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Abstract

The human genetic diversity around the world was studied through several high variable

genetic markers. In South America the demic consequences of admixture events between

Native people, European colonists and African slaves have been displayed by uniparental

markers variability. The mitochondrial DNA (mtDNA) has been the most widely used genetic

marker for studying American mixed populations, although nuclear markers, such as micro-

satellite loci (STRs) commonly used in forensic science, showed to be genetically and geo-

graphically structured. In this work, we analyzed DNA from buccal swab samples of 296

individuals across Peru: 156 Native Amazons (Ashaninka, Cashibo and Shipibo from Uca-

yali, Huambiza from Loreto and Moche from Lambayeque) and 140 urban Peruvians from

Lima and other 33 urban areas. The aim was to evaluate, through STRs and mtDNA vari-

ability, recent migrations in urban Peruvian populations and to gain more information about

their continental ancestry. STR data highlighted that most individuals (67%) of the urban

Peruvian sample have a strong similarity to the Amazon Native population, whereas 22%

have similarity to African populations and only ~1% to European populations. Also the

maternally-transmitted mtDNA confirmed the strong Native contribution (~90% of Native

American haplogroups) and the lower frequencies of African (~6%) and European (~3%)

haplogroups. This study provides a detailed description of the urban Peruvian genetic struc-

ture and proposes forensic STRs as a useful tool for studying recent migrations, especially

when coupled with mtDNA.

Introduction

The rapid advancements in genotyping techniques and the growing availability of genetic data

in open databases have greatly improved our view of human population structure. Many

regions of the human genome can be analyzed to investigate admixture events among popula-

tions from different continents, as those associated with the European colonization and the
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African slave trade in the Americas. New methods for analysis of genome wide SNPs data con-

tributed to determine the continental ancestry in admixed populations from urban Brazilian

people, showing their high degree of admixture along with a strong European contribution [1,

2]. In addition, tetranucleotide microsatellite loci (STRs) showed to be geographically more

structured than other nuclear markers, with a good power of discrimination on inter-conti-

nental scale [3–7].

Many STRs, having an observed heterozygosity>70%, show a high individual discriminating

power. Therefore, these markers are widely used in human individual identification for resolv-

ing forensic cases [8–10]. Although autosomal STRs of forensic panels show high heterozygosity

and low random match probability values, i.e. the probability of obtaining a match between

genotypes of two distinct and unrelated individuals, they are also associated to a good capability

of ancestry identification [11]. Therefore, these markers can provide valuable information to

evaluate nature and extent of transcontinental admixture in South American populations.

The complex historical origin of urban populations in South America was mainly investigated

through uniparental and non-recombining genetic markers (mitochondrial DNA and Y chro-

mosome), by means of region-specific haplotypes or haplogroups [12, 13]. Studies on mtDNA

composition in Natives from Peru and Ecuador allowed to reconstruct genetic similarity and to

clarify early peopling of these areas [14–17]. However, the geographical structuring of mtDNA

haplotypes and haplogroups is not able to clearly assign geographical ancestry of individuals as

much as thousands autosomal SNPs can do. The mtDNA captures information on the ancestral

maternal contribution, but autosomal markers can reveal different scenarios concerning conti-

nental origins: i.e. individuals carrying A, B, C and D mtDNA haplogroups, which are predomi-

nantly associated to East Asian or Native American ancestry, can turn out to harbor a different

ancestry when studied at the level of autosomal markers [18]. Combined analyses of autosomal

SNPs and mtDNA data in South American mixed populations have indeed highlighted clear sig-

nals of sex-biased genetic inputs from the different continental components [18–20].

In this work, we analyzed 16 STR loci, commonly used in forensic science, in Native Ama-

zon Peruvians from Ucayali, Loreto and Lambayeque regions and in Peruvians from Lima’s

urban area and other urban areas of Peru (Fig 1). Moreover, we sequenced the D-loop non-

coding region and several SNPs in the coding region of mtDNA to estimate external maternal

contributions to the urban Peruvian population. The aim of this work was to quantify, through

statistical methods of cluster analysis, the extent of recent migrations in the urban Peruvian

population. The results increased our knowledge on Peruvian continental ancestry highlight-

ing effective signs of admixture also in high variable loci of the genome.

Materials and methods

Populations

Buccal swabs of a total of 296 individuals were sampled across the entire territory of Peru dur-

ing three sampling campaigns along the years 2012–2015. Of these, 156 were Native Amazo-

nian Peruvians belonging to Ashaninka, Cashibo and Shipibo people from Ucayali, Huambiza

from Loreto and Moche from Lambayeque, while 140 were individuals from the urban area of

Lima and other 33 Peruvian towns (S1 Table and Fig 1). The indigenous individuals of the

present study were sampled in their own communities settled in the Amazon rainforest or in

the desert of Morrope, while urban Peruvian people were sampled in urban areas and the close

countryside. The project was also approved by the Ethics Committee of the University of

Rome Tor Vergata (June 22nd 2011). Each subject was also asked to report the origin of his/

her parents in order to exclude recent immigrants from other continents, and to sign a written

informed consent according to the guidelines of the Ethics Committee of University of Rome
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Tor Vergata. The buccal swab samples were then sent to the Centre of Molecular Anthropol-

ogy of University of Rome Tor Vergata. The essential information about the samples are given

in S1 Table: based on sampling location, for each individual the area of origin (urban area of

Lima, North, South and Centre of Peru) and the ecoregion (Rainforest or "Selva", Mountain or

"Sierra", Coast or "Costa" and Lima’s urban area) were reported. Sample information on the

linguistic group were unknown and samples from urban areas were referred to as "urban",

because of the lack of information on ethnicity.

Laboratory methods

Genomic DNA was extracted using standard procedures [21] and amplified with the commercial

kit commonly used for forensic analyses AmpFLSTR1 NGM SElect™ PCR Amplification Kit

(Applied Biosystems, Foster City, CA) for the D10S1248, vWA, D16S539, D2S1338, Amelogenin,

D8S1179, D21S11, D18S51, D22S1045, D19S433, TH01, FGA, D2S441, D3S1358, D1S1656,

D12S391 and SE33 loci [22, 23]. After the amplification, all PCR products were separated with

Fig 1. Map of sampling areas. The map shows the birthplace of sampled Peruvian urban and native individuals. Gray

dots are native communities, black dots are towns or small cities.

https://doi.org/10.1371/journal.pone.0200796.g001
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the same ABI PRISM 3500 XL Genetic Analyzer, polymer and capillary types, and constant run

conditions across the plate set (Life Technologies, Foster City, CA), while the analysis of DNA

profiles was carried out using the software GeneMapper1 ID-X (Life Technologies, Foster City,

CA). All runs included a negative (water) control, 6 replicates of the reference allelic ladder

included in the kit, as well as the positive control provided by the manufacturer (Control DNA

007). Profiles were inspected by two independent operators. Independent spreadsheets were pro-

duced and compared. Profiles with missing amplification at one or more loci were discarded.

To detect hidden relatedness, we also ran the program Familias 3. 2. 1 [24] using allele fre-

quencies obtained in the whole series. For comparisons, allele frequency databases of US His-

panics [25] and North American Native Americans [26] were employed. Thresholds for the

likelihood ratio took into account the number of pairwise comparisons within each population

sample [5]. This step led to the exclusion of 64 subjects, since they were identified as Parent/

Offspring or Full Sibs (8 urban Peruvians, 5 Ashaninka, 36 Cashibo, 15 Shipibo) (S1 Table)

leading to a total sample size of 100 Native Amazon and 132 urban Peruvian individuals.

The mtDNA of 132 urban Peruvian samples and 10 Native Amazon individuals belonging

to Moche population were analyzed by sequencing, while mtDNA haplotypes of the other

Native individuals were already published [15]. The amplification of the first and second

hypervariable segments (HVS-I and HVS-II) of the mtDNA control region was carried out in

a 25 μl reaction volume under standard conditions [27]. The primers in the amplification reac-

tions allowed sequences to be read from nucleotide position np 15996 to np 16401 and from

np 00029 to np 00408 for HVS-I and HVS-II, respectively [14, 27, 28]. Sequence data were

obtained using fluorescent dye labeling and the ABI PRISM 3130 AVANT DNA Sequencer

(Applied Biosystems, Foster City, CA) following the manufacturer’s protocols. HVS-I and

HVS-II sequences were compared with the revised Cambridge reference sequence [29, 30].

After alignment, control-region haplotypes were analyzed via the HaploGrep website, obtain-

ing phylogenetically classification with a high confidence percentage (>85%) [31]. Moreover,

to improve the haplogroup classification, several selected diagnostic SNPs in the mtDNA cod-

ing region (8281-8289d, 489C, 493G, 10400T) were assayed by PCR amplification and

sequencing [32].

Statistical analysis on microsatellites and mitochondrial DNA data

Allele frequencies, observed and expected heterozygosity, Fis and Fst values, and the exact test

for the Hardy-Weinberg equilibrium (HWE) were calculated using Arlequin v. 3. 5. 2. 2 and 1

million steps in Markov chain [33].

To estimate possible contribution of non-Native American source populations to the urban

Peruvian gene pool, we added to our data set genetic profilesfrom two different population

samples both from USA [25]: one of European ancestry (US Europeans) and one of African

ancestry (US Africans). First, we applied the program STRUCTURE 2. 3. 2 [34] using the

admixture model with correlation between allele frequencies. The number of clusters (K)

investigated ranged from 2 to 6, and for each K, a burn-in of 50,000 iterations, followed by

50,000 iterations of MCMC (Markov Chain Monte Carlo method) was applied for estimates of

clustering.

Principal Component Analysis (PCA), based on individual STR profiles, was carried out by

R package factoextra to graphically represent affinities among all genotypes and to ascertain

which alleles mainly contributed to between-individuals diversity.

To assess the relationships between different possible population sources (US Africans, US

Europeans and Native Amazon Peruvians) and urban populations, an independent evaluation

of membership probabilities for each individual in each population was obtained by means of
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Discriminant Analysis of Principal Components (DAPC). This multivariate method defines a

model in which the component of genetic variation between groups is maximized by minimiz-

ing the within-group component [35]. Analyses were performed using the R package adegenet
[36]. Then, allele frequencies were submitted to a centered PCA, and the best fitting model in

the wide STR database was identified by the function find. cluster. The retained PCs (100) were

passed to a Linear Discriminant Analysis and the first two components were shown on Scatter-

plots of the DAPC.

For maternal ancestry identification, each mtDNA was phylogenetically classified and stan-

dard diversity molecular indices and Tajima’s D test of neutrality were calculated for all popu-

lations in our database on the basis of the HVS-I haplotype using the software Arlequin v. 3. 5.

2. 2 [33, 37]. Using HVS-I data for each population as output, computation of pairwise genetic

Fst matrix and AMOVA was done with Arlequin v. 3. 5. 2. 2 [33, 37] and the significance tested

through 10,000 permutations (p<0.05). To represent Fst matrix, a non-metric multidimen-

sional scaling analysis (nmMDS) was performed using PAST version 2. 16 software [38, 39].

The stress values related to the goodness of fit in two-dimensional space yielded results that

were acceptable for the plots [38]. The 3D representation of nmMDS was made by R package

plot3D, while Mantel test was calculated by Passage 2 software, using 10,000 permutations

[40]. Geographic distances in kilometers were calculated on the Great Circle, using appropriate

R script, while altitude distances were calculated on Euclidean distance by Passage 2 software.

Results

Microsatellite diversity

After relationship filtering, the final dataset comprised 232 subjects (100 Native Amazon and

132 urban Peruvian individuals), all typed at 16 STR loci (S1 Table). The number of alleles per

locus varied between 6 (locus D10S1248) and 28 (SE33). Overall, 183 alleles were recorded and

the exact test for the Hardy-Weinberg equilibrium (HWE) for all loci did not show departures

from the expectation (S2 Table).

To check for a decrease of heterozygosity, Fis indices were calculated for all Native Amazon

and urban Peruvian populations. They were quite symmetrical around 0, with no significant val-

ues (Table 1). However, it is notable that most of the urban Peruvian samples showed slightly

positive Fis values, whereas most of the Amazon samples had slightly negative Fis values. We

compared the inbreeding Fis values with those obtained in comparable Native Amazon and

mixed American populations typed for 645 STRs [41]. Karitiana, the only Native American pop-

ulation from Brazilian Amazon reported in [41], showed a Fis value of -0.0126079, which was in

agreement with excess of heterozygosity in all here studied Amazon samples from Peru. On the

other hand, Fis values in admixed populations from Mexico, Brazil, Colombia and Argentina

displayed reduced heterozygosity (Fis values>0), as shown also in our urban Peruvian samples.

Continental ancestral information from microsatellite database

We performed an exploratory analysis to highlight genetic structure caused by different conti-

nental ancestries. The best clustering model was identified by STRUCTURE 2. 3. 2 software

[34], evaluating the maximal value of lnP(D) for each cluster (K) [42]. A 3 K model (lnP(D) =

-58263) was chosen as the best clustering model, because all other tested K had lower lnP(D)

values. However, we plotted also a 2 K model (lnP(D) = -59135) (S1 Fig). In the 3 K model, the

Native Amazon individuals were characterized by only one main component shared with

urban Peruvian populations, which was very rare or absent in the two source populations (US

Europeans and US Africans). On the other hand, urban Peruvians showed a strong heteroge-

neity; in fact, on the Native American background an African component was also present,
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especially in the Lima sample. The strength of the Native component was already evident in

the 2 K model.

PCA based on STR genotypes mainly confirmed admixed structure of urban Peruvians

contributed by Native Amazon and African populations (Fig 2A). The total variance percent-

age of PC1 and PC2, was 3% (PC1 1.7% and PC2 1.3%). The position of both Native Amazon

people and urban Peruvians was sharply influenced by the contribution of the D2S441-10

allele, the most frequent in our populations (Native Amazon 0.56439 and urban Peruvians

0.675) (Fig 2B). The overlapping centroids for Lima and other Peruvian urban regions sug-

gested the same degree of admixture.

A comparable degree of admixture for Lima and other Peruvian urban regions was con-

firmed not only by a null Fst value (-0.00138; not significant) of Lima vs. pooled data of the

other Peruvian regions, but also by null Fst values between the single population samples (S3A

Table). Considering whole dataset as only 4 populations (Native Amazon, Urban Peruvians,

US Europeans and US Africans), the lowest Fst value was obviously observed between urban

Peruvians vs. Native Amazon (Fst = 0. 0144; p = 0. 000). The Fst urban Peruvians vs. US Afri-

cans (Fst = 0. 0276; p = 0. 000) was lower than that urban Peruvians vs. US Europeans (Fst = 0.

0368; p = 0. 000),thus allowing us to further confirm the African contribution in urban Peru-

vians (S3B Table). Table 2 reports Fst values for each STR locus, calculated both for Native

Amazon vs urban Peruvian populations and for Native Amazons, urban Peruvians, US Euro-

peans and US Africans.

We used DAPC to define clusters of genetically related individuals. The best fitting model

in the wide STR database was 5 K (BIC = 1755.36). After a Linear Discriminant Analysis, the

first two components were represented on Scatterplots of the DAPC (Fig 3A), which showed

the same trend of the STR genotypes PCA. Clusters 1 and 5 were strongly defined and located

respectively in first and second quarters, while clusters 2, 3 and 4 resulted widely overlapping

and undistinguished. The TH01-7 allele was underlined as the main contributor to individual

clustering, posing threshold 0.07 loadings (TH01-7 = 0. 13380305 loading value) (Fig 3B). The

height of each bar is proportional to the contribution of each allele (loading). When threshold

loading was set to 0.05, also D1S1656-14 exceed it (loading value = 0.05763481). The strong

contribution of the TH01-7 allele was not a surprise: the amount of genetic diversity, preserved

in the TH01 locus, was described by high Fst value (Fst TH01 entire STR dataset = 0.06916;

Table 2). The TH01-7 allele showed high frequencies in both urban (33% - 45%) and Amazon

Table 1. Genetic diversity values of STR loci in Native and urban Peruvians.

Population Original sample size Final sample size� Hobs Hexp Fis P value

Ashaninka Native 19 14 0. 77679 0. 70403 -0. 10774 0. 994455

Cashibo Native 47 11 0. 625 0. 613 -0. 02049 0. 685446

Huambiza Native 22 22 0. 72727 0. 71882 -0. 01205 0. 631485

Mochica Native 10 10 0. 7625 0. 72237 -0. 05882 0. 894356

Shipibo Native 58 43 0. 70349 0. 71 0. 00928 0. 363663

Lima Urban 68 63 0. 76389 0. 78295 0. 02454 0. 075347

Coast Urban 20 20 0. 75937 0. 77989 0. 02698 0. 210495

Mountains Urban 46 43 0. 79506 0. 77281 -0. 02914 0. 919505

Forest Urban 6 6 0. 77083 0. 77841 0. 0107 0. 442673

� obtained after Familias 3. 1. 2 filtering.

Hobs, observed heterozygosity; Hexp, expected heterozygosity; Fis, fixation index considering the individual level.

https://doi.org/10.1371/journal.pone.0200796.t001
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Fig 2. a) PCA plot based on STR genotypes of urban and Amazon natives Peruvian, US European and US African

populations. Dots represent individuals and the colors are associated with geographic origin. The first principal

component accounts for 1. 7% of the total variability, while the second principal component accounts for 1. 3%. b)

Contributions of each STR allele to PCA plot. The main allele contributors to the first and second PCs are shown.

https://doi.org/10.1371/journal.pone.0200796.g002

Table 2. Inter population diversity fixation index (Fst) values for each STR locus, calculated both for Native Ama-

zon vs urban Peruvian populations and for Native Amazons, urban Peruvians, US Europeans and US Africans.

Native Amazons vs urban Peruvians Native Amazons, urban Peruvians, US

Europeans and US Africans

Locus Fst P values Fst P values

D10S1248 0. 03915 0. 0014 0. 02842 0. 0000

vWA 0. 01645 0. 1681 0. 02987 0. 0000

D16S539 0. 01487 0. 1929 0. 02628 0. 0000

D2S1338 0. 03758 0. 0000 0. 03001 0. 0000

D8S1179 0. 0018 0. 9765 0. 01500 0. 0000

D21S11 0. 00287 0. 9683 0. 02703 0. 0000

D18S51 0. 02031 0. 0163 0. 02606 0. 0000

D22S1045 0. 06212 0. 0000 0. 05902 0. 0000

D19S433 0. 02703 0. 0026 0. 02828 0. 0000

TH01 0. 02336 0. 0320 0. 06916 0. 0000

FGA 0. 03497 0. 0000 0. 03134 0. 0000

D2S441 0. 02307 0. 0433 0. 10050 0. 0000

D3S1358 0. 01187 0. 3849 0. 03775 0. 0000

D1S1656 0. 02333 0. 0026 0. 02846 0. 0000

D12S391 0. 01493 0. 1675 0. 03516 0. 0000

SE33 0. 01657 0. 0282 0. 01132 0. 0000

Mean 0. 02261 0. 03579

https://doi.org/10.1371/journal.pone.0200796.t002
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(35% - 68%) populations. In US Europeans its frequency was 19%, while in the US Africans

was 40%. The strongly different allele frequencies in the dataset contributed to the scattered

distribution of genotypes on the plot.

The model highlighted an association between some clusters and the populations under

study (Fig 4). Specifically, Native Amazon individuals were found typically within cluster 5,

US Africans within clusters 2 and 3, while US Europeans in cluster 1. Cluster 4 seems not to be

associated with specific populations. Cluster 5 contains most Native Amazon (77.2% - 100%)

and urban Peruvian individuals (33.3% - 72%), while individuals of the source populations

were almost absent. Clusters 2 and 3 clearly marked individuals belonging to the US African

sample (27% for cluster 2 and 42.1% for cluster 3). It is worth noticing that many urban and

few Native Peruvian individuals fall into African clusters 2 and 3. Instead, cluster 1 is almost

exclusive of US Europeans, and only one individual from Lima was found in this cluster. At

last, the origin of cluster 4 remained unknown and probably it could be attributed to mixed

individuals between source populations.

Mitochondrial genetic diversity

The results of clustering of STR profiles obtained by DAPC were compared with those from

mtDNA analysis. mtDNAs of 132 urban Peruvian and 10 Moche individuals were newly geno-

typed, while the haplotypes of the remaining 90 Native Amazons were already available [15].

In S1 Table, for each subject, the variants of mtDNA HVS-I, HVS-II and coding regions are

listed, along with the haplogroup and STR cluster affiliations.

Fig 3. a) DAPC of STR genotype database. DAPC of STR genotype database of urban and Amazon native Peruvian,

US European and US African populations. Scatter plot showing the first two principal components. Dots represent

individuals. b) Loading plot of DAPC. The main allele contributors to individual DAPC clustering are shown.

https://doi.org/10.1371/journal.pone.0200796.g003
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Table 3 reports the haplogroup frequencies for the urban Peruvian sample. Most of the

mtDNA haplogroups were of Native American origin (6. 1% A, 51.5% B, 15.2% C, 17.4% D),

while 3.2%, 7.1% and 0.8% were of European, African and Asian origin, respectively.

To accurately estimate the native contribution, a dataset reporting only mtDNA haplotypes

belonging to the Native American haplogroups A, B, C and D was created for urban Peruvian

sample, and it was then compared with the mtDNA Native haplotype dataset of admixed and

Native people from Peru, Bolivia, Chile and Amazon region of Brazil (Table 4). The genetic diver-

sity parameters in urban Peruvian samples did not differ from those of other South American

Fig 4. Composition of DAPC clusters for STR genotypes. Vertical bars represent the proportion (%) of each cluster

in each population. In the table the absolute and relative (%) frequencies of each cluster for each population are

reported.

https://doi.org/10.1371/journal.pone.0200796.g004

Table 3. Absolute and relative (%) frequencies of mtDNA haplogroups in urban Peruvian sample.

mtDNA haplogroup frequencies

A2 8 (6.1)

B2 24(18.2)

B4 44(33.3)

C1 20(15.2)

D1 18(13.6)

D4 5(3.8)

H 1(0.8)

HV0 1(0.8)

I5a2 1(0.8)

L1 2(1.5)

L2 5(3.8)

M1a1i 1(0.8)

M7c 1(0.8)

W3a1 1(0.8)

https://doi.org/10.1371/journal.pone.0200796.t003
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populations. All Tajima’s D values were negative indicating no selection on mtDNA, nevertheless,

after applying Bonferroni correction (p<0. 004),only two p values were significant (Table 4). In

Table 3 the haplogroup frequencies for urban Peruvian sample are reported. Most of the mtDNA

haplogroups were of Native American origin (6.1% A, 51.5% B, 15.2% C, 17.4% D), but European

(3.2%), African (7.1%) and Asian (0.8%) matrilineal inputs were also found.

Only 13 mtDNAs (10%) out of the 132 genotyped in urban Peruvians belonged to non-

Native American haplogroups (Table 5): 8 belonged to Sub-Saharan haplogroups (6%), 4 to

European haplogroups (3%) and 1 to an Asian haplogroup (1%). With the exception of two

mtDNAs belonging to the African haplogroup L2a1 found in the Lima population, all the oth-

ers differed from each other. Among the 13 non-Native mtDNAs, 7 were carried by individu-

als belonging to STR cluster 5 (Native American), the remaining 6 (5% of the overall mtDNA

dataset) belonged to individuals of non-Native STR clusters, but none of them was associated

to STR cluster 1 (only European) (Table 5). Moreover, all these 13 mtDNAs were from the

Lima’s urban area and other urban Coast regions (S2 Fig), suggesting a sex-biased geographical

distribution of admixture events.

Pairwise genetic Fst matrix was built on the mtDNA HVS-I haplotype data obtained from

the present research and other populations from urban, Amazon and Andean places of the

Table 4. Diversity indices of mtDNA sequences from South America belonging to Native American haplogroups A, B, C and D.

Samples Population N K S H MSPD π Tajima’s D Tajima’s D p

value

References

Urban Peru Urban 119 70 67 0. 9708+/-0.

0074

6. 298533+/-3.

0092

0. 015707+/-0.

0083

-1. 57923 0. 02 Thispaper

North and Central Andes

Peru

Natives 99 64 60 0. 9862+/-0.

0040

6. 135848+/-2.

9431

0. 015301+/-0.

0081

-1. 51732 0. 04 [48]; this

paper

Amazon Natives Peru Natives 353 100 84 0. 9699+/-0.

0031

6. 876980+/-3.

2439

0. 017150+/-0.

0089

-1. 39077 0. 04 [15, 16]

La Paz Bolivia Urban 152 82 69 0. 9656+/-0.

0076

4. 615023+/-2.

2775

0. 011509+/-0.

0063

-1. 94672 0. 003 [61]

Llandos Bolivia Natives 171 99 88 0. 9826+/-0.

0039

7. 511730+/-3.

5252

0. 018732+/-0.

0097

-1. 59691 0. 02 [61]

Sub Andes Bolivia Urban 127 81 70 0. 9696+/-0.

0086

4. 763280+/-2.

3442

0. 011879+/-0.

0065

-1. 99901 0. 002 [61]

Titicaca Peru Natives 132 83 65 0. 9865+/-0.

0035

5. 567083+/-2.

6913

0. 013883+/-0.

0074

-1. 67358 0. 02 [17, 48]

Amazon Brazil Natives 237 61 47 0. 9594+/-0.

0046

5. 093685+/-2.

4797

0. 012702+/-0.

0068

-1. 00604 0. 16 [65]

Temuco Chile Urban 69 36 46 0. 9633+/-0.

0104

5. 495311+/-2.

6757

0. 013704+/-0.

0074

-1. 40415 0. 06 [62]

Santiago de Chile Urban 167 85 70 0. 9685+/-0.

0073

6. 831325+/-3.

2327

0. 017036+/-0.

0089

-1. 37281 0. 05 [62]

Punta Arenas Chile Urban 78 32 42 0. 9194+/-0.

0210

5. 939061+/-2.

8645

0. 014811+/-0.

0079

-0. 97837 0. 16 [62]

Iquique Chile Urban 189 90 80 0. 9749+/-0.

0050

6. 902961+/-3.

2617

0. 017214+/-0.

0090

-1. 53332 0. 03 [62]

Conception Chile Urban 178 74 62 0. 9683+/-0.

0053

6. 670729+/-3.

1626

0. 016635+/-0.

0087

-1. 16074 0. 1 [62]

Natives South Argentina-

Chile

Natives 204 75 62 0. 9451 +/-0.

0112

6. 378779 +/-3.

0351

0. 015907+/-0.

0084

-1. 18661 0. 1 [66, 67]

Sample size (N), number of haplotypes (K), number of polymorphic sites (S), haplotype diversity (H), mean number of pairwise differences (MSPD), nucleotide

diversity (π) and Tajima’s D test.

https://doi.org/10.1371/journal.pone.0200796.t004
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South American West Coast. They were plotted through 3D nmMDS to identify maternal

genetic relationships with 0.02 Stress value (S3 Fig). The lines under each point highlight the

distance on Third Dimension, while different colors (black-to-red) help to visualize the Second

Dimension. This plot showed four main population groups: "Amazon" group (including Ama-

zonPeru, AmazonBrazil and LlandosBolivia), "Lake Titicaca" group (LaPazBolivia, SubAndes-

Bolivia, TiticacaPeru and also TemucoChile), "Andes Peru" group (NCAndePeru and

UrbanPeru) and "Chile" group (NativesSArgentinaChile, SantiagoChile, IquiqueChile, Con-

ceptionChileand Punta Arenas near Tierra del Fuego).

Table 5. mtDNAs from urban Peruvian samplesbelonging to non-native mtDNA haplogroups.

Sampling

place

Region Geographic

position

Natural

region

Longitudine Latitudine Altitudine Cluster

DAPC

mtDNA

haplogroup

Origin

haplogroup

HVS-I and HVS-II

sequence variation

Lima Lima Central Urban

Area

-77. 014 -12. 001 149 m 04 L2b’c African 73G 146C 150T 152C

195C 198T 263G 16223T

16270T 16278T 16390A

Lima Lima Central Urban

Area

-77. 014 -12. 001 149 m 03 L2a1 African 73G 146C 152C 195C

199C 263G 16223T

16278T 16294T 16309G

16390A

Lima Lima Central Urban

Area

-77. 014 -12. 001 149 m 05 L1c2b African 73G 151T 152C 182T 186A

189C 195C 198T 16093C

16129A 16187T 16189C

16223T 16265C 16278T

16286G 16294T 16311C

16360T

Lima Lima Central Urban

Area

-77. 014 -12. 001 149 m 05 L2a1c2 African 73G 143A 146C 152C

195C 263G 16213A

16223T 16278T 16294T

16309G 16390A

Lima Lima Central Urban

Area

-77. 014 -12. 001 149 m 02 HV0 European 72C 263G 16082T 16097C

16298C

Lima Lima Central Urban

Area

-77. 014 -12. 001 149 m 05 L2a1 African 73G 146C 152C 195C

199C 263G 16223T

16278T 16294T 16309G

16390A

Lima Lima Central Urban

Area

-77. 014 -12. 001 149 m 02 W3a1 European 73G 189G 194T 199C

204C 207A 263G 16223T

16292T

Lima Lima Central Urban

Area

-77. 014 -12. 001 149 m 05 H European 263G

Chiclayo Lambayeque North Coast

(Costa)

-79. 482 -6. 4353 30 m 04 L2a African 73G 143A 146C 152C

195C 263G 16223T

16278T 16294T 16309G

16390A

Chiclayo Lambayeque North Coast

(Costa)

-79. 482 -6. 4353 30 m 04 M1a1i African 73G 195C 204C 16129A

16182C 16183C 16189C

16223T 16249C 16311C

16359C

Tumbes Tumbes North Coast

(Costa)

-80. 427 -3. 5564 26 m 05 L1c3c African 73G 93G 151T 152C 182T

186A 189C 195C 16129A

16187T 16189C 16223T

16278T 16293G 16294T

16311C 16360T

Arequipa Arequipa South Mountain

(Sierra)

-71. 537 -16. 409 2320 m 05 I5a2 European 73G 199C 250C 263G

16086C 16129A 16148T

16223T 16391A

Puno Puno South Mountain

(Sierra)

-70. 021 -15. 840 3819 m 05 M7c Asian 73G 143A 146C 263G

16223T

https://doi.org/10.1371/journal.pone.0200796.t005
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The same populations were grouped according to a geopolitical or ecoregional criterion and

for each grouping we performed AMOVA. Grouping described by 3D nmMDS showed greater

amount of variance among groups than geopolitical and ecoregional grouping (Table 6). More-

over, the Native mtDNA component of the Temuco sample seems to have a contribution from

Lake Titicaca group, as showed also by Fst values between Temuco and La Paz, Bolivian, sub

Andes and Lake Titicaca Peru (0.03468, 0.03608 and 0.03929, respectively).

Finally, to test possible associations between geography and genetics, the Fst matrix was

correlated with both altitudinal and geographical distance matrices among populations. This

test showed a light correlation index between altitude and genetics (r = 0.31285, p = 0.014 by

Mantel test), while no correlation between genetics and geographical distances (r = 0.102, not

significant) was found.

The three different grouping are as follows: Geopolitics (first group: urban Peru, North and

Central Andes Peru, Titicaca Peru, Amazon Natives Peru;second group: sub Andes Bolivia, La

Paz Bolivia, Llandos Bolivia; third group: Conception Chile,Iquique Chile, Punta Arenas

Chile, Santiago de Chile, Natives South Argentina Chile, Temuco Chile; fourth group: Amazon

Natives Brazil); Ecoregions (first group: urban Peru, North and Central Andes Peru,sub Andes

Bolivia, La Paz Bolivia, Titicaca Peru; second group: Llandos Bolivia, Amazon Natives Peru,

Amazon Natives Brazil; third group: Conception Chile, Iquique Chile, Punta Arenas Chile,

Santiago de Chile,Natives South Argentina Chile, (Temuco Chile); 3D nmMDS first group

(Andes Peru): urban Peru, North and Central Andes Peru;second group (Lake Titicaca): sub

Andes Bolivia, La PazBolivia, Titicaca Peru, Temuco Chile; third group (Amazon): Llandos

Bolivia, Amazon Natives Peru, Amazon Natives Brazil; fourth group (Chile): Conception

Chile, Iquique Chile, Punta Arenas Chile,Santiago de Chile,Natives South Argentina Chile).

Discussion

In this work, we tried to shed light on the transcontinental contributions to the gene pool of

admixed urban Peruvian populations, using recently developed multivariate methods for cluster-

ing analysis on STR loci commonly used in individual identification. Moreover, we also took

advantage of the geographic origin information provided by the maternally-transmitted mtDNA.

The slightly reduced heterozygosity (slightly positive not significant Fis values) showed by

urban Peruvians, may be due to a low level of endogamy in these populations. Inbreeding of

urban people in Peru was also confirmed [43] by positive Fis values based on different STR

loci of urban populations: Chiclayo, Lima, Piura and Huancayo showed Fis positive values

(0.012, 0.010, 0.007 and 0.015, respectively). Similar trends were described for the STR gene

pools of Peruvians and other admixed South American populations also in [6].

The clustering and multivariate methods applied on STR genotype database allowed to

highlight admixed origin of urban Peruvian populations, in which the African component was

evident on the most abundant Native background, especially in the Lima sample (Figs 2A and

S1). These findings are in contrast with the STR genotype dataset of admixed populations

from the rest of South America, in which a large European component and a considerable

Native American component, followed by a small and residual African contribution, seem to

Table 6. Percentage of molecular variance amount among groups, among populations within groups and within populations.

Grouping based on Variance among groups Fct Variance among populations within groups Fst Variance within populations Fsc

Geopolitics 5. 51 5. 56 88. 93

Ecoregion 7. 76 4. 11 88. 13

3D nmMDS 9. 45 2. 42 88. 13

https://doi.org/10.1371/journal.pone.0200796.t006
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constitute a genetic leitmotiv. Such a structure was commonly described in admixed urban

populations from Venezuela, Colombia, Brazil and US Hispanics [44, 45]. In urban admixed

populations from all over South America, commonly called "Mestizos", typing of autosomal

and X chromosome STR loci showed variable Native contribution, ranging from 70% in

Andean regions and Meso-America to 20% in Colombia and Central America, while European

ancestry resulted the highest external component (from 25% in Chilean Andean region to 70%

in Southern Brazilian people). African ancestry in the entire dataset is low (<10%) [46].

As regarding Peru, the genomic ancestry proportions based on autosomal STRs showed

30% of admixture with non-Native American populations [47], while proportions provided by

INDEL polymorphisms in Peruvians from Coast, Andes and Amazon were identified as 83%

Native American and 17% non-autochthonous, mainly from Europe [48]. These proportions

allowed us to consider the results obtained by DAPC reliable (Fig 4). In fact, very many urban

Peruvian individuals belonged to the Native cluster (33.3% - 72%), that is the cluster made up

of a high percentage of Native Amazon individuals (77.2% - 100%). The low number of indi-

viduals in African and European clusters (clusters 2 and 3, and cluster 1, respectively) was

strongly consistent with the history of other populations from this part of South America.

Moreover, in autosomal SNPs, mtDNA and Y chromosome of Bolivian admixed people, the

continental ancestry of Native Americans was the most abundant, followed by European and

African ones [49, 50].

The identification of STR alleles with geographic variation on global scale was the other

main point of this work. In the present study, the main contributor to individual clustering pro-

vided by DAPC was the TH01-7 allele (Fig 3B). High frequencies of this allele, similar to those

here observed, were already described in the Andean and coastal population from Peru (43% -

51%) and Native Amazon people from Ecuador (40%) [3, 43]. In Afro-Caribbean people and in

African ancestry Colombians this allele showed a 40% frequency [51–54], while in all other

South American populations (Brazil, Argentina and Chile) it ranged between 24% and 26%,

consistent with European-Native American admixture [55–59]. However, a strong diversity of

TH01 allele frequencies on geographic scale was already well known. As described in previous

works, the TH01-6 allele showed an increasing West-East cline in Europe, whereas the TH01-

9.3 allele displayed a marked latitudinal gradient with high frequencies in Northern Europe [4,

60]. This wide diversity of TH01 allele frequencies could be due to selection or demic events.

The second part of our study extends this discussion through the study of mtDNA back-

ground. mtDNA haplotypes belonging to non-Native haplogroups were concentrated only in

Lima and on the urban Coast region. In particular, in the here studied urban Peruvians, the

African maternal contribution (6%) was slightly more represented than the European maternal

contribution (3%) (S2 Fig and Table 5). Indeed, the African component was higher (6%) than

in Bolivian and Chilean populations (~1%) [61, 62], whereas the European component (3%) is

comparable with that reported in Bolivia (~1%), and less than that found in Chile (~11%),

which was strongly involved in a recent migration from Europe [62]. Furthermore, no mater-

nal Old World contributions were identified in Ecuadorians [14, 63].

These data fitted with STR cluster proportions: 13% and 9% of urban Peruvian samples

resulted to belong to African clusters 2 and 3, whereas only 1% belonged to the European clus-

ter. These data could suggest past slavery, which especially involved Lima and towns on the

Coast region and influenced heavily the population composition of this area: by XVIII century

more than a third of the Lima’s population included slaves, mainly Africans [64]. These results

demonstrate that it is possible to detect signs of admixture events in autosomal STR and

mtDNA gene pool on population scale [11, 18].

Finally, the Native mitochondrial component showed a strong similarity in urban Peruvian

and Andean populations, indicating Andean people as the most probable Native source
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population of urban Peruvians. This scenario is plausible, because, unlike Native Amazon pop-

ulations, Andeans maintained larger population sizes also after European colonization and

greater mobility [16]. The analysis of Native mtDNA gene pool revealed that the diversity of

the urban Peruvian sample is an integral part of South America mtDNA variability.

Conclusion

In this work, we tried to shed light on the presumed admixed origin of urban Peruvian popula-

tions through clustering and multivariate methods. In the STR genotype database strong signs

of continental ancestry were highlighted, also supported by mtDNA composition. Finally, this

work confirmed the important role of autosomal STRs and mtDNA for historical reconstruc-

tions, underlining the advantage of a combined use of the autosomal and uniparental markers

usually employed in forensic applications.

Supporting information

S1 Fig. STRUCTURE analysis at Ks 2 and 3 for urban and Native Amazon Peruvian, US

European and US African samples. The colors are as follows: dark grey for European, grey

for African and light grey for Native Amazon ancestry component. The presence of more than

one component in US European and US African samples was due to the multiethnic origin of

United States populations.

(TIF)

S2 Fig. Geographic distribution of haplotypes. Geographic distribution of haplotypes,

reported in Table 3, belonging to Non-Native mtDNA haplogroups. Color dots were associ-

ated with continental origin (red Africa; black Europe; yellow East Asia).

(TIF)

S3 Fig. 3D nmMDS of pairwise Fst matrix. 3DnmMDS on the first three axes based on the

matrix of pairwise Fst values of HVS-I mtDNA after grouping into 14 geographic samples.

Color shades from bright red to black refer to position on dimension 2. The references of all

samples were reported: UrbanPeru (this paper); NCAndePeru [48] (this paper); AmazonPeru

[15, 17]; LaPazBolivia [61]; LlandosBolivia [61]; SubAndeBolivia [61]; TiticacaPeru [16, 48];

AmazonBrazil [65]; TemucoChile [62]; SantiagoChile [62], PuntaArenas [62], IquiqueChile

[62], ConceptionChile [62], NativesSArgentinaChile [66, 67].

(TIF)

S1 Table. List of sampled individuals. List of sampled individuals with birthplace and geo-

graphic information, geographic coordinates, response after filtering with Familias 3 software,

STR DAPC cluster, mtDNA haplotypes and haplogroups.

(XLSX)

S2 Table. Table of relative allele frequencies at 16 STR loci. Relative allele frequencies at 16

STR loci Relative allele frequencies at 16 STR loci in the population samples and two pooled

samples (only Amazon and urban Peruvians).

(XLSX)

S3 Table. Pairwise Fixation Indices (Fst) in all STR loci. Pairwise Fixation Indices (Fst) in all

STR loci: a) using all single population samples. b) considering whole dataset as only 4 popula-

tions. All values were significant (p< 0.05). Above diagonal P-values; below diagonal pairwise

Fst value. In bold: not significant P values.

(XLSX)
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