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Fluctuations in Gut Microbiome Composition During Immune 
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Abstract

Background: Immune checkpoint inhibitors (ICIs) such as pro-
grammed cell death protein-1 (PD-1) inhibitors or PD-1 ligand-1 
(PD-L1) inhibitors have led to remarkable improvement in out-
comes of non-small cell lung cancer (NSCLC). Unfortunately, the 
significant benefits of ICI therapy are frequently limited by resist-
ance to treatment and adverse effects, and the predictive value of 
pre-treatment tumor tissue PD-L1 expression is limited. Develop-
ment of less invasive biomarkers that could identify responders and 
non-responders in early on-treatment could markedly improve the 
treatment regimen. Accumulating evidence suggests that baseline 
gut microbiota profile is associated with response to PD-1/PD-L1 
blockade therapy. However, change in the gut microbiome compo-
sition during PD-1/PD-L1 blockade therapy and its relation to re-
sponse remain unclear.

Methods: Here, we analyzed pre- and on-treatment fecal samples from 
five NSCLC patients receiving anti-PD-1 immunotherapy, alone or in 
tandem with chemotherapy, and performed 16S rRNA sequencing.

Results: The overall alpha diversity of the baseline gut microbiome 
was similar between three responders and two non-responders. While 
the gut microbiome composition remained stable overall during treat-
ment (R2 = 0.145), responders showed significant changes in microbi-
ome diversity between pre- and on-treatment samples during anti-PD-1 
therapy compared to non-responders (P = 0.0274). Within the diverse 
microbiota, responders showed decreases in the abundance of genera 
Odoribacter, Gordonibacter, Candidatus Stoquefichus, Escherichia-
Shigella, and Collinsella, and increase in abundance of Clostridium 
sensu stricto 1. In contrast, non-responders demonstrated on-treatment 
increases in genera Prevotella, Porphyromonas, Streptococcus, and 
Escherichia-Shigella, and decrease in abundance of Akkermansia.

Conclusions: This pilot study identified a substantial change in gut 
microbiome diversity between pre- and on-treatment samples in 
NSCLC patients responding to anti-PD-1 therapy compared to non-
responders. Our findings highlight the potential utility of gut microbi-
ota dynamics as a noninvasive biomarker to predict response to PD-1/
PD-L1 blockade therapy for a wide variety of malignancies, which 
sets a path for future investigation in larger prospective studies.
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Introduction

The paradigm of treatment of non-small cell lung cancer 
(NSCLC) has significantly evolved over the last several dec-
ades, in large part due to the development of immune check-
point inhibitor (ICI) therapy [1, 2]. ICIs exert inhibitory sig-
nals on lymphocyte receptors or their ligands to unleash the 
anti-tumor immune response; among the most commonly 
used ICIs are monoclonal antibodies against programmed cell 
death protein 1 (PD-1), and its ligand PD-L1 [3, 4]. Whereas 
treatment of NSCLC with platinum-based chemotherapy only 
provided a modest improvement in survival compared to ob-
servation, treatment with PD-1/PD-L1 blockade therapy has 
demonstrated markedly improved prognosis [1, 5, 6]. How-
ever, many patients do not respond or experience progression 
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of disease on immunotherapy due to resistance to treatment [1, 
2]. Given that ICIs can be accompanied by serious immune-
related adverse events, there is ongoing interest in identifying 
surrogate predictive markers which may play a role in a pa-
tient’s response to ICI treatment.

There are several biomarkers which correlate with re-
sponse to anti-PD-1 therapy, such as PD-L1 expression in the 
tumor microenvironment (TME), CD8+ tumor infiltrating lym-
phocyte (TIL) density, and tumor mutational burden (TMB). 
However, predictive value of these markers on pre-treatment 
tumor tissue is limited because of dynamic change in the TME 
during ICI therapy [7-9]. Given that resistance to anti-PD-1 
therapy is a dynamic process that evolves during the course of 
treatment [7-9], we sought to identify on-treatment biomark-
ers which can be monitored at several time points throughout 
treatment. While repeating tumor biopsies would provide the 
most accurate snapshot of the evolving TME [7-9], this is an 
invasive method which is impractical and potentially risk-pro-
hibitive for visceral tumors.

In recent years, there has been a drastic growth of interest 
in how the gut microbiome affects outcomes of ICI therapy in 
various cancers [10-19]. The relationship between gut flora and 
the immune system is reciprocal in that microbiota shape host 
immunity by maintaining immune homeostasis, and the intes-
tinal immune system functions on multiple levels to compart-
mentalize gut bacteria and minimize translocation [20]. The link 
between gut microbiota and ICI response has been highlighted 
by the fact that antibiotic use preceding ICI therapy is associated 
with worse outcomes [18, 19], and that fecal microbiota trans-
plantation from ICI responders to non-responders can overcome 
primary resistance to therapy [21, 22]. Although these findings 
highlight the promise of strategies that target the gut microbi-
ome as a predictive marker of response and the treatment of dis-
ease, it remains unclear whether the microbiome composition 
changes during treatment, and relationship between microbiota 
remodeling and response to ICI therapy remain unclear.

Improved understanding of the changes in gut microbi-
ome in response to ICI therapy may provide new insights into 
the immune monitoring and mechanisms of anti-tumor effects 
with ICI therapy. Here, we conducted a pilot study where we 
assessed gut microbiota signatures in pre- and on-treatment 
stool samples from five NSCLC patients receiving anti-PD-1 
therapy, alone or in combination with chemotherapy. Our re-
sults demonstrate that increased change of diversity of micro-
biota between pre- and on-treatment stool samples associates 
with response to anti-PD-1 therapy, and that serial fecal sam-
pling may be a noninvasive method to predict response to ICI 
therapy.

Materials and Methods

Data reporting

Clinical samples were obtained from all participants enrolled 
during the study window. The study participants included a pool 
of both responders and non-responders. Due to the nature of this 
study, randomization could not be reasonably applied. The rel-

evant biomarkers as detailed below were quantified at prespeci-
fied intervals during treatment as well as clinical response.

Study design, patients, and specimen collection

Patients at Roswell Park Comprehensive Cancer Center who 
received the anti-PD-1 antibody pembrolizumab, with or with-
out chemotherapy (carboplatin and pemetrexed) for stages 
IIIA - IV NSCLC were eligible for inclusion in the study. We 
prospectively recruited patients for blood and stool sampling 
between February 2018 and October 2019. All participants 
gave informed consent for the collection and storage of blood 
and stool samples, and review of their medical records under 
the protocol was approved by the Institutional Review Board 
of Roswell Park Comprehensive Cancer Center. This study 
conformed to the Declaration of Helsinki. Prior to treatment, 
we obtained baseline samples of both peripheral blood (PB) 
and stool. PB was collected in ethylenediaminetetraacetic acid 
(EDTA)-containing tubes prior to each infusion, as well as 
every 3 weeks for 6 weeks. We collected a second stool sample 
within 3 weeks after the first cycle of the treatment. Ultimately, 
we accrued and included five NSCLC patients who received at 
least one dose of pembrolizumab, stool collection prior to and 
during treatment, and staging/surveillance imaging.

Flow cytometry

Using lymphocyte separation medium (Corning) density gra-
dient centrifugation, we isolated peripheral blood mononu-
clear cells (PBMCs). Staining of CX3C chemokine receptor 1 
(CX3CR1) in T cells was performed as described before [23, 
24]. In brief, fresh or cryopreserved PBMCs were incubated 
with Fc block with human immunoglobulin G (IgG) (Sigma) 
at 12 mg/mL for 20 min. Anti-human CD3 (clone UCHT1), 
CD8 (clone RPA-T8), and CX3CR1 (clone 2A9-1) antibodies 
were obtained from BioLegend, and anti-CD4 (clone RPA-T4) 
antibody was from BD Biosciences for flow cytometry. LSR-
Fortessa (BD) was used for sample acquisition, and FlowJo 
software v10.1.5 (FlowJo LLC) was used for sample analysis.

Assessment of response

After the initiation of either ICI alone or combination therapy 
with ICI and chemotherapy, clinical response was assessed 
during the first 12 weeks of treatment using immune response 
evaluation criteria in solid tumors (RECIST) (iRECIST) [25] 
criteria. Participants were denoted either responders or non-re-
sponders, with responders further subcategorized into complete 
response (CR) or partial response (PR), and non-responders sub-
categorized into stable disease (SD) or progressive disease (PD).

Immunohistochemical studies

The Dako Omnis platform (Agilent) with 22C3 pharmDx 
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antibody was used to determine tumor expression of PD-L1, 
which was then scored by published guidelines [26].

Isolation of DNA from stool samples and 16S DNA se-
quencing

Qiagen DNeasy PowerSoil extraction kit following the manu-
facturer’s protocol was used to extract DNA from stool sam-
ples. We performed a two-step polymerase chain reaction 
(PCR) to build our sequencing libraries. A total of 25 ng of 
DNA were used in the first step (25 PCR cycles), and then am-
plify a target region (about 500 bp) of 16s V3 and V4 rDNA. 
Subsequently, the product from the first step was amplified 
with eight cycles of PCR using the Nextera Index kit (Illu-
mina Inc.), which utilizes primers that aim for the overhang 
adaptor sequence incorporated during the first round of PCR. 
In the second PCR cycle, a unique combination of indexed 
tags was added to each sample, enabling library pooling and 
multiplex sequencing. Prior to the pooling step, each sample’s 
amplified DNA was visualized on a Tapestation 4200 D1000 
tape (Agilent Technologies) to check the size, purity, and con-
centration of the expected product. Validated libraries were 
then pooled equal molar in a final resulting concentration of 
4 nM in tris-HCl 10 mM, pH 8.5, before 2 × 300 cycle se-
quencing on a MiSeq (Illumina, Inc.) using the appropriate 
v3 reagents.

16S-seq taxonomic quantification

Paired-end fastq reads were demultiplexed, processed, and an-
alyzed using QIIME v1.9.1 [27]. Then, operational taxonomic 
units (OTUs) are assigned using QIIME’s uclust-based [28] 
open-reference OTU-picking pipeline using SILVA [29] 16S 
rRNA reference (v132). Bacterial sequences were mapped us-
ing QIIME’s default alignment tool PyNAST [30]. Alignments 
were then refined by filtering out chimeric sequences using 
ChimeraSlayer. OTUs with less than 0.001% assigned were 
removed from individual samples, thus avoiding inflated alpha 
diversity estimates. Additional positive and negative control 
samples were examined against the whole batch and removed 
for downstream analyses.

Statistics

Gut microbiota were classified into OTUs at the genus level. 
Alpha-diversity scores were calculated using phyloseq pack-
age (v1.28.0) [31] to estimate the Observed, Chao1, Shan-
non and Simpson’s Reciprocal diversities. Mean alpha di-
versity scores estimates were obtained by performing 100 
bootstrapped rarefactions to 130,000 sequences per sample. 
Group comparisons were performed using analysis of vari-
ance (ANOVA). Beta-diversity analysis was quantified with 
Bray-Curtis dissimilarity scores paired with MDS. Statistical 
group comparisons were performed using the permutational 
multivariate analysis of variance (PERMANOVA) procedure 

(running 5,000 permutations) implemented by the vegan pack-
age (v2.5.6) [32]. DESeq2 (v1.20.0) [33] was used to compare 
and detect differential abundance in OTUs between samples. 
Differential abundance results were visualized using dual-taxa 
plots and heatmaps reporting relevant OTUs selecting those 
having a P value < 0.05 and log2 fold-change > 2. Statistical 
analyses were performed in R (3.6.1).

Results

Patients, treatment outcomes, and biomarker performance

Baseline patient and treatment characteristics are summa-
rized in Table 1. The five patients had a median age of 62, 
and four of five were female. The majority of patients had 
adenocarcinoma; one patient had NSCLC with giant cell fea-
tures. One patient was in stage IIIA at diagnosis, and the re-
mainder were stage IV. One patient received pembrolizumab 
alone, and the remainder of patients received a combination of 
carboplatin, pemetrexed, and pembrolizumab. PD-L1 expres-
sion tumor proportion score (TPS) was obtainable for four of 
the patients; one had a PD-L1 TPS ≥ 50%, and the remaining 
three patients had PD-L1 TPS between 1% and 49%. Two pa-
tients had a PR to treatment, one patient had a CR (Fig. 1a), 
and two patients had PD. The two patients who were deemed 
non-responders due to progression were both diagnosed with 
leptomeningeal disease on lumbar puncture; therefore, their 
imaging was non-contributory. Responders had median pro-
gression-free survival (PFS) and overall survival (OS) of 535 
days while non-responders had median PFS of 108 days and 
OS of 129.5 days. Three responders had no gastrointestinal 
symptoms such as nausea, vomiting, constipation, and diar-
rhea within 12 weeks. Of two patients who did not respond to 
chemo-immunotherapy, one had mild nausea and constipation 
at 5 weeks, and the other developed immune-related gastritis 
causing nausea, emesis and constipation and was started on 
steroids at 9 weeks after beginning treatment. No patients had 
gastrointestinal symptoms at the time of on-treatment stool 
sample collection.

We have recently shown that expression of CX3CR1 on 
CD8+ T cells, marking T-cell differentiation [34], is linked to 
immunotherapy response in pre-clinical models and NSCLC pa-
tients treated with anti-PD-1/PD-L1 therapy [23]. In the study, a 
20% rise in the CX3CR1 score (defined as the proportion of cir-
culating CD8+ T cells expressing CX3CR1) from baseline pre-
dicted response to anti-PD-1/PD-L1 therapy as early as 3 weeks 
[23]. Therefore, in the current study we assessed the proportion 
of PB CD8+ T cells expressing CX3CR1 in the three patients 
who responded to treatment with pembrolizumab and calculated 
the CX3CR1 score in our patient cohort. We found that the PB 
CX3CR1+ CD8+ T cells substantially expanded at 3 weeks (Fig. 
1b), resulting in at least 20% rise of the CX3CR1 score in all 
three responders (Fig. 1c). Although the CX3CR1 scores of the 
non-responders were not available for comparison, our findings 
indicate that response in these three patients is demonstrated not 
only by the imaging study (Fig. 1a) but also by circulating bio-
marker performance (Fig. 1b, c).
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Fluctuations in gut microbiome in NSCLC patients dur-
ing anti-PD-1 therapy

Next, we evaluated gut microbial signatures at baseline and 
early on-treatment in three responders and two non-respond-
ers. Across four different measures (Observed, Chao1, Simp-
son and Shannon) of alpha diversity, there were no baseline 
differences in the gut microbiomes of patients who did and did 
not respond to anti-PD-1 therapy (Fig. 2a).

The changes in gut microbiome beta diversity pre- and 
post-treatment were tested applying PERMANOVA using 
Bray-Curtis dissimilarity coupled with multidimensional 
scaling (MDS) (Fig. 2b). After accounting for treatment time 
points (P = 0.26) and subject effects (R2: 0.547, P = 0.0008), 
responders demonstrated a significant change in diversity of 
gut microbial between pre- and on-treatment samples com-
pared to non-responders (R2: 0.146, P = 0.0274).

Differential on-treatment change in microbial profiles 
between responders and non-responders

We next assessed microbial composition in responders (Fig. 3a) 
and non-responders (Fig. 3b). Overall change in genus compo-
sition for each subject is depicted in Figure 3c. Responders 
demonstrated statistically significant post-treatment decreases 
in the abundance of genera Odoribacter, Gordonibacter, Can-
didatus stoquefichus, Escherichia-Shigella, and Collinsella, 
and increase in abundance of Clostridium sensu stricto 1 (Fig. 
3a, c). In contrast, non-responders demonstrated statistically 
significant post-treatment increases in genera Prevotella, Por-
phyromonas, Streptococcus, and Escherichia-Shigella, and de-
crease in abundance of Akkermansia (P < 0.05) (Fig. 3b, c). 
These findings suggest that on-treatment change in microbial 
profiles was different between responders and non-responders.

Discussion

Cancer immunotherapies that reinvigorate anti-tumor T cells 
by blocking the PD-1/PD-L1 axis have shown promise in im-
proving outcomes for many cancers. Despite this, response 
to immunotherapy is far from uniform, and immune-related 
adverse effects are not negligible. Predicting and identify-
ing which patients undergoing immunotherapy will response 
to treatment remains a major challenge. While intratumoral 
PD-L1 expression has been used for the selection of NSCLC 
patients, PD-L1-negative tumors may respond to anti-PD-1 
therapy, and some tumors with high PD-L1 expression still 
demonstrate primary resistance [35, 36]. Of late, evidence is 
mounting which substantiates the association between the gut 
microbiome and response to ICI therapy [10-19]. The gut mi-
crobiome and microbiome-derived metabolites could impact 
immune cell recruitment within both the TME as well as sys-
temically, which in turn modulates the efficacy and adverse 
events associated with ICI therapy. As an example, use of an-
tibiotics has been shown to reduce the efficacy of ICIs in a 
number of cancers [37, 38]. However, specific gut bacterial 

Table 1.  Demographic and Clinical Characteristics of Patients

Patient characteristics N = 5
Median age (range) 62 (50 - 68)
Sex, n (%)
  Male 1 (20%)
  Female 4 (80%)
Race, n (%)
  Caucasian 5 (100%)
ECOG PS
  0 3 (60%)
  1 2 (40%)
History of smoking
  Never 1 (20%)
  Former 2 (40%)
  Current 2 (40%)
Histology, n (%)
  Adenocarcinoma 4 (80%)
  NSCLC with giant cell features 1 (20%)
Stage at diagnosis, n (%)
  III 1 (20%)
  IV 4 (80%)
Prior lung surgery for lung cancer, n (%) 0 (0%)
Prior chemotherapy for lung cancer, n (%) 1 (20%)
Prior targeted therapy for lung cancer, n (%) 0 (0%)
Prior radiation, n (%)
  Thoracic radiation 1 (20%)
  Bone radiation 0 (0%)
  Gamma knife stereotactic radiosurgery 2 (40%)
Known brain metastases, n (%) 3 (60%)
Drug regimen, n (%)
  Pembrolizumab 1 (20%)
  Carboplatin, pemetrexed, pembrolizumab 4 (40%)
Best disease response at 12 weeks, n (%)
  Complete response (CR) 1 (20%)
  Partial response (PR) 2 (40%)
  Stable disease (SD) 0 (0%)
  Progressive disease (PD) 2 (40%)
PD-L1 expression tumor proportion score
  ≥ 50% 1 (20%)
  1-49% 3 (60%)
  < 1% 0 (0%)
  N/A 1 (20%)

ECOG PS: the Eastern Cooperative Oncology Group Scale of Per-
formance Status; NSCLC: non-small cell lung cancer; PD-L1: PD-1 
ligand-1; PD-1: programmed cell death protein-1.
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Figure 1. Pre- and on-treatment imaging study and circulating biomarker performance in non-small cell lung cancer (NSCLC) 
patients treated with anti-PD-1 therapy. (a) Contrast-enhanced cross sectional imaging obtained prior to and during treatment 
in three patients. Expression of CX3CR1 in peripheral blood CD8+ T cells (b) and % change of CX3CR1+ in CD8+ T cells from 
baseline (CX3CR1 score) (c) at different time points as indicated. PD-1: programmed cell death protein-1; CX3CR1: CX3C 
chemokine receptor 1.
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metabolites such as short-chain fatty acids can augment regu-
latory T-cell responses that protect against autoimmunity but 
can also impair antitumor immunity [39]. Furthermore, evo-
lution of gut microbiome during ICI therapy and its relation 
to response are incompletely understood. Here, we describe 
differential change in microbiota signatures during anti-PD-1 
therapy between responders and non-responders. These find-
ings imply that increased change in gut microbiome diversity 
might correlate with response to anti-PD-1 therapy in NSCLC 
patients.

Correlation between alpha diversity of species within the 
gut microbiome and the responses to ICI therapy remains un-
clear. We found no significant difference in the alpha diversity 
between responders and non-responders in our cohort, which 
is consistent with previous studies [17, 18, 40, 41]. However, 
other studies have shown that increased alpha diversity in a 
favorable group of patients treated with PD-1/PD-L1 blockade 
therapy [11, 19, 42]. These inconsistent results might be asso-
ciated with limited sample size as well as the type of ICIs and/

or cancer. Additional work is required to determine the role 
of alpha diversity at baseline in response and resistance to ICI 
therapy.

Prior studies have examined the correlation between spe-
cific gut bacterial species and response to ICI therapy [11, 
43]. The abundance of Bifidobacterium, Coriobacteria, Ru-
minococcae, Prevotellaceae, and Lachnospiraceae have been 
linked to good response to ICI therapy [22, 41], while non-re-
sponders have been found to have gut microbiome abundance 
of species such as Bacteroides and Escherichia coli [44]. Spe-
cifically, in recent years, numerous studies have demonstrated 
that abundance of Akkermansia is associated with favorable 
outcomes with ICI therapy [10, 12, 41]. In this study, we found 
that non-responders demonstrated substantial on-treatment in-
creases in genera Prevotella, Porphyromonas, Streptococcus, 
and Escherichia-Shigella, and a decrease in abundance of Ak-
kermansia during treatment. The increase in Escherichia abun-
dance and decrease in Akkermansia abundance in correlation 
with poorer clinical outcome is in line with previously pub-

Figure 2. Fluctuations in gut microbiome in non-small cell lung cancer (NSCLC) patients during anti-PD-1 therapy. (a) Alpha 
diversities of baseline gut microbiome in responders (R) and non-responders (NR). First column: observed diversity reflects the 
total number of unique organisms. Second column: Chao1 diversity reflects total richness, weighted towards rare species. Third 
column: Shannon index reflects both richness and evenness of each sample. Fourth column: Simpson index reflects richness, 
weighted toward common species. (b) Beta-diversity using Bray-Curtis dissimilarity coupled with multidimensional scaling depict-
ing pre- and post-treatment with anti-PD-1 immunotherapy. The first three pairwise principal components were displayed. P value 
was estimated from PERMANOVA using Bray-Curtis dissimilarity implemented by vegan R package (v2.5.6). Pt: patient; PD-1: 
programmed cell death protein-1; PERMANOVA permutational multivariate analysis of variance.
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lished findings [10, 12, 41]. However, more work is needed 
to conclusively define the association between the presence of 
specific bacteria at baseline or on-treatment and response to 
ICI therapy.

While multiple studies have evaluated the baseline gut mi-
crobiome composition as a biomarker for predicting anti-PD-1 
efficacy in NSCLC, few have examined the change in micro-
bial composition during treatment as a predictor of response to 

Figure 3. Substantial change in microbial profiles in NSCLC patients responding to anti-PD-1 therapy. (a, b) Significantly abun-
dant genera found in pre- and on-treatment microbial composition between responders (a) and non-responders (b). Heatmap 
demonstrating significant differences in pre- and post-treatment microbial composition for each subject (n = 5); each pair of blue 
and yellow columns represents one subject. A variance-stabilization transformation (implemented by DESeq2) was used for the 
taxa abundance values. Darker shades represent higher differential abundance. (c) Genus composition pre- and on-treatment for 
all subjects. Pt: patient; NSCLC: non-small cell lung cancer; PD-1: programmed cell death protein-1.
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treatment. Andrews et al demonstrated that mice injected with 
combined immune checkpoint blockade developed a relative 
abundance of Bacteroides intestinalis compared to baseline 
[40]. As part of a larger study of melanoma patients undergo-
ing anti-PD-1 immunotherapy, Gopalakrishnan et al showed 
that in three patients who provided fecal samples before and 
during treatment, their gut microbial diversity and composition 
remained stable over time [11]; however, it was not reported 
whether these patients were responders or non-responders. In 
clinical studies, Zheng et al reported in a study of eight patients 
with hepatocellular carcinoma (HCC) treated with anti-PD-1 
antibody camrelizumab that responders demonstrated a rela-
tively stable gut microbial composition, while non-responders 
showed more dramatic shifts in composition including increase 
of Proteobacteria [45]. The findings from this latter study con-
trast with those in our present work, as we found that respond-
ers demonstrated a larger overall fluctuation in gut microbiome 
composition compared to non-responders. The reason for this 
discrepancy is unclear, but these conflicting observations are 
likely a result of differences in the type of cancer and limited 
sample size. Nonetheless, in the numerous studies which have 
evaluated the link between specific gut microbes with response 
to ICI therapy, countless bacterial species have been associated 
with immunotherapy response or lack thereof, suggesting that 
no single, or even few, species can be considered a reliable bio-
marker of predicting ICI response. Rather, the combination of 
these studies implies that the relationship between gut microbi-
ome composition and response to immunotherapy is more com-
plex. Our findings suggest that the degree of change in overall 
gut microbiome diversity and composition during anti-PD-1 
therapy may be a useful biomarker in and of itself, in compari-
son to baseline gut microbial profiles.

There are several limitations to this study. The main lim-
itation was the small sample size due to the nature of pilot 
study. Collecting longitudinal stool samples was logistically 
difficult, and only one on-treatment stool sample was available 
for each patient to analyze in our cohort. Inherent to pilot stud-
ies, our sample size was insufficient to draw definitive conclu-
sions on the correlation between change in the gut microbiome 
composition and the response to immunotherapy. Moreover, 
we had no data on change in the frequency of PB CX3CR1+ 
CD8+ T cells for the two non-responders, which limited our 
ability to draw a correlation between gut microbiome fluctua-
tions and PB biomarkers. The CX3CR1 score was the only 
circulating biomarker that we evaluated, and additional work 
with multicolor flowcytometric analysis of PBMC and/or 
multi-omics approach of serum/plasma samples are needed to 
elucidate relationship between evolution of systemic immune 
response and gut microbiota signatures. Chemotherapy could 
induce gastrointestinal toxicity and/or shape intestinal micro-
biota [46]. Although none of the patients in the present study 
developed gastrointestinal symptoms at the time of on-treat-
ment stool collection, the impact of the chemotherapy com-
ponent of the treatment regimen on gut microbiome remains 
unclear. Nevertheless, this pilot study delivers potential utility 
of combined analysis of pre- and on-treatment gut microbiome 
and provides rationale for a longitudinal stool sampling during 
cancer immunotherapy.

In conclusion, we found in a study of five patients with 

NSCLC undergoing treatment with anti-PD-1 therapy that re-
sponse to ICI treatment correlated with a larger change in gut 
microbial diversity compared to non-responders. This is one of 
very few studies to examine the longitudinal fluctuation in gut 
microbial diversity during immunotherapy for NSCLC, which 
highlights a potential focus for future larger-scale studies.
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