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Currently, strategies to diagnose patients and predict neurological recovery in cervical

spondylotic myelopathy (CSM) using MR images of the cervical spine are urgently

required. In light of this, this study aimed at exploring potential preoperative brain

biomarkers that can be used to diagnose and predict neurological recovery in CSM

patients using functional connectivity (FC) analysis of a resting-state functional MRI

(rs-fMRI) data. Two independent datasets, including total of 53 patients with CSM

and 47 age- and sex-matched healthy controls (HCs), underwent the preoperative

rs-fMRI procedure. The FC was calculated from the automated anatomical labeling

(AAL) template and used as features for machine learning analysis. After that, three

analyses were used, namely, the classification of CSM patients from healthy adults

using the support vector machine (SVM) within and across datasets, the prediction of

preoperative neurological function in CSM patients via support vector regression (SVR)

within and across datasets, and the prediction of neurological recovery in CSM patients

via SVR within and across datasets. The results showed that CSM patients could be

successfully identified from HCs with high classification accuracies (84.2% for dataset

1, 95.2% for dataset 2, and 73.0% for cross-site validation). Furthermore, the rs-FC

combined with SVR could successfully predict the neurological recovery in CSM patients.

Additionally, our results from cross-site validation analyses exhibited good reproducibility

and generalization across the two datasets. Therefore, our findings provide preliminary

evidence toward the development of novel strategies to predict neurological recovery in

CSM patients using rs-fMRI and machine learning technique.
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INTRODUCTION

Cervical spondylotic myelopathy (CSM) is the most common
cause of non-traumatic spinal cord injury (1–3). As a non-
invasive and effective approach for evaluating structural damage
of CSM, several neuroimaging techniques targeting the cervical
spine to diagnose and to predict neurological recovery in CSM
have been investigated. Currently, cervical structural MRI is
regarded as a gold standard for diagnostic and prognostic
imaging for CSM in clinical practice (4, 5). However, there are
insufficient empirical data, due to limited anatomical information
from the cord structure, to support the usage of conventional
structural cervical MRI (e.g., T1-weighted and T2-weighted
images) as a predictive biomarker of postoperative neurological
recovery (6). Therefore, the need for simple, accurate, and
non-invasive imaging biomarkers for diagnosing and predicting
neurological function recovery in CSM patients is warranted (5).

As a non-invasive imaging technique measuring the
functional changes in CSM, the brain resting-state functional
MRI (rs-fMRI) has been proved to successfully identify the
CSM patients from healthy participants (7–13). In contrast to
conventional MRI technique, which only measures the structural
damages within the conduction pathway, rs-fMRI measures the
brain activities that encompass information for all motor and
cognitive functions as the brain functions as a “control and data
center.” Therefore, CSM-associated information is distributed
in widespread regions of the brain (8, 11, 14). Therefore, several
studies conducted the rs-fMRI to predict the neurological
recovery of CSM patients following decompression surgery.
Takenaka et al. found that the functional connectivity (FC)
between certain brain regions associated with postoperative
gain in the 10-s test might be sufficient to provide a prediction
formula for potential recovery (11). Moreover, they also found
that the resting-state amplitude of low-frequency fluctuation is
also a potentially prognostic functional biomarker in cervical
myelopathy (15).

Their studies provided new insights for developing a
novel method for diagnostic and prognostic imaging in CSM
patients. However, a major limitation is that their results
were mainly using mass univariate analyses (e.g., correlation
analysis and linear regression), which can simply measure the
association between average regional activity amplitude and
clinical measures. Given that the rs-fMRI data consist of massive
variables measuring the functional state of the brain and the
interrelationship between these variables, the univariate analyses
thus may miss the information associating with the CSM
pathology. Rapid advancement of multivariate pattern analysis
(MVPA) of fMRI data (16, 17) offers the unprecedented ability
to detect small differences in spatial patterns of functional brain
changes and reorganizations between disease-state and disease-
free conditions (18, 19). Also, MVPA approaches evaluate the
complexity interaction among massive variables, hence making
accurate predictions (16, 20–22). The support vector machine
(SVM) has been regarded as one of the MVPA techniques
showing high accuracy in diagnosing and predicting clinical
measures in various diseases using fMRI data (20, 23). The
SVM is a supervised-learning model that analyzes data used for

classification and regression analysis. The SVM technique has a
great potential in defining a set of features from various regions
of the brain, allowing the classification of healthy controls (HCs)
and patients, and yields a potential translational impact (16, 24).

Therefore, to establish a model with potential diagnostic and
prediction properties of clinical outcomes in patients with CSM,
we aimed to test the utility of FC, which integrates spatial
relationships among different brain regions and is the most
widely used metric among other analytical methods in rs-fMRI
studies (9, 25–27), as a potential biomarker for diagnosing and
predicting surgical outcomes in CSM patients using the SVM
approach. Moreover, FC has been shown to be one of the most
reliable metrics (i.e., cross-scan stability) in fMRI studies (28–
30). In this study, we performed an MVPA to classify CSM
patients and HCs, both with and without feature selection via
SVM. We then used support vector regression (SVR) to predict
the preoperative Japanese Orthopedic Association (JOA) scores,
JOA recovery rate, and the JOA recovery scores following spinal
cord decompression surgery. We also tested the reproducibility
and generalizability of our results by cross-validation between the
two independent datasets. To the best of our knowledge, this is
the first study testing the utility of combining rs-FC and machine
learningmethod for diagnosing and predicting surgical outcomes
in CSM patients.

MATERIALS AND METHODS

Study Subjects
The local Institutional Review Board of Tianjin Medical
University General Hospital (Tianjin, China) approved this
cross-sectional, retrospective study. Written informed consent
was obtained from all participants before each procedure during
the data collection.

In this study, two datasets (i.e., two pre-established databases)
obtained in Tianjin Medical University General Hospital at two
different time frames were included: the first dataset involved
27 right-handed CSM patients pooled from 2015 to 2016. The
inclusion criteria of CSM patients into this dataset (dataset 1)
included the following: (1) meet a criterion for diagnosing the
CSM (i.e., clear evidence of cord compression on cervical spine
MRI, explicit clinical manifestations of sensorimotor extremities’
deficits or bladder, and bowel dysfunction); (2) no clinical
evidence or history of any other diseases including neurological
diseases, psychiatric diseases, ocular diseases, systematic diseases,
brain diseases, extracranial vertebral artery, and carotid artery;
(3) no history of alcohol and substance abuse; (4) the patients
agreed to undergo decompression of spinal canal, had no
previous history of cervical spinal surgery, and are able to
complete the functional MRI studies. Furthermore, 11 healthy
subjects with similar age, gender, and academic years (i.e., with
differences for age, academic years all below 2 years from a
given subject in the patient group) were recruited through
advertisements. Only the healthy subjects with no evidence of
spinal compression, no ocular disease, no other spinal or brain
neurological disorders or systemic disease, and able to complete
the fMRI studies were included—details of study participants
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were as per our previous study (31). In the second dataset (dataset
2), 26 CSM patients and 36 HCs sampled from 2019 to 2020
were recruited in our study using the inclusion criteria for the
first dataset; details of study participants were as per our previous
study (32). Therefore, a total of 53 CSM patients and 47 healthy
participants were included in our current study.

The detailed order for data collection were as follows: (1) the
patients were first examined and evaluated by a senior orthopedic
surgeon 1 week before surgery for acquiring preoperative JOA
scores; subsequently, the patients underwent fMRI scan for
acquiring preoperative fMRI data; (2) the patients underwent
spinal cord decompression surgery; and (3) all patients were
reevaluated by the same surgeon at the clinics 6 months after
surgery to acquire the postoperative JOA scores.

Acquisition of MRI Data and Preprocessing
For dataset 1, data were acquired using a 3.0T magnetic
resonance scanner (Discovery MR750; General Electric
Healthcare, Chicago, IL, USA) with an eight-channel phased-
array head coil. Before scanning, earplugs were placed inside the
subjects’ ears to keep out noise. The subjects were then instructed
to fix their heads with sponge pads to minimize unconscious
activity. Subjects could keep their eyes closed but remain awake
and avoid specific and strong ideological activities during
scanning. We made clear instruction to the participants that they
should not fall asleep during the entire scan. We also confirmed
with the participants that they have been awake during the entire
scan after they completed the scan. Afterward, functional images
of the brain were captured using a gradient echo-planar imaging
(EPI) sequence at the following parameters: repetition time (TR)
= 2,000ms; echo time (TE) = 30ms; flip angle (FA) = 90◦;
field of view (FOV) = 240mm × 240mm; matrix = 64 × 64;
the number of slices = 38 slices; and slice thickness = 3.0mm.
A total of 180 images were obtained within 6min. Structural
images were captured using a three-dimensional T1-weighted
image (3D T1WI) for co-registration and normalization of
functional images. The parameters of the 3D T1WI were as
follows: sagittal acquisition; TR= 7.8ms; TE= 3.0ms; inversion
time = 450ms; FA = 13◦; FOV = 256mm × 256mm; matrix,
256× 256; number of slices= 180; and slice thickness= 1.0 mm.

For the second dataset (dataset 2), the 3T fMRI data
were acquired using a MAGNETOM Prisma 3T MR scanner
(Siemens, Erlangen, Germany) with a 64-channel phase-array
head-neck coil. Preparation of the study subjects was identical to
that described in dataset 1. Blood oxygenation level-dependent
(BOLD) signals were detected with a simultaneous multi-slice
gradient EPI sequence at the following parameters: TE = 30ms;
TR = 800ms; FOV = 222mm × 222mm; matrix = 74 ×

74; in-plane resolution = 3mm × 3mm; FA = 54◦; slice
thickness = 3mm; gap = 0mm; number of slices = 48; slice
orientation = transversal; bandwidth = 1,690 Hz/pixel; parallel
acquisition technique (PAT) mode; slice acceleration factor =

4; and phase-encoding acceleration factor = 2. A total of 450
images were captured in a period of 6min. A high-resolution
3D T1 structural image [two inversion contrast magnetization-
prepared rapid gradient echo (MP2RAGE)] was also acquired at
the following parameters: TR/TE = 4,000 ms/3.41ms; inversion

times (TI1/TI2) = 700 ms/2,110ms; FA1/FA2 = 4◦/5◦; matrix =
256 × 240; FOV = 256mm × 240mm; number of slices = 192;
in-plane resolution = 1mm × 1mm; slice thickness = 1mm;
slice orientation= sagittal; and total duration= 6min 42 s.

All MRI data were preprocessed using the toolbox Data
Processing Assistant for rs-fMRI (DPARSF; http://www.restfmri.
net/forum/DPARSF) procedure from which 180 volumes were
acquired for functional scan in dataset 1 and 450 volumes in
dataset 2. The first 10 volumes from each functional scan were
excluded from the subjects to correct acclimatization to the
scanning environment and magnetization stabilization. A slice-
timing correction was performed (not done in dataset 2 since
the TR of dataset 2 was significantly shortened); and motion
correction was performed to remove timing differences and
head movement. The functional images were co-registered with
the structural images and spatially normalized to the Montreal
Neurological Institute template, where each voxel was resampled
to 3 × 3 × 3 mm3. Subsequently, the resampled images were
smoothed with an 8-mm full-width-at-half-maximum isotropic
Gaussian kernel. After that, the linear trend and bandpass filter
(0.01∼0.08Hz) were applied to remove the effects of high-
frequency noise. Finally, six motion parameters, the mean global
signal, the white matter signal, and the cerebrospinal fluid (CSF)
signal were extracted as covariates to reduce the non-neural
signal. The resulting data were subjected to further analysis.

Clinical Assessment
A group of senior spine surgeons performed clinical assessments
including JOA evaluation (33). The clinical diagnosis of CSM
was based on the neurological signs and symptoms in patients
together with relevant radiological findings of stenosis. The JOA
was used preoperatively and postoperatively after 6 months for
clinical evaluation. The JOA recovery scores were calculated for
the study group by subtracting preoperative JOA scores from
postoperative JOA scores.

The JOA recovery rate was defined as follows:

JOA recovery rate =

(Postoperative JOA scores− Preoperative JOA scores)

(17− Preoperative JOA scores)

And the JOA recovery was defined as follows:

JOA recovery = Postoperative JOA scores

− Preoperative JOA scores

Functional Connectivity Analysis
A total of 116 functionally defined regions of interest (ROIs)
were selected using an automated anatomical labeling (AAL)
template (34). The average resting-state BOLD time series for
each ROI were then extracted and then correlated with the BOLD
time series of every other ROI using Pearson’s correlation for
every subject. From the resulting square (116 × 116) symmetric
matrix of correlation coefficients for each subject, only 6,670
ROI-pair correlation values from the lower triangular part of
the matrix were retained, and the redundant elements from the
upper triangular part of the matrix (i.e., the upper triangular part
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FIGURE 1 | Analysis pipeline. The analysis pipeline of our study. LOOCV, leave-one-out cross-validation.

is identical to the lower triangular part), and diagonal elements
were excluded. The 6,670 ROI pairs were subjected to Fisher’s z-
transformation for normalization and used as features for further
analyses. Figure 1 shows a series of steps in a representative
pipeline of the classification method used in this study.

Mass Univariate Analyses
Mass univariate analyses were performed to reveal the FC
differences between CSM patients and HCs. The two-sample t-
test was performed for each FC (i.e., FCs calculated between
each pair of brain regions) using age, gender, scan parameters,
and education as covariates. Therefore, 6,670 p-values were
obtained. Subsequently, all p-values were corrected for multiple
comparisons with false discovery rate (FDR), corresponding to a

corrected q < 0.05. This analysis was also repeated within each
dataset to give a detailed result of each dataset.

Classification of Cervical Spondylotic
Myelopathy From Healthy Adults
The pattern classification was performed to classify patients with
CSM and HCs based on FC using the MVPANI toolbox (http://
funi.tmu.edu.cn) and LibSVM’s implementation of linear SVM
using the default parameters (35). A large vector with 6,670
features was extracted from each subject.

For within-dataset analyses, the leave-one-out-validation
(LOOCV) technique was employed to overcome the loss of
generalization due to the small training and testing sample size
in this study. The bias of LOOCV error was expected to be small
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since almost the entire dataset was used for training, and the
trained model was close to the real one.

In LOOCV, for example (e.g., within dataset 1), (1) one data
point in dataset 1 was held out (i.e., treated as the testing
sample), and the model was trained vis-à-vis the rest of the
data within this dataset and then tested with that held-out data
point (i.e., one fold). Subsequently, the classification accuracy
for the testing sample was obtained (i.e., the classification
accuracy of this fold). (2) This procedure was repeated until
all data points were held out once as the testing sample, (3)
The average classification accuracy across all folds was obtained
for this dataset. A feature selection procedure embedded within
the LOOCV procedure was also performed. For each fold in
LOOCV, all features were initially used to train a classifier
using the training dataset and then ranked from high to low
according to the resultant feature weights (e.g., absolute value).
Then, the top 5% of the features with the highest weights were
selected and used to train a new classifier using the training
dataset. Afterward, the obtained classifier was tested using the
test dataset, resulting in classification accuracy for this LOOCV
step. Therefore, classification accuracy was obtained for every
LOOCV step, and then the absolute accuracy was calculated
as the average across all LOOCV steps. The feature selection
procedure was repeated for a series of selected features from 5
to 100% with a step of 5% increment, resulting in 20 selected
feature sets with 20 averaged classification accuracies. For each
of the 20 classification accuracies, the corresponding p-value
was calculated from the null distribution obtained from 1,000
random permutation tests by randomly shuffling the labels of
subjects in the training dataset, with the selected corresponding
feature set in each LOOCV step. The p-values were calculated as
a proportion of the number of permutations generated that were
greater than or equal to actual classification accuracy, and the
total number of permutations. If none of the 1,000 permutations
reached the actual accuracy, the p-value was labeled as p <

0.001. Note that in this procedure, 20 independent MVPAs were
analyzed with a different percentage in feature selection. Thus,
the p-values that were calculated from the permutation tests were
further corrected for multiple comparisons using the Bonferroni
correction method, where p < 0.05/20 = 0.0025 was considered
statistically significant. All LOOCV and feature-selection steps
were also performed within dataset 2.

Generalization of the SVM model was evaluated by a cross-
site validation test between two datasets, where each dataset
was treated as a testing set once, and not involved in the
training process. The brief description of the cross-site validation
test was as follows: (1) the SVM model was trained using the
data of dataset 1 and then tested on the data of dataset 2.
(2) Subsequently, the classification accuracy was obtained for
this validation step. (3) The SVM model was trained using the
data of dataset 2 and then tested on the data of dataset 1. (4)
The classification accuracy was also obtained for this validation
step. (5) The mean classification accuracy of all validation steps
(i.e., two accuracies) were obtained for cross-site validation
analysis. In addition to classification accuracy, the receiver
operating characteristic (ROC) curves and the corresponding
area the under curve (AUC) for within-dataset and cross-dataset
classification were also calculated.

Prediction of Preoperative Japanese
Orthopedic Association Scores, Japanese
Orthopedic Association Recovery Rate,
and Japanese Orthopedic Association
Recovery Scores in Cervical Spondylotic
Myelopathy
The presurgical FC of each subject, as the training feature, was
used to establish and evaluate SVR models. The SVR models
were used to predict the preoperative JOA scores, JOA recovery
rate, and JOA recovery scores. The SVR analyses embedded
with LOOCV were also performed within each dataset and
across datasets.

In within-dataset analyses, LOOCV procedure was also
performed (e.g., within dataset 1): (1) one data point in dataset
1 was held out, and the model was trained vis-à-vis the rest data
within the dataset; (2) then the trained model was tested with
that held-out data point. For this procedure, a predicted value
was obtained, representing a predicted value for this subject (i.e.,
held-out data point). This procedure was repeated until all data
points were held out once. A feature selection procedure that was
embedded within the LOOCV procedure was performed. The
detailed procedure was similar to the description in Classification
of Cervical Spondylotic Myelopathy From Healthy Adults in
the Materials and Methods. In this section, the correlation
coefficients between the predicted labels and actual labels were
calculated and used for deriving the corresponding p-values from
null distribution. The detailed information of the LOOCV and
feature-selection procedures was as follows: for each LOOCV
step, all features were initially correlated with the actual label, and
the corresponding R and p-values were obtained. Features with
a p-value of <0.05 were selected and used to train a regression
model with the training dataset. The regression model was tested
using the test dataset, thereby yielding the predicted labels for the
test data.

Evaluation of the generalizability of the SVM model was
performed using a cross-site validation test between two datasets
where each dataset that was not involved in the training process
was held as testing set once.

The brief description of the cross-site validation is as follows:

(1) the SVR model was trained using the data of dataset 1

and then tested on the data of dataset 2. (2) Subsequently, the

predicted labels of each data point in dataset 2 (i.e., testing

sample) were obtained for calculating the correlation coefficients
and root mean square error (RMSE) (e.g., between predicted

labels and actual labels; dataset 1 as the training data). (3)

The SVM model was trained using the data of dataset 2 and
then tested on the data of dataset 1. (4) Subsequently, the

predicted labels of each data point in dataset 1 (i.e., testing
sample) were obtained for calculating the correlation coefficients

and RMSE (e.g., between predicted labels and actual labels;
dataset 2 as the training set). The corresponding p-value was
derived from the null distribution that was obtained from 1,000
random permutation tests, by randomly shuffling the labels of the
subjects in the training dataset, with the corresponding feature
set. Specifically, the p-values were determined as a proportion
of the number of permutations greater than or equal to the
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TABLE 1 | Demographic data and clinical assessment.

Dataset 1 Dataset 2

Characteristic CSM (n = 27) HC (n = 11) p-value Characteristic CSM (n = 26) HC (n = 36) p-value

Age (years) 57.9 ± 9.1 54.8 ± 8.4 0.34 Age (years) 54.7 ± 8.8 53.7 ± 8.3 0.54

Gender (female/male) 12/15 5/6 0.96 Gender (female/male) 12/14 17/19 0.93

Education (years) 10.8 ± 2.7 11.6 ± 2.5 0.42 Education (years) 10.7 ± 2.5 11.2 ± 23 0.41

Pre-JOA 11.8 ± 1.5 Pre-JOA 11.0 ± 1.8

Post-JOA 15.7 ± 2.3 Post-JOA 14.2 ± 2.6

JOA recovery 3.9 ± 1.8 JOA recovery 3.1 ± 2.4

JOA, Japanese Orthopedic Association score; Pre, preoperative; Post, postoperative; CSM, cervical spondylotic myelopathy; HC, healthy control.

JOA recovery = Postoperative JOA scores – Preoperative JOA scores.

FIGURE 2 | The differences for functional connectivity between cervical spondylotic myelopathy patients and healthy controls revealed by mass univariate analyses.

actual correlation coefficient (and the proportion of the number
of permutations smaller than or equal to the RMSE) and the
total permutations. If none of the 1,000 permutations reached
the actual correlation coefficient (or smaller than the actual
RMSE), the p-value was considered to be p < 0.001. Pearson’s
correlation analysis can only provide the linear association
between the predicted labels and actual labels, while the Bland–
Altman analysis could further describe the agreement between
two variables (i.e., predicted label and actual label) and help
to determine the true limits of agreement (LOA) for each
prediction procedure. Therefore, the Bland–Altman analyses
would significantly aid interpretation of the clinical impact of
these analyses.

RESULTS

Clinical Measures and Demographic Data
The preoperative, postoperative, and recovery JOA scores are
presented in Table 1. No significant differences in age, gender,

and academic years were observed between CSM patients
and HCs.

Mass Univariate Analyses
The FC differences between CSM patients and HCs are shown
in Figure 2. Increased FCs (i.e., FCs were increased in CSM in
comparison with HC participants) were obtained both within
dataset and across dataset analyses. In dataset 1, increased FCs
are mainly between the frontal lobe and cerebellum, frontal
lobe and thalamus, and temporal lobe and thalamus. In dataset
2, increased FCs are mainly between the frontal lobe and
cerebellum, and temporal lobe and cerebellum.

Classification of Cervical Spondylotic
Myelopathy From Healthy Adults
The SVM results are shown in Figure 3. The classification
accuracies that were obtained from a no-feature selection
procedure for each dataset and cross-site validation were 81.6%
(p < 0.001, with Bonferroni correction) for dataset 1, 85.5% (p
< 0.001) for dataset 2, and 72.0% (p = 0.002, with Bonferroni
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FIGURE 3 | Classification of cervical spondylotic myelopathy patients from healthy controls. Classification of cervical spondylotic myelopathy from healthy adults. (A)

The classification accuracies obtained from both feature-selection and no-feature-selection models in dataset 1. (B) The classification accuracies obtained from both

the feature-selection model and the no-feature-selection model in dataset 2. (C) The classification accuracies obtained both from both the feature-selection and

no-feature-selection models during the cross-site validation procedure. The corresponding ROC curve and AUC were also illustrated. CR, correct rate; ROC, receiver

operating characteristic; AUC, area the under curve.

correction) for cross-site validation. The corresponding AUCs
of ROC curves were 0.76 for dataset 1, 0.93 for dataset 2,
and 0.80 for cross-site validation. The highest classification
accuracies that were obtained with a feature selection procedure
for each dataset and cross-site validation were 84.2% (p <

0.001, with Bonferroni correction) for dataset 1 (the model
trained with top 25% features, 1,668 FC pairs), 95.2% (p
< 0.001, with Bonferroni correction) for dataset 2 (the
model trained with top 30% features, 2,001 FC pairs), and
73.0% (p < 0.001, with Bonferroni correction) for cross-site
validation (the model trained with top 15% features, 1,001
FC pairs). The corresponding AUCs of ROC curves were
0.80 for dataset 1, 0.98 for dataset 2, and 0.82 for cross-
site validation.

Prediction of Preoperative Japanese
Orthopedic Association Scores, Japanese
Orthopedic Association Recovery Rate,
and Japanese Orthopedic Association
Recovery Scores in Cervical Spondylotic
Myelopathy
The SVR results of preoperative JOA score predictions are shown
in Figure 4. The correlation coefficients obtained with a no-
feature selection procedure, between the predicted preoperative
JOA scores and the actual preoperative JOA scores, were 0.40 (p
= 0.02) for dataset 1 and 0.64 (p= 0.001) for dataset 2. The RMSE
obtained with a no-feature selection procedure, between the
predicted preoperative JOA scores and the actual preoperative
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FIGURE 4 | Prediction of preoperative JOA scores using rs-FC. Prediction of preoperative JOA scores. JOA, Japanese Orthopedic Association; rs-FC, resting-state

functional connectivity.

TABLE 2 | The root mean square error (RMSE) for prediction analyses.

Pre-JOA JOA recovery JOA recovery rate

Feature

selection

No feature

selection

Feature

selection

No feature

selection

Feature

selection

No feature

selection

Within site

Dataset 1 0.179** 0.259* 0.131** 0.193* 1.549** 1.831*

Dataset 2 0.257** 0.262** 0.365* 0.349* 4.342** 4.752*

Cross-site validation

Dataset 1 as training set 0.326*** 0.347 0.260** 0.363 3.560*** 6.736

Dataset 2 as training set 0.236** 0.326 0.258* 0.263 4.475* 5.860

The root mean square error for the within-site and cross-site predictions of preoperative JOA scores, JOA recovery, and JOA recovery rate.

*p < 0.05, **p < 0.005, ***p < 0.001. Correlation coefficients with significant P values (P < 0.05) were shown in bold format.

JOA scores, were 0.259 (p< 0.05, Table 2) for dataset 1 and 0.262
(p < 0.005, Table 2) for dataset 2.

The correlation coefficients obtained with a feature selection
procedure, between the predicted preoperative JOA scores and
the actual preoperative JOA scores, were 0.76 (p = 0.003) for
dataset 1 (46 FC pairs) and 0.66 (p = 0.005) for dataset 2 (22 FC
pairs). The RMSE obtained with a feature selection procedure,
between the predicted preoperative JOA scores and the actual
preoperative JOA scores, was 0.179 (p < 0.005, Table 2) for
dataset 1 and 0.257 (p < 0.005, Table 2) for dataset 2.

The SVR results of JOA recovery prediction are shown
in Figure 5. The correlation coefficients obtained with a no-
feature selection procedure, between the predicted JOA recovery

scores and the actual JOA recovery scores, were 0.32 (p
= 0.04) for dataset 1 and 0.34 (p = 0.035) for dataset 2.
The correlation coefficients obtained with a feature selection
procedure, between the predicted preoperative JOA scores and
the actual preoperative JOA scores, were 0.73 (p = 0.003) for
dataset 1 (51 FC pairs) and 0.36 (p = 0.04) for dataset 2 (18 FC
pairs). The RMSE obtained with a no-feature selection procedure,
between the predicted JOA recovery scores and the actual JOA
recovery scores, was 0.193 (p < 0.05, Table 2) for dataset 1 and
0.349 (p< 0.05, Table 2) for dataset 2. The RMSE obtained with a
feature selection procedure, between the predicted JOA recovery
scores and the actual JOA recovery scores, was 0.131 (p < 0.005,
Table 2) for dataset 1 and 0.365 (p < 0.05, Table 2) for dataset 2.
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FIGURE 5 | Prediction of JOA recovery using rs-FC. Prediction of preoperative JOA scores. JOA, Japanese Orthopedic Association; rs-FC, resting-state functional

connectivity. JOA recovery = postoperative JOA scores minus preoperative JOA scores.

The correlation coefficients obtained with a no-feature
selection procedure, between the predicted JOA recovery rate and
the actual JOA recovery rate, were 0.35 (p = 0.01) for dataset
1 and 0.35 (p = 0.03) for dataset 2. The correlation coefficients
obtained with a feature selection procedure, between the JOA
recovery rate and the actual JOA recovery rate, were 0.62 (35
FC pairs) (p = 0.004) for dataset 1 and 0.52 (27 FC pairs) (p
= 0.002) for dataset 2. The RMSE obtained with a no-feature
selection procedure, between the predicted JOA recovery rate and
the actual JOA recovery rate, was 1.831 (p < 0.05, Table 2) for
dataset 1 and 4.752 (p < 0.05, Table 2) for dataset 2. The RMSE
obtained with a feature selection procedure, between the JOA

recovery rate and the actual JOA recovery rate, was 1.549 (p <

0.005, Table 2) for dataset 1 and 4.342 (p < 0.005, Table 2) for
dataset 2.

Figure 6 presents the results for cross-site validation. The
correlation coefficients between the predicted preoperative JOA
scores and the actual preoperative JOA scores for training sets
were 0.40 (p = 0.01) for dataset 1 and 0.32 (p = 0.05) for dataset
2, respectively. The RMSE between the predicted preoperative
JOA scores and the actual preoperative JOA scores for training
sets was 0.347 (p > 0.05, Table 2) for dataset 1 and 0.326 (p >

0.05,Table 2) for dataset 2. After feature selection, the correlation
coefficients of the training sets were 0.72 (42 FC pairs) (p< 0.001)
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FIGURE 6 | Cross-site validation for prediction analyses. Cross-site validation of the prediction of both preoperative JOA scores and JOA recovery. JOA, Japanese

Orthopedic Association. JOA recovery = postoperative JOA scores minus preoperative JOA scores.

for dataset 1 and 0.64 (p = 0.002) (37 FC pairs) for dataset 2.
The RMSE of the training sets was 0.326 (p < 0.001, Table 2) for
dataset 1 and 0.236 (p < 0.005, Table 2) for dataset 2.

The correlation coefficients between the predicted JOA
recovery scores and the actual JOA recovery scores for the
training sets were 0.10 (p= 0.24) for dataset 1 and 0.17 (p= 0.17)
for dataset 2. The RMSE between the predicted JOA recovery
scores and the actual JOA recovery scores for the training sets was
0.363 (p > 0.05) for dataset 1 and 0.263 (p > 0.05) for dataset 2.
After feature selection, the correlation coefficients for the training
sets were 0.64 (p = 0.002) for dataset 1 (31 FC pairs) and 0.51 (p
= 0.01) for dataset 2 (26 FC pairs). After feature selection, the
RMSE for the training sets was 0.260 (p < 0.005) for dataset 1
and 0.258 (p < 0.05) for dataset 2.

The correlation coefficients between the predicted JOA
recovery rate and the actual JOA recovery rate for the training

sets were 0.08 (p = 0.28) for dataset 1 and 0.24 (p = 0.05) for
dataset 2. The RMSE between the predicted JOA recovery rate
and the actual JOA recovery rate for the training sets was 6.736
(p > 0.05, Table 2) for dataset 1 and 5.860 (p > 0.05, Table 2)
for dataset 2. After feature selection, the correlation coefficients
for the training sets were 0.60 (p = 0.001) for dataset 1 (33 FC
pairs) and 0.27 (p= 0.049) for dataset 2 (15 FC pairs). The RMSE
for the training sets was 3.560 (p < 0.001, Table 2) for dataset
1 and 4.475 (p < 0.05, Table 2) for dataset 2. Further, Bland–
Altman analyses revealed that 95% of points of all prediction
analyses were within the LOA (see Supplementary Materials,
Supplementary Figures 1–3).

The actual LOA of JOA prediction for dataset 1 was from
−2.67 to 2.71 and was from −1.76 to 1.93 after feature selection.
The LOA of JOA recovery prediction for dataset 1 was from
−1.97 to 2.02 and was from 1.32 to 1.39 after feature selection.
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The LOA of JOA recovery rate prediction for dataset 1 was
from −18.44 to 19.51 and was from −16.62 to 15.46 after
feature selection. The LOA of JOA prediction for dataset 2 was
from −2.71 to 2.74 and was from −2.83 to 2.71 after feature
selection. The LOA of JOA recovery prediction for dataset 2 was
from −3.73 to 3.65 and was from −3.65 to 3.93 after feature
selection. The LOA of JOA recovery rate prediction for dataset
2 was from −50.16 to 50.43 and was from −45.52 to 46.22 after
feature selection.

For cross-site validation, the LOA of JOA prediction for
dataset 1 as training set was from −2.40 to 4.02 and was from
−3.85 to 2.17. The LOA of JOA recovery prediction for dataset 1
as training set was from−2.91 to 2.36 and was from−3.77 to 3.79
after feature selection. The LOA of JOA recovery rate prediction
for dataset 1 as training set was from −40.74 to 18.86 and was
from −7.23 to 66.70 after feature selection. The LOA of JOA
prediction for dataset 2 as training set was from−3.83 to 1.97 and
was from−2.79 to 1.75. The LOA of JOA recovery prediction for
dataset 2 as training set was from −1.70 to 3.04 and was from
−2.37 to 3.02 after feature selection. The LOA of JOA recovery
rate prediction for dataset 2 as training set was from −36.48 to
69.07 and was from−39.63 to 51.88 after feature selection.

DISCUSSION

In this study, we conducted MVPAs of FC in patients with CSM,
including (1) univariate analyses for revealing the differences for
FC between CSM patients and HCs; (2) classification between
CSM patients and HCs; (3) prediction of preoperative JOA
scores; and (4) prediction of JOA recovery rate and JOA recovery
scores. Our results demonstrated that rs-FC combined with SVM
could successfully classify CSM patients fromHCs and that rs-FC
combined with SVR could successfully predict the neurological
recovery in CSM patients. These results further indicated that
MVPA approach could capture the rs-FC pattern abnormalities
in CSM patients and could be used as a potential biomarker for
predicting the surgical outcomes in CSM patients.

CSM is commonly seen in practice, and the preoperative
grading of CSM severity and prognosis prediction are matters
of great concern for clinical surgeons. Conventional cervical
MRI (i.e., T1 and T2) has been used to diagnose CSM for the
past decades; however, its utility for predicting CSM prognosis
has been controversial (36). Several metrics measuring the
morphologic changes of the spinal cord has been shown to be
not so reliable for predicting surgical outcomes (37). To resolve
this issue, several neuroimaging approaches, including diffusion
tensor imaging (DTI) (38–40), proton magnetic resonance
spectroscopy (41, 42), and electromyography combined with
conventional MRI (43), have been proposed for prognostic use
in CSM. It has been shown that the DTI analysis of spinal tracts
might provide additional information for prognosis of CSM
(39, 40). Moreover, it has been also shown that the metabolic
changes of the sensorimotor cortices were also associated with
the neurological recovery following decompression surgery (41,
42, 44). Other approaches, such as electromyography, have
also been shown to provide prognostic information for CSM

(43). However, these techniques were not easily accessible
in clinical practices (i.e., long acquisition time and being
invasive). Therefore, the need for simple, accurate, and non-
invasive imaging biomarkers for prognostic use in CSM patients
is warranted.

In recent years, researchers turned their attention to brain
rs-fMRI, which is easily acquired and non-invasive in clinical
practice. At the first glance, it seems surprising to develop
a prognostic biomarker based on brain rs-fMRI given that
CSM is not a primary cortical disorder. However, previous
studies have shown that the resting-state and task fMRI were
useful for developing potential neural biomarkers for assessing
preoperative sensorimotor deficits in CSM patients (11). A seed-
based FC study conducted by Peng et al. showed that the FCs
between the anterior and the cerebellum, the anterior thalamus,
and the cuneus significantly increased and positively correlated
with preoperative JOA scores. Furthermore, Zhou et al. and Peng
et al. observed that increased FCs between the anterior thalamus
and precentral gyrus positively correlated with the upper limb
motor function in CSM patients. Moreover, the resting-state
FC between the thalamus and the pre/postcentral gyrus was
correlated with the severity of long-term spinal cord injury (12,
45).

Recently, Takenaka and Kan (11) reported that the FC
between the visual cortex and the frontal gyrus is associated
with the 10-s test results and could predict postoperative
neurological recovery in CSM patients. Besides, in our previous
study, we demonstrated a significant correlation between the
increased FC and preoperative JOA scores (46). Despite these
studies demonstrating that several rs-fMRI metrics may be
useful for presurgical evaluation in CSM patients, these studies
only conducted univariate correlation analysis for revealing the
linear association between brain metrics and outcome measures.
Therefore, the pattern (i.e., consisted of multi-voxels or multi-
connections) information, which could be detected by the
MVPA, may be ignored by conventional approach.

In this study, we conducted an FC analysis and constructed
the whole-brain network. We tested the utility of classification
of CSM patients from HCs using FCs as features via an SVM.
We obtained good performance both within datasets and across
two independent datasets. Moreover, the model’s performances
were also increased after feature selection. Our findings indicated
that the classification accuracies were high within each dataset
and could be generalized between two independent datasets
acquired by different MR machines. Therefore, our findings
suggest that the rs-FC may be instrumental in the diagnosis of
CSM in patients.

Moreover, we assessed the potential utility of rs-FC in the
presurgical evaluation of CSM using the SVR. We obtained
successful regression between rs-FC and the preoperative
neurological function (e.g., preoperative JOA scores) in CSM
patients since all correlation coefficients were above 0.4 before
feature selection and above 0.6 after feature selection (all p-
values< 0.05 after permutation test and family-wise error (FWE)
correction). These findings also showed good generalization
across the two datasets. Therefore, our current results provided
preliminary evidence that the pattern of rs-FC is associated
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with the presurgical neurological function in CSM patients and
may aid the evaluation of CSM patients for research purposes.
It is obvious that there are differences in the predicted and
actual JOA scores. Two main reasons may contribute to these
differences. First, rs-fMRI data constitute multiple sources of
noise during data collection (e.g., respiratory or cardiac noise).
Despite that the preprocessing steps could largely increase the
noise-to-signal ratio of rs-fMRI data. There still were unexpected
noises, which may affect the accuracy of the prediction analysis.
Second, although JOA scale is the most commonly used and
robust clinical measure for evaluating the severity of CSM, it
only measures the sensorimotor aspect of the CSM patients
(e.g., sensory, motor, and bowel and bladder deficits). Other
psychological factors (e.g., cognitive deficits and depression),
which have also shown to be associated with the CSM, could
not be evaluated by the JOA scale. Therefore, such measurement
error may also contribute to the prediction error between actual
JOA scores and predicted JOA scores.

Besides, we explored the association between the rs-FC
and prognosis of CSM via SVR, using preoperative rs-FCs as
features and the sensorimotor recovery following spinal cord
decompression surgery (JOA recovery or JOA recovery rate) as
labels. Despite the successful prediction of the JOA recovery
scores in each dataset, the correlation coefficients were relatively
low except for the prediction of JOA scores after feature selection
in dataset 1. The cross-site prediction performances were also
relatively poor (R = 0.10/0.17 before feature selection; R =

0.51/0.64 after feature selection) compared with the prediction
of preoperative JOA scores. This may be attributable to various
factors such as age, disease duration, presurgical neurological
state, spinal cord DTI signal, and surgical approaches, which
affect the prognosis of CSM (2, 4, 47, 48); thus, it would make
the prediction harder than we expected. It is worth mentioning
that the outcome of the JOA recovery prediction by SVR is
generally poor. Interestingly, within the low performance, the
model appears to perform better on dataset 1 than on dataset
2, though the opposite was true in classifying patients from
HCs. This is likely to reflect the fact that myriad factors in
postoperative recovery may not be captured by the rs-FC data.
Moreover, the non-generalizability of the cross-site prediction
before feature selection may be due to the different sets of
features selected during the training process, thus making the
cross-site prediction harder. It is also worth mentioning that the
poor prediction for JOA recovery could also be attributed to
the SVR itself. Before feature selection, there were 6,670 features
included in the SVR model; however, there were only <100
samples for training the model. Overfitting of these models could
also be a major cause of poor prediction. The improvements of
prediction accuracy after feature selection could further support
this speculation due to the fact that feature selection procedure
could remove redundant features to some extent.

For clinical significance, the Bland–Altman analyses were
performed to reveal the clinical significance of the prediction
analyses. In the case for JOA prediction, the minimum clinically
important difference of the JOA has been shown to be 1–2 points
(49); and the minimum clinically important difference of the
JOA recovery rate has shown to be 52.8% in CSM patients (50).

In our current analysis, the 95% LOA exceeded these, meaning
that the predicted data could deviate from the actual JOA score
(or actual JOA recovery rate) by more than what is accepted
as a clinically meaningful change. These results indicated that
predicting CSM-related outcomes is not yet robust enough for
accurate predictions (e.g., for clinical purpose), though it does
show promise and could be developed with a bigger dataset or
with other outcome variables.

LIMITATIONS

Since our study only used rs-FC as features to classify CSM
patients and predict clinical measures, other rs-fMRI metrics
and feature fusion approach are needed in the future to develop
more accurate diagnostic and prognostic models for CSM.
Moreover, our current study is a retrospective study and lack
repeatability analysis (when tested on the same individual at
two different time points under the same conditions). Therefore,
it may be a potential confounder of unknown significance. As
mentioned above, our study is a retrospective study; therefore,
the sample size and the statistical power have not been estimated,
and the prediction analyses were performed after the data
collection of follow-up information. Prospective study using
more rigorous statistical analyses and directly comparing the
prediction accuracy between orthopedic surgeon and machine
learning techniques is required in the future. Furthermore, we
did not collect postoperative fMRI data due to possible artifacts
and MRI heating of implants. Therefore, we recommend long-
term follow-up before postoperative data collection for safety.
Additionally, spinal cord MR data, including the DTI, diffusion
spectrum imaging (DSI), and functional scan, should be collected
in the future to obtain more information on CSM. Future studies
may need to add the clinical information and spinal cordMR data
to the prediction model to improve the prediction performance.
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