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Melanomacrophage centers (MMCs) are aggregates of highly pigmented phagocytes 
found primarily in the head kidney and spleen, and occasionally the liver of many ver-
tebrates. Preliminary histological analyses suggested that MMCs are structurally similar 
to the mammalian germinal center (GC), leading to the hypothesis that the MMC plays 
a role in the humoral adaptive immune response. For this reason, MMCs are frequently 
described in the literature as “primitive GCs” or the “evolutionary precursors” to the 
mammalian GC. However, we argue that this designation may be premature, having 
been pieced together from mainly descriptive studies in numerous distinct species. 
This review provides a comprehensive overview of the MMC literature, including a 
phylogenetic analysis of MMC distribution across vertebrate species. Here, we discuss 
the current understanding of the MMCs function in immunity and lingering questions.  
We suggest additional experiments needed to confirm that MMCs serve a GC-like role 
in fish immunity. Finally, we address the utility of the MMC as a broadly applicable histo-
logical indicator of the fish (as well as amphibian and reptilian) immune response in both 
laboratory and wild populations of both model and non-model vertebrates. We highlight 
the factors (sex, pollution exposure, stress, stocking density, etc.) that should be consid-
ered when using MMCs to study immunity in non-model vertebrates in wild populations.

Keywords: melanomacrophage center, germinal center, fish immunology, non-model organisms, comparative 
immunology

inTRODUCTiOn

The study of immunology in wild vertebrates is hamstrung because many tools cannot readily 
be used in the field, and species-specific reagents do not exist for most non-model organisms. 
Melanomacrophage centers (MMCs) might offer a simple, cheap, and broadly applicable measure 
of adaptive immunity in poikilotherms. Here, we summarize and critically review this potentially 
valuable tool for wild immunology.

Abbreviations: MM, melanomacrophage; MMC, melanomacrophage center; GC, germinal center; RPMs, red pulp mac-
rophages; TBMs, tingible body macrophages; FDC, follicular dendritic cell; TFH, T follicular helper cell; Ig, immunoglobulin; 
SHM, somatic hypermutation; AID, activation-induced cytidine deaminase.
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FigURe 1 | Light micrographs of stickleback (Gasterosteus aculeatus) splenic melanomacrophage centers. (A) Unstained spleen at 50×. Scale bar equals 250 µm. 
Box outlines magnified section in panel (B). (B) Unstained spleen at 200×. Scale bar equals 62.5 µm. (C) H&E-stained spleen at 200×, and black arrows indicate 
MMCs. Scale bar equals 62.5 µm.
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Melanomacrophages (or melanin-macrophages, MMs) are 
pigmented phagocytes found primarily in poikilotherm lymphoid 
tissues. MMs are darkly pigmented due to high lipofuscin, mela-
nin, and haemosiderin content (1), making them histologically 
distinguishable via light microscopy (Figure 1). Nodular accu-
mulations of closely packed MMs, known as MMCs, are primar-
ily observed in the kidney, spleen, and liver. Generally, kidney 
and liver MMCs are diffuse and less structured, while splenic 
MMCs are more organized (2–4). As detailed below, the leading 
hypothesis is that MMCs represent a primitive site of adaptive 
immune system activation. As such, they may offer a valuable 
low-cost marker for measuring adaptive immunity across most of 
the vertebrate tree of life, in both model and non-model species. If 
so, MMCs could provide a widely applicable tool for wild immu-
nology, as they are near-ubiquitous across vertebrates. MMCs 
are reported in over 130 fish species (Figure S1 and Table S1 in 
Supplementary Material) and are also present in amphibians and 
most reptiles (Figures S2 and S3 and Table S2 in Supplementary 
Material). This review centers on the well-studied piscine MMC 
but comments on the less-well known amphibian and reptile 
MMCs, where relevant.

nOn-iMMUnOLOgiCAL FUnCTiOnS  
OF THe MMC

The MMC is thought to play dual roles, participating both in 
immune defenses and normal, non-immunological, physiologi-
cal processes. This review focuses on MMC immune functions 
but touches briefly on non-immunological roles [detailed 
review by Wolke (5)]. Like other macrophages, MMs’ primary 
function is phagocytosis. The presence and long-term storage 
of unmetabolized, effete materials, earned MMCs the title of 
“metabolic dumps”  (6). This indigestible material, which gives 
MMs their characteristic pigmentation, can be of endogenous or 
exogenous origins. Endogenous materials are obtained through 
the phagocytosis of exhausted cells, particularly erythrocytes. 
Erythrophagocytosis by MMCs is widely reported and goes back 
to the earliest MMC description by Blumenthal in 1908 (7–13). 
More recent studies showed that turtle MMs can erythrophago-
cytose in  vitro (14). The presence of degraded erythrocytes 
and hemosiderin suggests that MMs function in iron recycling 
(10, 11), much like the hemosiderin-laden splenic red pulp 

macrophages  (RPMs) found in mammals (15). Exogenous 
materials, of natural or experimental origins, also collect within 
MMCs. Metal deposits (16, 17) and experimentally injected inert 
substances (13, 18–23) accumulate within MMs. These findings 
highlight the importance of MMCs in debris clearance and 
long-term storage of highly indigestible and/or toxic materials. 
The phagocytic nature of these cells is similar to that of the tin-
gible body macrophage (TBM) found in the mammalian splenic 
germinal center (GC) (24). While the role of waste product 
repository is considered non-immunological, as we discuss in the 
following section, this physiological necessity may overlap with 
an important MMC immunological function: antigen retention.

iMMUne FUnCTiOnS OF THe MMC

Early descriptions proposed that MMCs function in both the 
innate and adaptive arms of the immune response (25). MM 
phagocytic activity is not limited to erythrocytes as they also 
phagocytose infectious materials (14, 21, 25–27). Turtle MMs 
are described as “aggressively phagocytic,” attacking bacteria, 
fungi, and helminth parasite eggs in  vitro (14). MMCs’ close 
association with specialized capillaries in the spleen, known as 
ellipsoids (8, 28), suggests that they may scavenge blood borne 
pathogens. This notion is supported by the observation that, 
in vivo, MMCs quickly remove injected foreign materials from 
the circulation (13, 18–20, 27).

Morphological characteristics, organ location, and association 
with infection/immunization led to the hypothesis that MMCs 
are analogs, or “primitive” evolutionary precursors, of the mam-
malian GC (1, 5, 10, 21, 27–32). As such, they may participate in 
the adaptive immune response. In mammals, the GC response is 
crucial for the differentiation and clonal expansion of memory 
B cells and high-affinity plasma cells. Extensive experimentation 
has elucidated the complex spatial structure, cell–cell interac-
tions, and molecular processes that occur within the mammalian 
GC (33). The GC has a well-defined architecture, with distinctive 
B-cell, follicular dendritic cell (FDC) and T follicular helper cell 
(TFH) aggregates. Following antigen challenge, antigen-specific 
B cells accumulate and proliferate causing a transient increase in 
GC size (33). During the GC response, antigen-specific B cells, 
mediated by interactions with FDCs and TFH, undergo clonal 
expansion and differentiate into memory and plasma cells (33). 
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TABLe 1 | Comparison of poikilotherm melanomacrophages with mammalian 
follicular dendritic cells (FDC), red pulp macrophages (RPM), and tingible body 
macrophages (TBM).

Mammals Poikilotherms

FDC RPM TBM MMC

Location Spleen, 
LN

Spleen Spleen, 
LN

Spleen, kidney, 
liver

Nodular aggregations + − − +
Erythrophagocytosis − + − +
Phagocytosis of exhausted/dead 
cells

− − + +

Stain with CNA-42 + − − +
Express CSF1-R + − − +
Retain antigen long-term within ICs + − − +
Found in close proximity to:

Lymphoid cells + − + +
AID-expressing cells + − + +
B cells undergoing SHM + − + Unknown
Differentiating B cells + − + Unknown
Activated B cells + − + Unknown

LN, lymph node; IC, immune complexes; AID, activation-induced cytidine deaminase; 
SHM, somatic hypermutation.
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FDCs serve as long-term antigen depots by maintaining intact 
antigen on their surface in the form of immune complexes (IC) 
(34). It is within GCs that antibody affinity maturation occurs. 
In this targeted microevolutionary process, immunoglobulin  
(Ig) genes undergo somatic hypermutation (SHM) and selection. 
In GC B cells, the enzyme activation-induced cytidine deaminase 
(AID) generates Ig gene mutations (35–37). GC B cells express-
ing mutated Ig genes are then selected based on their affinity for 
antigen (38, 39). This process hones antibody specificity and is 
necessary for an efficient humoral immune response.

Teleosts lack GCs; yet, nevertheless, they generate affinity-
matured antibody in response to antigen challenge (40, 41). 
Descriptive studies, across many fish species, identified numer-
ous similarities between GCs and MMCs (Table  1), raising 
the possibility that MMCs are the site of the teleost humoral 
adaptive immune response. MMs, like mammalian FDCs, 
stain positively with the CNA-42 monoclonal antibody (42) 
and express CSF1-R (43). Fish injected with both infectious 
and non-infectious substances demonstrated that MMCs are 
sites of antigen retention (18, 19, 21, 22, 30, 44–46). Notably, 
carp immunized with Aeromonas hydrophila retained antigen 
in and around splenic MMCs for at least a year (21). Antigen 
retained near or within MMCs is extracellular, trapped within 
IC, and the injection of preformed IC accelerates this retention  
(47, 48). While these findings highlight many similarities 
between MMs and FDCs, the erythrophagocytic and scaveng-
ing functions described in the previous section also suggest 
similarities between the MMC and RPMs and TBMs found in 
the mammalian spleen (Table 1).

Following immunization or infection, fish MMCs increase 
in size and/or number (10, 13, 26, 32, 49–52), much like mam-
malian GCs. Study of MMC kinetics in goldfish showed that 
MMs can both join existing aggregates or form new aggregates 
(22). Lymphoid cells are observed in close proximity to teleost 

MMCs (13, 21, 53) and increase in response to immunization 
(13). These studies, however, lacked species-specific reagents; 
so determination of cell identity was not possible. More recent 
immunohistochemical studies revealed MMC-adjacent Ig+ cells 
that increase in number in response to experimental infection 
(2–4). These Ig+ cells were presumed to be B cells, but the cells’ 
identity has not been confirmed as these stains cannot differenti-
ate between cells expressing Ig and those binding soluble Ig  
(or IC) on their cell surface (2–4). While some Ig+ cell aggre-
gation was observed, they did not exhibit the highly compart-
mentalized structure characteristic of mammalian GCs (2–4). 
Unlike the GC, the MMC response in some teleost species does 
not correlate with an increased antibody production (13). More 
recently, AID-expressing cells were identified in or proximal to 
MMCs (54). Considering that AID expression is required for 
SHM in mammals, this finding strongly supports the notion of a 
GC-like MMC. However, SHM has not been directly documented 
in MMCs (54). These studies provide compelling evidence that 
MMCs and mammalian GCs likely perform similar functions, 
but differences do remain. A systematic investigation of MMC 
function has never been performed. Toward the end of this 
review, we suggest an experimental road map to fully characterize 
teleost MMC function.

evOLUTiOnARY HiSTORY OF MMCs

Here, we consider both the likely timing and function of the 
early evolution of MMCs. MMCs are present in both jawless 
(Cyclostomata) and jawed vertebrates (Gnathostomata), imply-
ing that MMCs likely evolved at least 525  mya in a common 
ancestor of all Vertebrata (Figure  2). This evolutionary gain 
likely proceeds the evolution of adaptive immunity as jawed and 
jawless vertebrates evolved unique adaptive immune systems  
(55, 56). In “primitive” vertebrates like hagfish (Myxiniformes) 
and sharks and rays (Chondrichthyes), MMs are diffusely 
distributed, mostly in liver tissue. In contrast, bony vertebrates 
[Euteleostomi (a.k.a., Osteichthyes)] exhibit more aggregated 
MMs that form distinct MMCs primarily in the spleen and kid-
ney (6). Because bony fish, amphibians, and reptiles share splenic 
aggregations, we infer that MMC concentration into the spleen 
must have evolved in a common ancestor to Euteleostomi. That 
is, splenic MMCs evolved between 430 and 460 mya, prior to the 
split between ray-finned fishes (Actinopterygii) from lobe-finned 
fishes and tetrapods (Sarcopterygii) but after their split from 
Chondrichthyes (Figure 2). Note that this inference is based on 
an assumption that MMCs are homologous structures (inherited 
from a common ancestor) rather than having independently 
evolved multiple times. This assumption has yet to be rigorously 
tested with transcriptomic and genetic data.

Melanomacrophage centers are retained in most poikilo-
therms, though they are reported absent in a handful of species. 
Admittedly, studies that did not locate MMCs (despite appreci-
able investigation) might be false negatives. Studies of MMCs 
in jawless vertebrates are underrepresented, with reports from 
only two Cyclostomata species (6). MMCs are reportedly absent 
in the lamprey, Lampetra fluviatilis, but present in hagfish (6) 
(Figure 2; Tables S1 and S3 in Supplementary Material). We are 
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FigURe 2 | Phylogeny showing melanomacrophage center (MMC) gains and 
losses across vertebrate species. Detailed phylogenies of fish, amphibian, 
and reptilian species can be found in Supplemental Material. The phylogeny 
is not time-calibrated and was plotted using the ape package in R (57), 
using a topology obtained from the OneZoom database (58). Drawings by 
Doreen J. Bolnick.
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aware of only two bony fish species that reportedly lack MMCs: 
the fifteenspine stickleback, Spinachia spinachia, and the South 
American armored catfish, Hypostomus francisci (Figure S1 
and Table S3 in Supplementary Material) (8, 59). In all three 
instances, MMC absence was determined by survey studies of a 
few individuals from a single location. From these limited stud-
ies, it is difficult to determine if the absence of MMCs represents 
species- or population-level variation. These absences should be 
investigated in greater detail but suggest that MMCs can be lost 
(or, replaced by another feature) without lethal effect. The sister 
genus to Spinachia (Gasterosteus, including threespine stick-
leback) has distinct MMCs (Figure 1), indicating that loss can 
occur over comparatively short macro-evolutionary time. MMCs 
have also been lost, probably two separate times, in Squamate 
reptiles (in vipers and a large snake clade including rat snakes 
and keelbacks) (Table S3 in Supplementary Material). But, MMCs 
were located in all amphibians we found reports for (Figure S2 in 
Supplementary Material), and in turtles, lizards, and crocodiles 
(Figure S3 in Supplementary Material). These aggregates are  
generally less organized than those observed in bony fish. MMCs 
are not observed in mammals or birds. If MMCs are indeed absent 
in birds and mammals, it is likely that they were independently 
lost. MMC loss in mammals is particularly note-worthy, because 
pigmented RPMs are still found in mammalian spleens. These 
macrophages perform physiological roles in erythrophagocyto-
sis and metabolic recycling but have no known role in the GC 
response.

Collectively, evidence suggests several intriguing hypotheses 
for the evolutionary origins of MMs, MMCs, and mammalian 
GCs. We emphasize that these hypotheses are tentative but 
intriguing enough to warrant rigorous evaluation. The first 
hypothesis is that MMs initially evolved as molecular and cel-
lular “garbage dumps” without a particular immunological role, 
in a common ancestor of all Vertebrata. Early MMs would have 
encountered pathogens or their antigens while acting in this 
clean-up capacity, which leads to a second hypothesis: MMs’ 
incidental interaction with pathogens subsequently became 
entrenched and they gained immune function, perhaps in a 
common ancestor to Gnathostomata. The third (and oldest) 
hypothesis is that in early mammals, the MMCs evolved into 
GCs, with splenic RPMs remaining to carry out erythrocyte 
recycling function. We consider this third hypothesis in greater 
detail in the next section.

ARe MMCs An evOLUTiOnARY 
PReCURSOR TO THe MAMMALiAn gC?

The notion of a “primitive GC”-like MMC has long been 
speculated (1, 5, 10, 21, 25, 27–32). However, this conclusion was 
drawn from descriptive studies, across many fish species, which 
did not directly investigate how MMC parameters correlate with 
immune function. As noted earlier, similarities between MMCs 
and GCs make this conclusion compelling (Table  1). Chiefly, 
both structures increase in size and/or number in response to 
immunization or infection (10, 13, 26, 31, 50–52). The structures 
also share cell types and expressed genes, but other observations 
call the “GC-precursor” hypothesis into question. Most notably, 
MMCs also respond to non-infectious settings, including poor 
body condition, pollution exposure, starvation, aging, and injury 
(discussed in detail below) (1, 10, 50, 60–63). When reconciling  
the MMC response to both infectious and non-infectious 
circumstances, these findings could be interpreted in several 
different ways.

First, it is possible that MMCs evolved from a purely physi-
ological role, to gain immunological function, conducting both 
roles simultaneously. Subsequent GC evolution may be a case 
of sub-functionalization, in which a generalist tissue or cell 
type, performing multiple roles, evolves into specialist sub-
populations. Second, the conditions that influence MMC status, 
including infection/immunization, are all associated with tissue 
destruction. So it is possible that the MMC response may not 
be immunological like the GC but may simply be a non-specific 
expansion of MMs in response to generalized tissue damage. In 
this case, the proposed immune function of MMCs may be a 
false lead.

Third, the association between MMCs and stress or tissue 
damage could be confounded with infection. Poor body condi-
tion, aging, injury, pollution exposure, and starvation can facilitate 
secondary infections. Thus, experiments that manipulate stressors 
might have incidental effects on infection, making it difficult to 
experimentally distinguish between non-infectious versus infec-
tious MMC responses. Conversely, infection or pollution expo-
sure may lead to poor body condition, injury, and/or suppressed 
appetite/starvation. As exposure to pathogens or contaminants 
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may not be readily detectible, an MMC response may mistakenly 
be attributed to other environmental or physiological factors.

FUTURe DiReCTiOnS

To determine whether MMCs function in a GC-like capacity, 
further studies must directly test this hypothesis. Antigen-
specific B-cell clonal expansion and high-affinity antibody 
production from mammalian GCs are the result of B-cell 
proliferation, differentiation, and SHM. To determine if MMCs 
are GC analogs, experiments must investigate if antigen-specific 
B  cells proliferate and differentiate in association with MM 
aggregates. While the presence of AID-expressing cells within 
the MMC implies that affinity maturation is occurring (54), 
further experiments are necessary to assess whether antibody 
gene SHM occurs within and is dependent on the MMC. The 
mammalian GC response is T-cell dependent, as GC B-cell 
clonal expansion and differentiation requires help from TFH 
cells (64). T-dependent (TD) antigens are proteins that induce 
GC reactions. T-independent (TI) antigens, in contrast, are 
polysaccharide based, cannot be presented to TFH cells, and 
consequently do not stimulate a GC response (65). Therefore, 
a straightforward test of MMC function would compare the 
MMC response to TD and TI antigens. Using next generation 
sequencing tools, it would be useful to conduct a comparative 
transcriptomic analysis of MMCs and GCs to determine simi-
larities and differences in gene expression. Lastly, MMC fine-
scale structure should also be defined, for instance using single 
molecule fluorescent in situ hybridization to generate spatially 
explicit maps of gene expression and the distribution of cell 
types within MMCs. In the absence of functional studies that 
directly test the hypothesis of a GC-like MMC, an abundance of 
caution should be used when drawing conclusions regarding the 
nature of the MMC response in immune function.

nOTeS FOR THe wiLD iMMUnOLOgiST

Though fundamental experiments are needed to clarify the 
immunological significance of the MMC, we nevertheless assert 
that the MMC is potentially a practical biomarker of immune 
function in both laboratory and wild studies. As MMCs are 
evolutionarily conserved in many poikilothermic species, histo-
logical assays of the MMC state could provide a valuable tool for 
comparative studies of adaptive immunity across the diversity 
of vertebrates. Due to their inherent pigmentation, the MMC 
response can be easily visualized and quantified via light micros-
copy, without the need for costly species-specific reagents. This 
pigmentation also makes MMs highly autofluorescent, a feature 
that can be employed to isolate MMs via FACS sorting (43, 54). 
Though MMCs appear to be a useful bioindicator of poikilotherm 
immune function, several variables must be considered when 
designing and analyzing laboratory or wild studies.

Careful consideration should be given to sampling relevant 
tissues and quantifying the appropriate MMC parameters. Most 
immunological (and non-immunological) studies of the MMC 
focus on a single tissue. In light of the phylogenetic association 
of the MMC with different organs (6), researchers should be sure 

that the appropriate tissue(s) are sampled. The MMC response 
is quantified using various parameters including aggregate 
size, number, total pigmented area, pigmentation intensity, and 
aggregate circularity (shape factor). These variables can change 
through time in response to various stressors, and some are cor-
related (e.g., size and pigmented area). However, in the absence 
of a functional understanding of the nature of the MMC in the 
immune response it’s not yet clear which metric(s) should be 
reported. Therefore, to avoid cherry-picking results, attention 
and justification should be given for choosing tissues to sample 
and MMC parameters to report.

The MMC can also respond to physiological and environ-
mental changes. This presents a difficult situation for the wild 
immunologist. Histological MMC parameters vary in response 
to life history and environmental factors. Sex (60, 66), diet (52, 61,  
63, 67), spawning phase (68), season (69), temperature (70), and 
UV exposure (71) influence MMC status. Several authors reported 
a linear correlation between age and elevated MMC metrics  
(17, 72–74). Studies also showed MMC responses to environmen-
tal stressors. In fish, farming increased MMC density compared 
to the same species raised in wild conditions (75). Other aqua-
culture variables, such as ranching time and stocking density, 
influence MMC metrics (67, 76).

Numerous investigations report correlations between 
“degraded environments” and MMC status. Decreased dissolved 
oxygen levels were associated with an increased fish MMC 
number (77). Several studies documented MMC responses to 
environmental contaminant exposure in wild fish and amphib-
ians (66, 73, 77–81). However, many of these studies compared 
contaminant-exposed animals to those from uncontaminated 
“control” areas, without accounting for confounding effects 
of infection or other physiological or environmental factors. 
Nevertheless, controlled experimental exposure of lab-raised 
fish to environmental contaminants supports the notion of a 
pollutant-induced MMC response (52, 82–85). These obser-
vations, combined with MMC responses to life history and 
environmental factors (1, 10, 17, 31, 49, 50, 60–63, 72–74, 80), 
underscore the difficulty in interpreting MMC metrics in wild 
populations. If meaningful conclusions are to be drawn regarding 
the MMC response in wild (and lab-raised) animals, thoughtful 
consideration must be given to choosing appropriate controls 
and accounting for physiological and environmental variables 
in analyses. Therefore, we recommend wild studies employing 
the MMC assay without validation and appropriate controls be 
interpreted with caution.

COnCLUSiOn

The MMC shares many structural, cellular, and molecular simi-
larities with the mammalian GC, suggesting an evolutionary tie 
to mammalian adaptive immunity. Parallels between these struc-
tures led researchers to recognize the potential for the MMC as 
a histological biomarker of poikilotherm immune response. We 
assert, however, that this tool should be used with caution. While 
descriptive studies have identified important features of the MMC, 
functional studies are needed to confirm its role in the adaptive 
immune system. If such studies validate this immunological tool, 
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they will pave the way for comparative studies of the evolutionary 
origins of vertebrate immunity and for experimental immunology 
in wild populations.
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