 24.30 h for acceleration and time in movement,
respectively), sleep-wake cycle (inferred from the novel ACM
system: midpoint of sleep, τ 24.40 h), subjective sleepiness and
mood (τ 24.80 h).
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FIGURE 2 | Ten-day ambulatory recording of (A) time in movement (light
green) and motor activity (dark green), (B) wrist temperature (red) and
subjective sleepiness (Karolinska Sleepiness Scale, KSS) (blue), (C) sleep
probability (black) and light exposure (orange). Gray areas indicate Stage 2
(constant dim light). Previous and subsequent days correspond to Stage 1
(self-selected light/dark cycle) and Stage 3 (light/dark cycle with early wake
up), respectively. Black bulb indicates darkness, yellow bulb indicates bright
light (Stage 1, self-selected light/dark cycle), gray bulb indicates dim light
(Stage 2) and alarm clock indicates light/dark cycle with early wake up
(Stage 3).

Regarding the variables measured by Kronowise R©, motor
activity (Figure 2A) – both acceleration and time in movement–
showed a diurnal pattern, with higher values during the day
across the experiment, with a period (τ) in constant dim light
of 25.16 and 24.30 h, respectively. Wrist skin temperature
(Figure 2B) showed the inverse pattern, with higher values
during the night (reaching a maximum of approximately 34◦C,
32.9 ± 0.3◦C) and lower values during the day (minimum
≈ 27◦C, 28.8± 0.6◦C), showing a period (τ) of 24.16 h during the
constant dim light phase. The amplitude of this diurnal rhythm
was reduced by 77% during the dim light conditions (Stage 2)
compared to the self-selected light/dark cycle (Stage 1) and only
seemed to recover during the second and last day of Stage 3
(light/dark cycle with early wake up).

Light exposure recording (Figure 2C) during Stage 1 (self-
selected light/dark cycle) confirmed that environmental light
levels exhibited higher values during the day (maximum reaching
around 100 lux) and darkness during the night. During Stage
2, the 4-day dim light phase (beginning on Day 3 at 19:10 h,
local time), the experimental conditions were confirmed as being
continuously <10 lux except in two epochs (not exceeding
20 lux). During Stage 2, when the light was constantly dim

(<10 lux), the wrist worn monitor showed lower light levels
during the night than during the day (with a mean reduction
of approximately 65%), probably because the participant covered
himself with a blanket, also covering the light sensor during part
of the subjective night.

During Stage 1 (self-selected light/dark cycle) the sleep-wake
pattern inferred from the ACM device (Figures 2C, 3 and
Table 1) showed a delay from Night 1 to 2 in sleep onset
(104 min), midpoint of sleep (64 min) and sleep offset (23 min).
During the dim light conditions (Stage 2) the midpoint of sleep
delayed on average 23 ± 28 min (mean ± SD) each night, with a
period (τ) of 24.40 h (Nights 2–6).

Sleep duration (Table 1 and Figure 3), derived from the ACM
device, tended to be longer (9.7 ± 0.7 h) at the beginning of the
study (self-selected light/dark cycle), when the participant was
entirely free to choose the time to go to sleep and to wake up

FIGURE 3 | Actogram built from the daily records showing sleep periods in
yellow and mid-sleep time (red circles) for each night. Black bulb indicates
darkness, yellow bulb indicates bright light (Stage 1, self-selected light/dark
cycle), gray bulb indicates dim light (Stage 2) and alarm clock indicates
light/dark cycle with early wake up (Stage 3).

TABLE 1 | Summary of estimated sleep and associated light exposure.

Night Lights off Sleep
onset

Sleep
offset

Lights on Sleep
duration

Mid-sleep
point

1 21:52 22:05 08:30 08:39 10:25 03:17

2 23:40 23:49 08:53 09:19 09:04 04:21

3 DL 00:45 09:01 DL 08:16 04:53

4 DL 00:47 08:28 DL 07:41 04:37

5 DL 01:14 09:14 DL 08:00 05:14

6 DL 02:12 09:53 DL 07:41 06:02

7 DL 02:43 06:10* 06:10$ 03:27# 04:26

8 00:50 01:02 05:54* 06:01$ 04:52 03:28

9 23:02 23:39 06:13* 06:23$ 06:34 02:56

Lights off/on and sleep onset/offset times, nocturnal sleep duration and mid-sleep
point (all derived from Kronowise ACM) each day of the study (expressed as
hh:mm). DL is continuous dim light and, thus, lights off/on is not applicable during
Stage 2. *Sleep offset was curtailed on those days. #Volunteer took a morning nap
that day, thus the total sleep duration would be increased (Table showing only night
sleep). $ Indicates enforced lights on.
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(no alarm, no daylight cycle, no time cues), tending to be shorter
during the dim light phase (7.9± 0.2 h).

Since of the variables measured, wrist temperature has the
greatest endogenous component, as previously demonstrated
through demasking procedures, this was plotted in parallel with
subjective sleepiness (Figure 2B), time estimation (Figure 4),
performance results and mood (Figure 5). Subjective sleepiness
(KSS) (Figure 2B) was greatest immediately before bedtime,
regardless of the experimental phase. The time of maximum
sleepiness tended to delay from the beginning (23:05 h) toward
the end of Stage 2 (1:29 h), with a period (τ) of 24.8 h during
this dim light phase. Wrist skin temperature also appeared to be
a good predictor of sleepiness score under constant conditions,
showing a positive correlation (R = 0.486, p = 0.007) during the
constant dim light conditions, but failing to do so during the self-
selected light/dark cycle and light/dark cycle with early wake up
(R = 0.318, p = 0.290 and R =−0.268, p = 0.334, respectively).

Another variable assessed in this study was time estimation
(Figure 4). Throughout the study the actual local clock-time
was always underestimated by the participant (i.e., he always
thought it was earlier than it actually was). The difference
between the actual time and estimated time (expressed relative
to wake up time) oscillated with a diurnal and circadian
pattern (Figure 4A) in Stages 1 and 2, respectively, showing a
period of 25.42 and 24.28 h regarding maximum and minimum
difference, respectively. The maximum difference occurred
immediately before bed time and the minimum difference
occurred in the morning.

The difference between the actual time and the estimated
time since wake up increased progressively from the beginning
of the study (mean 0.67 h difference, Stage 1) to the beginning

(2.68 h) and end (4.29 h) of the dim light phase (Stage 2). This
difference decreased again during Stage 3 (0.5 h at the end). This
change in time estimation since wake up was strongly correlated
(R = 0.908, p = 0.001) (Figure 4B) with the midpoint of sleep
across all the study days.

Regarding psychomotor tests, both reaction time (Figure 5A)
and digit symbol substitution tests (DSST, a psychomotor test)
(Figure 5B) showed a tendency to improve throughout the study.
Reaction time ranged on average from 0.49 ± 0.06 s at the
beginning (self-selected light/dark cycle) to 0.41 ± 0.02 s at the
end of the study, thus reflecting an improvement in reaction rate.
The DSST scores also improved from the self-selected light/dark
cycle (54.7 ± 5.4 right answers) to the dim light (63.5 ± 3.8 right
answers) and light/dark cycle with early wake up (63.1± 2.7 right
answers) phases.

Despite the tendency to improve across the study period,
a clear diurnal pattern in reaction time was observed at the
beginning of the study (self-selected light/dark cycle), with
better performance in general (thus, shorter reaction times)
during the day compared to the evening. However, from the
beginning of the dim light conditions (Stage 2), the day-night
difference was clearly dampened. During the 57 h light/dark
cycle (self-selected light/dark cycle, Stage 1), reaction time
was significantly correlated with the wrist temperature pattern
(R = 0.513, p = 0.042), thus, slower reaction time with higher wrist
temperature values.

Physical performance also followed a diurnal rhythm with
both grip strength (Figure 5C) and sprint speed (Figure 5D)
showing better results in the afternoon (∼5 h after wake). The
time of maximum performance (greater grip strength and sprint
velocity) tended to delay during the first 3 days of constant dim

FIGURE 4 | Ten-day ambulatory recordings of wrist temperature rhythm (red) plotted with the difference between actual and estimated time since wake up (black,
A). Daily mean difference (± SD) between actual and estimated time since wake up (B, solid line, black) with mid-sleep time (dashed line, blue). Gray area indicates
Stage 2 (constant dim light). Previous and subsequent days correspond to Stage 1 (self-selected light/dark cycle) and Stage 3 (light/dark cycle with early wake up),
respectively.
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FIGURE 5 | Ten-day ambulatory recordings of wrist temperature rhythm (red) plotted with reaction time (A, blue), digit symbol substitution test (DSST) (B, green), grip
strength (C, brown), sprint time (D, green), mood (higher values, more depressive mood) (E, turquoise). Gray areas indicate Stage 2 (constant dim light). Previous and
subsequent days correspond to Stage 1 (self-selected light/dark cycle) and Stage 3 (light/dark cycle with early wake up), respectively. Black bulb indicates darkness,
yellow bulb indicates bright light (Stage 1, self-selected light/dark cycle), gray bulb indicates dim light (Stage 2) and alarm clock indicates light/dark cycle with early
wake up (Stage 3).

light (from 13:56 to 17:37 h, 221 min), advancing again on the
subsequent days of dim light (back to ∼13:50 h). Both variables
followed an inverse relationship with wrist temperature.

Mood (Figure 5E) also followed a diurnal pattern with a peak
in depressive mood (higher scores) toward bedtime (21:23 h), and
a minimum at the beginning of the day in the light/dark cycle
(self-selected light/dark cycle, Stage 1). The time of maximum
score tended to delay throughout the dim light conditions (Stage
2), from 23:05 h at the beginning of Stage 2 to 1:29 h at the
end of Stage 2, indicating a period (τ) of 24.8 h. The peak
time again advanced on the first day of the light/dark cycle
with early wake up (Stage 3). These peak times in depressive
mood are in agreement with those for maximum sleepiness (both
patterns showed a strong and significant correlation, R = 0.644,
p < 0.0001), indicating a clear relationship between mood and
sleepiness. To assess the effect of the experimental protocol
on mood, the mean (± SD) maximum depressive scores were
calculated [5.50 ± 0.00, Stage 1; 4.53 ± 0.19, Stage 2; and 4.75,
Stage 3 (n = 1)]. The minimum scores, however, tended to
increase throughout the experiment Stage 1, 3.0 ± 0.0; Stage 2,
3.48 ± 0.47; and Stage 3, 3.75 (n = 1). Thus, there seems to be an
effect of the absence of light/dark cycle on the amplitude of this
rhythm, decreasing from ∼2.5 in Stage 1 (self-selected light/dark
cycle) to ∼1.05 and ∼1 in Stage 2 (constant dim light) and Stage
3 (light/dark cycle with early wake up), respectively.

The phase advance light/dark cycle performed in this study
involved waking up the participant at 06:00 h for 3 days, which
was 3:43 h earlier than wake up time on the last day of the dim

light conditions, thus advancing the mid-sleep time by 96 min.
As expected, the participant slept around 3.5 h on the first night
of the light/dark cycle with early wake up, which resulted in
sleep curtailment and him having a morning nap that day. On
the subsequent two nights, his sleep onset advanced, probably
due to increased homeostatic pressure, with sleep durations of
∼5 and 6.5 h, respectively. As expected, there was a resultant
phase advance in the majority of variables recorded. Following
the forced early wake up (Day 8), there was a reduction in
DSST score, grip strength and reaction rate (longer reaction
times) (Supplementary Figure S1) in the first sampling session
compared to the first sampling session the previous day. Sprint
speed, however, did not show an acute impairment due to the
early start simulation.

DISCUSSION

The design of this experiment, originally conceived as a television
documentary (Cook, 2018), allowed us to study the internal
circadian clock without any influence of external temporal cues
(environmental or social). This permitted estimation of the
endogenous period of a number of rhythmic variables, as well as
changes in their amplitude and phase. Our findings also revealed
a circadian modulation of clock-time estimation in constant
dim light conditions. Clock-time estimation revealed that the
participant always thought it was earlier than it actually was
and this was likely related to his estimation of his sleep/wake
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time, since he reported sleeping from 23:30 to 06:00 h before
starting the experiment (thus, earlier than in the bunker). Time
estimation since wake up was correlated with the midpoint of
sleep (a parameter that has been previously proposed as a marker
of chronotype (Roenneberg et al., 2003; Roenneberg, 2012). In
addition, the midpoint of sleep could be related to wake duration,
which was previously reported by Aschoff (1998) to be related
to time estimation in time-isolated volunteers. The effect of
time and social isolation on time estimation has previously been
described in volunteers, who tended to significantly overestimate
1-hour periods (Aschoff, 1985).

The circadian pattern found in time estimation is another
remarkable finding of this study, since although this had
previously been reported regarding short lapses (10 s) (Pöppel
and Giedke, 1970; Kuriyama et al., 2005), to the best of our
knowledge, this is the first time that the circadian variation
in time estimation for longer periods (such as a whole day)
has been described in humans, either in the presence of time
cues or under constant dim light conditions. There is previous
literature that links time perception with the circadian clock.
In hamsters, for example, a tandem SCN and other circadian
oscillators have been suggested to underlie time memory (Ralph
et al., 2013). In our case study, the difference between actual
and estimated time since wake up increased toward the end
of the subjective day, and was lower in the early hours of the
morning. This “resetting” effect of wake up could reflect the
sleep feedback on the circadian system, acting as a zeitnehmer.
As previously suggested (Danilenko et al., 2003) this zeitnehmer
may not be strong enough to entrain other overt rhythms,
but it may be effective enough to entrain time estimation.
We also hypothesized that sleep offset/wake up time would
be a stronger zeitnehmer than sleep onset, in accordance
with the fact that in preindustrial societies awakening usually
occurred before sunrise, thus anticipating it, while sleep onset
started more than 3 h after sunset (Yetish et al., 2015).
Early studies suggested a coupling between diurnal variation in
time perception and the circadian oscillator, but they did not
discard the influence of other rhythmic variables (such as body
temperature) on time perception (Pöppel and Giedke, 1970). In
our study, no significant correlations between estimated time
since wake up and wrist skin temperature nor other measured
variables were found.

The variables measured by the ambulatory device,
Kronowise R©, exhibited the expected previously described
motor activity patterns, with higher values during the day
and lower values during the night (Ortiz-Tudela et al., 2010;
Bonmati-Carrion et al., 2013, 2015; Madrid-Navarro et al., 2018)
and the opposite pattern for wrist temperature (Sarabia et al.,
2008; Ortiz-Tudela et al., 2010; Bonmati-Carrion et al., 2013).
The wrist temperature amplitude was reduced under constant
dim light conditions which may be due to the absence of positive
masking by light (Martinez-Nicolas et al., 2013). Light exposure
recording served to confirm that the average light levels were
significantly reduced during the dim light stage.

The ambulatory variables recorded (namely, wrist
temperature and motor activity) permitted us to infer sleep/wake
patterns (Ortiz-Tudela et al., 2010, 2014). The different delays

found in sleep onset, midpoint and offset during the self-
selected light/dark cycle stage highlights the importance of
maintaining a regular light/dark cycle and daylight exposure,
as well as other non-photic time cues (the participant was
socially isolated and did not have knowledge of time) to entrain
the circadian system. The delay in sleep timing during the
constant dim light conditions reflects the natural tendency
to delay and free-run in the absence of cyclic environmental
and social cues, revealing an underlying clock/τ longer than
24 h (also found in the other variables studied). This has been
previously described in the literature, both in constant dim
light experiments (but with knowledge of clock time) and in
forced desynchrony (FD) protocols (Middleton et al., 1996;
Hiddinga et al., 1997; Carskadon et al., 1999; Czeisler et al.,
1999; Burgess and Eastman, 2008). However, as far as we know,
this is the first time that τ has been derived in a number of
variables under constant dim light in conditions of both social
and temporal isolation.

Apart from the circadian component of sleep, the homeostatic
component of sleep was also observed in this experiment.
The relatively long sleep duration exhibited by the participant
at the beginning of the experiment likely reflects the typical
sleep debt occurring under normal daily life conditions
(Bonnet and Arand, 1995; Rajaratnam and Arendt, 2001;
Basner et al., 2007) that recovers/lengthens when there are no
commitments or obligations.

Regarding psychomotor performance, we found a clear
diurnal pattern in reaction time at the beginning of the study,
with better performance during the daytime. However, both
reaction time and DSST (a test for memory/concentration)
showed a tendency to improve throughout the study. This
tendency is most likely due to a learning/practice effect (Beres
and Baron, 1981), since a limitation of this study was the lack
of intensive training on the different tests before the experiment.
The dampening found in the day-night difference in the dim
light conditions was unlikely due to the constant dim light
conditions per se, since fast reaction times were not altered but
were even faster, while slower reaction times under the light/dark
conditions were clearly reduced, probably as a result of the
already mentioned training effect. However, this reduction in
amplitude would also be in agreement with that exhibited by wrist
temperature, which would confirm the described relationship
between core body temperature and performance as measured by
psychomotor vigilance or code substitution tests (Johnson et al.,
1992; Wright et al., 2002). In early work, Kleitman et al. (1938)
postulated a causal role for body temperature on performance,
although more recent studies suggest that cognitive performance
is more complex and is influenced by a variety of factors other
than only external and internal changes in body temperature
[reviewed in Schmidt et al. (2007)]. Wrist temperature, for its
part, has been proposed to be a good predictor of sleepiness
(Sarabia et al., 2008; Madrid-Navarro et al., 2018) and the
evening onset of melatonin synthesis (dim light melatonin onset,
DLMO) (Bonmati-Carrion et al., 2013), thus peripheral wrist
temperature could also be an objective way to predict the effect
of time of day on cognitive performance, since sleepiness and
cognitive performance have been reported to be closely related
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(Dinges et al., 1997). By contrast, results from the DSST did not
show a clear daily pattern during any part of the study.

Physical performance also followed a diurnal rhythm with
both grip strength and sprint speed exhibiting better results
in the afternoon and following an inverse relationship with
wrist temperature. Indeed, the circadian rhythm for physical
performance has previously been found to be closely related
to core body temperature [which follows an inverse pattern
with that of peripheral temperature (Kräuchi and Wirz-Justice,
1994)], which has been suggested to increase energy metabolism,
improve muscle compliance and facilitate actin-myosin cross-
bridging [reviewed in Teo et al. (2011)]. Here we demonstrate
that peripheral temperature does not seem to be directly
contributing to better physical performance. Rather physical
performance appears to be a reflection of sleepiness [also reflected
by peripheral temperature (Kräuchi et al., 1997)] thus increased
sleepiness, higher wrist temperature and worse performance.

Mood is another aspect of psychological wellbeing, which
also followed a diurnal pattern, showing more depressive moods
toward the night. Our results also indicate a clear relationship
between mood and sleepiness, as previously suggested (Johnson
et al., 1990; Dinges et al., 1997; Settineri et al., 2010, 2012;
Wong et al., 2013). The observed dampening of the amplitude
of this rhythm under the constant dim light conditions would
suggest a possible masking effect of the light/dark cycle on the
daily mood rhythm. Mood can also affect cognitive and physical
performance, being suggested as an indirect way for sleep to affect
both performance types (Wong et al., 2013).

The last part of this study comprised simulation of an
early shift work schedule (light/dark cycle with early wake up),
producing misalignment between the biological clock and desired
sleep/wake (Möller-Levet et al., 2013; Eckel et al., 2015). The
observed sleep parameters were those expected in this kind
of schedule, with an advance in the mid-sleep because of the
forced early waking, followed by an earlier sleep onset due to
the increased homeostatic pressure. A limitation of this study,
however, is the short duration of this stage of the experiment, not
being long enough to assess the long term effect of this simulation
on circadian rhythmicity. Another effect of the light/dark cycle
with early wake up was the acute decline in the majority of
performance variables, which could be due to the acute effect
of sleep restriction, sleep inertia or that the assessment was
performed at a different circadian phase. This performance
impairment due to awakening during the biological night has also
been previously shown (Scheer et al., 2008).

One limitation of this study regarding light exposure was use
by the participant of a video-camera with a light-emitting screen.
Although set at minimum brightness (the illuminance was not
measured), these devices emit short wavelength-enriched light,
the most active on the circadian clock [reviewed in Bonmati-
Carrion et al. (2014)]. Although our results suggest that the
synchronizing effect of this intermittent, low light during the dim
light phase would be minimal, we cannot rule out this possibility.

With the evident limitation of a single case study, this
experiment, originally designed as part of a television
documentary, has also served as a case study of time and
social isolation to show how different circadian rhythms

persist and free-run with different periodicities under constant
dim light conditions. The acute effect of an early start/sleep
curtailment shift work simulation on performance has also
been demonstrated. Confirmation of these results in future
experiments is warranted.
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