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Abstract 

Protein therapeutics are increasingly important for the treatment of many diseases; however, 
intracellular protein delivery remains a considerable challenge. To address this challenge, drug 
nanorods have emerged as new nanocarriers for enhanced intracellular protein delivery via 
bypassing endo-lysosomes, which was called a “drug-delivering-drug platform”. 
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Protein therapeutics become popular in the 

treatment of human diseases including diabetes, 
cancer, infectious and inflammatory diseases, due to 
their high activity and high specificity as compared to 
small molecule drugs. Nevertheless, protein 
therapeutics suffer from poor stability, short 
circulatory half-life, poor-membrane permeability, 
and immunogenicity [1,2]. To address these problems, 
many strategies have been developed for protein 
delivery, including polymer conjugation, 
long-circulating protein fusion, and nanocarriers such 
as nanogels, nanocapsules, virus-like particles, and 
cationic lipid nanoparticles. Indeed, dozens of 
PEGylated protein therapeutics, human serum 
albumin (HSA) fused protein therapeutics, and 
fragment crystallizable (Fc) fused protein therapeutics 
have been approved by the U.S. Food and Drug 
Administration (FDA) [3,4]. However, current 
FDA-approved protein therapeutics aim at 
extracellular targets, not at intracellular ones. This is 
because it is tremendously difficult for therapeutic 
proteins to spontaneously enter cells and efficiently 
escape from the endo-lysosomal system into the 
cytosol to play roles [5-7]. Although much effort has 
been directed to overcome these problems in 
intracellular protein delivery [8-10], it remains a 
significant challenge to efficiently deliver therapeutic 

proteins into the cytosol of cells. 
Recently, Xiaofei Xin et al. reported a 

drug-delivering-drug platform (HA-PNPplex) for 
intracellular delivery of protein and combined cancer 
treatment [11]. In their work, rod-like pure drug 
nanoparticles (PNPs) of paclitaxel (PTX) stabilized 
with positively charged polymer polyethylenimine 
(PEI) were used as nanocarriers of proteins via 
electrostatic interactions between the 
positively-charged PNPs and the proteins to form 
PNPs/protein complexes (PNPplex). Subsequently, 
hyaluronic acid (HA) was coated onto these PNPplex 
to yield HA-PNPplex via electrostatic interactions 
between the PNPplex and HA. To prove the concept, 
caspase 3, the dominant mediator of apoptosis in 
mammalian cells [12,13], was chosen for the 
demonstration of therapeutic efficacy in a 
caspase-3-deficient MCF-7 tumor model. They found 
that HA-PNPplex delivered caspase 3 into cells 
through a non-lysosomal pathway, the 
caveolae-mediated internalization, which was 
determined by the rod-like shape, not by the surface 
modification. Consequently, HA-PNPplex raised 
caspase 3 level up to 6.5-fold in MCF cells. In a MCF-7 
breast cancer mouse model, HA-PNPplex showed 
synergistic effect between the protein and PTX. The 
authors claimed that the platform provides a 
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completely new strategy for protein therapies and 
delivery for other biomacromolecules, even for cancer 
immunotherapy. 

These data appear to be interesting for protein 
delivery; however, several issues need to be 
addressed in the future. First, PEI is believed to be 
toxic [14], although the authors claimed that 
HA-PNPplex had high biocompatibility and 
tolerability. We would suggest that biodegradable 
and biocompatible positively-charged polymers like 
polylysine should be selected instead of PEI. Second, 
many proteins are not negatively-charged or not 
negative enough to form stable complexes with 
positively-charged polymers through electrostatic 
interactions as mentioned in this work. Therefore, the 
authors should clarify this limitation in their paper. 
Third, it is not clear that how much HA could be 
adsorbed onto the surface of PNPplex and how stable 
HA-PNPplex was. Therefore, there are several subtle 
or uncertain factors to be considered in the 
preparation of HA-PNPplex, which may complicate 
the quality control of HA-PNPplex in manufacturing. 
To our knowledge, more and more nanomedicines 
were composed of more than two components like 
this work [15,16]. The structures of the nanomedicines 
were usually not clear because it is very difficult to 
well characterize these nanostructures, especially in 
vivo. More attention should be paid to this problem 
from the viewpoint of translational medicine. Fourth, 
the tumor penetration of HA-PNPplex was not well 
studied in this work. A reasonable method to 
investigate tumor penetration is to measure the 
distance of protein migration from the vessel [17,18]. 
Fifth, the authors claimed that PNPs would be useful 
to carry antigen proteins for cancer immunotherapy. 
One question is whether it is necessary or reasonable 
to use PNPs as nanocarriers for antigen delivery. The 
other question is whether PNPs are toxic to immune 
cells. 

In our opinion, this work provides new 
nanocarriers of PNPs for efficient intracellular 
delivery of some negatively-charged proteins via 
caveolae-mediated endocytosis and shows a synergy 
of PTX therapy and caspase 3 therapy. After solving 
the above problems, the nanocarriers of PNPs would 
be useful for combined cancer therapy. To date, many 
nanocarriers have been developed for intracellular 
protein delivery, but most of them are complicated in 
structures and functions along with insufficient 
characterization, which may result in poor 
reproducibility and further hinder their clinical 
translation. We believe that less is more, which is 
especially important for drug development. 
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