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Theoretical investigation 
of hybrid nanomaterials transient 
flow through variable feature 
of Darcy–Forchheimer space 
with exponential heat source 
and slip condition
Ikram Ullah1, Yahya Alajlani2, Amjad Ali Pasha3, Mohammad Adil4,5 & Wajaree Weera6*

Nanomaterials have achieved remarkable importance in cooling small electronic gadgets like 
akin and microchips devices. The role of nanoparticles is essential in various aspects, especially in 
biomedical engineering. Thus hybrid nanomaterials is introduced to strengthen the heat exchangers’ 
performance. In view of the above practical and existing applications of nanomaterials. Our aim is to 
examine the consequences of Darcy–Forchheimer’s radiative and Hall current flow of nanomaterials 
over a rotating porous disk with variable characteristics. Stretching disk accounting for the slip 
condition. Nanoparticles ZnO and  CoF2O4 are dispersed in based fluid water. The present model is 
utilized for thermo-physical attributes of hybrid nanomaterials with the impact of shape factor. 
Transformations convert the modeled PDEs into ODEs. The obtained highly non-linear system is 
tackled numerically by the NDSolve technique through the software Mathematica. The outcomes of 
significant variables against different profiles are executed and elaborated in detail. Obtained results 
show that both nano and hybrid nanofluid radial velocity have reverse behavior against variable 
porosity and permeability parameters, whereas it decays for larger Forchheimer numbers. Further, it 
is worthy to point out that, hybrid nanophase has a higher impact on distinct profiles when compared 
with nano and common liquid phases.

List of symbols
u, v,w  Components of velocity
�  Angular velocity
Rer  Local Reynolds number
σ ∗  Coefficient of mean absorption.
k∗  Steffman Biltzmann constant
L1  Slip factor
Pr  Prandtl number
ρ  Density of fluid
CoF2O4  Cobalt ferrite
g(η)  Dimensionless axial velocity
m  Hall current parameter
QE  Heat source variable
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qr  Radiative heat flux
pe  Electron pressure
m1  Exponential index
ν  Kinematic viscosity
nf   Nano fluid
EHS  Exponential heat source
ω  Rotational variable
Bo  Magnetic field strength
hnf   Hybrid nanofluid
f   Fluid
µe  Electron magnetic permeability
To  Origin temperature
s  Shape factor of nanoparticles
Cfr  Skin friction in radial direction
r,φ, z  Cylindrical coordinates
σ  Fluid electrical conductivity
Ts  Surface temperature
k  Thermal conductivity
Ec  Ecket number
cb  Drag factor
Nur  Nusselt number
τe  Electron collision time
θ(η)  Dimension less temperature
Fr  Local inertia parameter
f ′(η)  Dimensionless radial velocity
ZnO  Zinc oxide
k∗∗  Permeability of porous space
∞  Ambient condition
d1  Variable permeability
cp  Specific heat
c  Stretching rate
b  Dimensional positive constant
ε∞  Constant porosity
d2  Variable porosity
k∞  Constant permeability
ωe  Cyclotron frequency of electron
T  Fluid temperature
Q0  Heat generation/absorption
γs  Slip parameter
Cgr  Skin friction in tangential direction

An advancement in heat transportation phenomenon through liquids is the main issue in various industrial and 
technologically system. Because such liquids are widely utilized in many industries. These liquids are addressed 
to be functioning liquid in machinery system, electronic devices and have several significant applications like 
thermal energy accumulation and elimination from one section of machine to another. However the low thermal 
features of these fluids is the key problem facing in the transportation of heat phenomenon. In order to resolve 
this complexity, various scientist added some solid particles having size less than 100 nm in the traditional  
liquids which shows high thermal characteristics when compared with base liquid. This special material is term 
as nano-liquids. Different researchers utilized different nanoparticles in the common liquid to explore the ther-
mal features of liquid with various aspects. Hybrid nano materials are basically the composition of more than 
one nano-particles in base liquid. This nano-liquid gives highly efficient energy compared to that of common  
nano-liquid. In this regard Ramesh et al.1 developed the mathematical relations describing the hybrid nanoma-
terials flow. Theoretical analysis of both nano and hybrid nano fluid was scrutinized by kumar et al.2. Few novel 
attempts readings hybrid nanomaterials  are3–30.

Hall phenomena have gained remarkable attention owing to their uses in astrophysical, geophysical and 
engineering problems like Hall aspect in sensors and Hall accelerators etc. In the existence of strong magnetic 
field or in rarefied medium, the features of Hall current cannot be ignored. The trend of current for the use of 
MHD is towards strong field of magnet (In this case the effect of electromagnetic for is remarkable) and trend 
to less density of field like in nuclear fusion space light. In view of above constrain, the Hall current becomes 
 significant30. The important use of Hall current in medical science i.e. in MRI, ECG etc.  Katagiri31 analyzed the 
impact of Hall current in MHD flow over a semi-infinite plate. Here applications of Hall current is analyzed. 
The results of the analysis revealed that Hall parameter has decreasing effect on blood flow, but opposite effect 
is noted with the increasing Hartmann  number32. Mahdy et al.33. discussed the features of Hall current on  
micro-temperature in a semi-conductor space. It has been examined from the study that variation in Hall current 
have a significant impact on velocity. Sabu et al.34 statistically explored the Hall current phenomenon on ferro-
liquid flow through inclined channel. Hall current has a decay effect on skin friction. The 3D Casson magnetized 
nanomaterilas flow with ion slip and Hall features is examined by Ibrahim and  Anbessa35. Currently Ullah et al.36 
discussed the ion slip and Lorentz force effects on peristaltic channel.
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Heat transfer improvement in hybrid nanomaterials flow through porous space have numerous utilization in 
the various areas like petroleum, environmental, civil and biomedical engineerings and agricultural etc. Produc-
tion of oil and gas from reservoirs, water pollution through toxic liquids, irrigation and drainage, infrastructure 
construction, bio sensors and petrochemicals are the some significant applications. Flow through porous systems 
has been modeled by utilizing Darcy’s law extensively. The flow converted to non-Darcian, when the Reynolds 
number exceeds unity, because the inertial aspect cause extra hydrodynamic head loss. In 1901 a Dutch researcher 
Forchheimer, dispense his ideas and expressions more extensively. Additionally he admitted the squared velocity 
term in the momentum expression to compute the inertial  forces37.  Muskat38 named this term as Forchheimer 
term. Few development in this area can be  viewed39–44. Heat transportation analysis in variable porous space 
is discussed by  Vafai45. After that Vafai et al.46 performed the experimental inspection of flow via porous space 
subjected variable features. Ress and  Pop47 explored the variable permeability effects on a vertical free surface. 
Hayat et al.48 examined the transient nanomaterial flow through porous regime with variable characteristics. Very 
recently, Ullah et al.49 the nanomaterials flow through Darcy–Forchheimer (DF) space with varying permeability.

This work presents the Hall current and Lorentz force on flow of hybrid nanofluid ( CoF2O4 − ZnO/water) 
over slippery and rotating porous disk with variable permeability. The key motivations of executing presents 
study are summarized as:

• Explore the Lorentz force and Hall current applications for hybrid nanoliquid flow subject to a porous disk.
• Novel features of CoF2O4 and ZnO conveying water hybrid nanomaterials.
• Darcy–Forchheimer law with variable porosity and permeability features is considered as a novelty.
• To investigate the thermal performance of hybrid nanomaterial with EHS, dissipation and radiation impacts.
• To discuss the rate of heat transportation with different shape of nanoparticles.
• Slippery constrains are imposed to examine the fluid flow.
• The numerical simulations are executed by utilizing the built in shooting techniques.
• The inspection of liquid with addition of two different nanoparticles is useful in machinery system, electronic 

devices, medical equipment’s and treatment of diseases.

Problem formulation
Consider the magnetized hybrid nanofluid flow through a spinning and slippery porous disk. Fluid flow via 
Darcy–Forchheimer porous space is assumed with variable features. The porous disk rotates with an angular 
velocity ( � ) and stretch at z = 0 (see Fig. 1), which causes the hybrid nanomaterials motion. The surface of 
porous disk is sustain at temperature Ts and ambient temperature is T∞ . The hybrid nanomaterials is the suspen-
sion of two kinds of nanomaterials CoF2O4 and ZnO in water. Hall current is the result of higher magnetic field 
applied normally to the disk. Impact of radiation, EHS and dissipation are additionally considered to examine 
the variation in temperature gradient comprehensively. Keeping in mind the aforementioned assumptions, the 
Hall current and Ohm’s law relations are:

The electric field is considered to be zero, taking the weakly ionized gas with negligible slip conditions and 
thermoelectric pressure. So the Hall current in component form are:

(1)B(t) =
Bo

(1− bt)
1
2

, u =
cr

(1− bt)
+ L1

∂u

∂z
, v =

r�
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vf (1− bt)
3
2
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,

Figure 1.  Flow physical configuration.
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In above equations, B manifests the magnetic induction, J the vector for current density, (Ts , Tref , To) the 
surface, constant reference, origin temperatures respectively, ( b, c, ) denote stretching rates, Bo magnetic field 
strength,ωe cyclotron frequency of electron, τe electron collision time, pe the electronic pressure, µe the mag-
netic permeability, ne the number of density of electron, σ electrical conductivity of fluid and m the Hall current 
parameter. Hall current and the electrical conductivity and hall current expressions are σ = e2nete

me
 and m = ωeτe.

The flow expressions for current analysis  are30,49:

The radiative heat flux, which is given by:

From Eqs. (11) and (8), one has

where F = cb/r(k
∗∗)

1
2 represents non-uniform inertia factor, ε∞ stands for constant porosity, k∞ stands for con-

stant permeability, d2 for variable porosity, T denotes fluid temperature, d1 for the variable permeability, σhnf  is 
hybrid nanofluid electric conducting, khnf  denotes hybrid nanomaterials thermal conductivity, ρhnf  is the density, 
L1 denotes velocity slip factor, Qo the heat generation/absorption parameter, cb is drag factor, k∗∗ is permeability of 

porous space, (ρcp)hnf  is heat capacity of hybrid nanofluid, qr is radiative heat flux, m1 the exponential index, σ ∗ 

the coefficient of mean absorption, vhnf  denotes kinematics viscosity, γ =
√

vf (1−bt)

�
 is the dimensional constant 

having dimension of length, and k∗ manifest the constant of Stefman Boltzmann.
The specified conditions are:
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Nano and Hybrid nanomaterials properties. The shape factor of nanoparticles is displayed in Table 1. 
The physical characteristics and relations of nano and hybrid nanomaterials are summarized in Tables 2 and 3 
respectively.

Transformations. The following transformations are introduce for current  study30:

Employing the Eq. (11) in Eqs. (5–12) becomes

(14)

η =

√

�

vf (1− bt)
z, v =

r�

(1− bt)
g(η)

u =
r�

(1− bt)
f ′(η), T = To − Tref

(

r2�

vf (1− bt)
3
2

)

θ(η)

w = −2

(

vf�

1− bt

)
1
2

f (η),

Table 1.  Shape factor of  nanoparticles50.

Shape Sphere Tetrahedron Cylinder column Lamina

Geometry

Shape factor 3.0 4.6 4.9 6.3598 16.1676

Table 2.  The nanoparticles ZnO, CoF2O4 and water thermo-physical  features51,52.

ρ (kg/m3) k (W/mk) Cp (J/kgK) σ (�m)−1

Pure water 997.1 0.613 4179 0.05

ZnO 5.606 19 544 0.01

CoF2O4 4907 3.7 700 5.51 ×  109

Table 3.  Thermo-physical relations for nano and hybrid  nanofluids29,41.

Properties Nanofluid Hybrid nanofluid

Density ρnf = ρf

(

(1− φ1)+ φ1

(

ρs
ρf

)) ρhnf = ρf (1− φ1)

(

(1− φ2)+ φ1

(

ρZnO
ρf

))

+ φ2ρCoF2O4

Viscosity µnf =
µf

(1−φ1)2.5
µnf =

µf

(1−φ1)2.5(1−φ2)2.5

Heat capacity (ρcp)nf = (ρcp)f

(

1− φ1 + φ1
(ρcp)ZnO
(ρcp)f

)

(ρcp)nf = φ2
(

ρcp
)

CoF2O2
+ (ρcp)f (1− φ2)

(

(1− φ1)+ φ1
(ρcp)ZnO
(ρcp)f

)

Thermal  
conductivity

knf
kf

= kZnO+(s−1)kf −(s−1)φ1(kf −kZnO)

kZnO+(s−1)kf +φ1(kf −kZnO)

khnf

kf
=

kZnO(s − 1)kf − (s − 1)(kbf − kCoF2O2
)φ2

kZnO + (s − 1)kbf + φ2(kbf − kCoF2O2
)

where

kbf

kf
=

kCoF2O2
+ (s − 1)kf − (s − 1)(kf − kCoF2O2

)φ1

kCoF2O2
+ (s − 1)kf + φ1(kf − kCoF2O2

)

Electrical 
conductivity
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= 1+
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With

where, Fr stands for local inertia variable, α for porosity parameter, ω is rotational variable, S measure unsteadi-
ness, M is magnetics variable, m denotes Hall current variable, γs is slip parameter, Rd denotes radiation param-
eter, Pr is Prandtl number Pr = 6.5 for water, Fr denotes Forchheimer number and Ec stands for Eckert number. 
The dimensionless variables and A1, A2, A3, A4 and A5 are expressed as:

Engineering quantities. The surface transport aspects focusing the current hybrid nanomaterials flow is 
inspected locally with help of skin frictions ( Cfr , Cgr ) and Nusselt number ( Nur ) as follows:

where qw designates the heat flux. After simplifications, the reduced quantities are:

(15)

A1
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f ′′′ + (g2 + 2ff ′′ − f ′2)− S
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2
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(18)
f = 0, f ′ = ω + γsf

′′(0), g = 1+ γsg
′(0), θ(0) = 1, at η = 0,

f ′ = 0, g = 0, θ = 0, as η → 0,
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Table 4.  Comparative studies of −θ ′(0),−g ′(0) and f ′(0)  with53,54.

Yin et al.53 Turkyilmazoglu54 Present outcomes

f ′(0) 0.51022941 0.51023262 0.51024311

−g ′(0) 0.61591990 0.61592201 0.61591032

−θ ′(0) 0.93387285 0.93387794 0.93376327
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where Re = r2�
vf (1−bt) present the Reynold number.

(21)

Re
1
2Cfr =

f ′′(0)

(1− φNi)
2.5(1− φZnO)

2.5
,

Re
1
2Cgr =

g ′(0)

(1− φNi)
2.5(1− φZnO)

2.5
,

Re
− 1

2Nur = −
(

khnf

kf

)(

1−
4

3
Rd

)

θ ′(0).

Figure 2.  (a) Variation of f ′(η) via ω . (b) Variation of g(η) via ω.
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Methodology and validation of outcomes
The converted system in Eqs. (15–19) are non-linear and coupled, therefore close form solution is indeed 
 difficult9. To side up this issue, the transform ODEs are treated numerically via NDSolve technique, adopting 
the software Mathematica. Basically NDSolve is a built-in shooting technique, which can be process for small 
step sizes leads to less error. Present fallouts with published outcomes are compared to validate the current 
problem (see Table 4). It is identified that an excellent match between present outcomes and Yin et al.53 and 
 Turkyilmazoglu54 is obtained.

Figure 3.  (a) Variation of f ′(η) via Fr . (b) Variation of g(η) via Fr.
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Physical discussion of outcomes
Base on the previous numerical executions, many illustrative outcomes are designed in this section as depicted 
in Figs. 2, 3, 4, 5, 6, 7 and 8 for f ′(η),g(η) , θ(η) and Cf ,r and Nur against various estimations of interesting 
variables. For whole study, the default values of physical parameters are ω = 0.2 , γs = 0.2 , M = 0.2 , Fr = 0.1 , 
α = 0.2, d1 = d2 = 0.5 , m = 0.2 , Rd = 0.2 , m1 = 0.1 , QE = 0.25 , Ec = 0.2 , φ1 = 0.01 , and φ2 = 0.01 . Some 
numerical values are assigning to each parameter, while other parameters are kept unchanged. Curves for hybrid 
and nano phases are denoted by solid and dished lines respectively.

Velocity interpretation. The radial  f ′(η) and tangential g(η) velocities against ω , Fr , d1 d2 and φ1/φ2 are 
shown in Figs. 2, 3, 4, 5, 6, 7 and 8. Results for radial velocity f ′(η) versus ω is presented in Fig. 2a. Here rising 
the estimations of ω leads to enhance the nanofluid velocity. Rotation variable is the ratio of rotating rate to 

Figure 4.  Variation of f ′(η) via φ1/φ2.

Figure 5.  Variation of f ′(η) via d1.
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stretching rate. Thus, larger estimations of ω implies higher rotation rate when compared with rate of stretching. 
In fact an increment in ω means enhancing the centrifugal force which consequently deploy pressure on nano-
materials to boosts up the motion of liquid particles in the radiation direction, where the decaying behavior for 
tangential velocity g(η) is seen in Fig, 2b. Fig, 3a, b illustrates the impact of Fr on f ′(η) and g(η) . It is noted that 
higher Fr corresponds decline f ′(η) and g(η) in both nano and hybrid phases. In fact higher Fr leads to higher 
inertial force which decays both velocities. Comparative analysis of hybrid (φ1  = 0, φ2  = 0) and base liquid  
(φ1 = 0, φ2 = 0) on radial velocity f ′(η) is illustrtared in in Fig. 4. Clearly hybrid nanofluid (φ1  = 0, φ2 = 0) 
have more parts in rising f ′(η) than the nano and base liquids. Figure 5 is schemed graphically to explore the 
dynamical features of hybrid and nano phases against d1 . Boosting trend is observed in this sketch with growing 
estimation of d1.

Contrarily to the aforementioned impact, radial velocity f ′(η) shows diminishing behavior against d2 for 
both cases of nanofluids.

Figure 6.  Variation of f ′(η) via d2.

Figure 7.  Variation of θ(η) via Rd.
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Temperature interpretation. Figures 7 and 8 are designed to investigate the comparative analysis nano 
and hybrid nanomaterials on θ(η) against varying estimations of Rd and φ1/φ2. The variation of Rd on θ(η) for 
hybrid and nano particles are structured in Fig. 7. It is shown that sharply increment in Rd boosts up thermal 
field due to more heat absorbed by hybrid nanofluid. Physically, higher Rd means more heat is provided to hybrid 
nanomaterials, that is why θ(η) enhances. The variation of θ(η) of hybrid nanoliquid for rising estimations of 
φ1/φ2 is shaped in Fig. 8. Higher φ1/φ2 leads to boost the nano and hybrid nanoliquid thermal field. This figure 

Figure 8.  Variation of θ(η) via φ1/φ2.

Table 5.  Skin frictions ( Cfr and Cgr ) numerical values versus various parameter.

d1 d2 � Fr ω

Cfr Cgr

ZnOWater ZnO − CoF2O4 Water ZnOWater ZnO − CoF2O4 Water

0.2 2.0 0.2 0.2 0.2 0.039018 0.055687 0.969356 1.138655

0.5 0.031256 0.046169 0.959022 1.123875

2.0 0.010282 0.011103 0.933633 1.075667

5.2 0.0 0.2 0.2 0.2 0.012797 0.007865 0.911227 1.055545

0.2 0.005854 0.000062 0.916651 1.062424

0.4 − 0.00185 -0.00853 0.922603 1.066083

5.2 0.2 0.0 0.2 0.2 0.040515 0.035413 0.901291 1.044377

0.3 − 0.00957 − 0.03073 0.916651 1.062424

0.6 − 0.000415 − 0.05778 0.9314307 0.984552

5.2 0.2 0.2 0.0 0.2 0.0314713 0.028414 0.8650194 1.004653

0.2 0.0058540 0.000062 0.9416488 1.117536

0.4 − 0.018760 0.111325 0.1119701 1.169940

5.2 0.2 0.2 0.2 0.0 0.2042584 0.226319 0.8181331 0.953427

0.3 − 0.101338 − 0.12255 0.9609267 1.111851

0.6 − 0.451223 − 0.52400 1.0782713 0.524002
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also provide us comparative study for three different cases i.e. hybrid (φ1 = 0, φ2 �= 0) , nano (φ1  = 0, φ2 = 0) 
and base (φ1 = 0, φ2 = 0) . Clearly hybrid nanoliquid dominates over the base and nano liquids.

Variation in physical quantities. The skin frictions of the hybrid and nano phases through distinct vari-
ables are disclosed in Table 5. It is detected that Cfr and Cgr have opposite trend for d1 and d2 . Furthermore, skin 
frictions are more in case of hybrid nanoliquid than the traditional nanoliquid. Table 6 designed the variations 
in Nusselt number with shape factor against several variables. Here it is seen that heat transfer rate is higher for 
lamina shaped nanoparticles.

Concluding remarks
Here significant features of variable porosity and permeability on hybrid nanofluid CoF2O4 − ZnO/water) flow 
through Darcy–Forchheimer space with the impact of radiation, EHS and hall current is addressed. Main find-
ings of current analysis are:

• Variable porosity and permeability have reverse behavior on f ′(η).
• Both radial and tangential velocities have opposite behavior for higher ω.
• Temperature is increasing for φ1/φ2 and Rd.
• Thermal field is higher for ( CoF2O4 − ZnO/water) than ( ZnO/H2O ) nanomaterials.
• Nusselt number is grows up more rapidly in case of lamina shape nanoparticles in comparison with other 

shape nano particles.
• Hybrid nanomaterials have dominant effect thought out the analysis than the ordinary one.
• Lamina shape of nanoparticle is more effective and improves the thermal field than other shapes.
• Present analysis can be extended by incorporating entropy analysis, ternary hybrid nanofluid, fractional 

modeling and different techniques as future  work55–66.
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