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Obesity and overweight are a global health problem affecting almost one third of the world
population. There are multiple complications associated with obesity including metabolic
syndrome that commonly lead to development of type II diabetes and non-alcoholic fatty
liver disease. The development of metabolic syndrome and severe complications
associated with obesity is attributed to the chronic low-grade inflammation that occurs
in metabolic tissues such as the liver and the white adipose tissue. In recent years, nucleic
acids (mostly DNA), which accumulate systemically in obese individuals, were shown to
aberrantly activate innate immune responses and thus to contribute to metabolic tissue
inflammation. This minireview will focus on (i) the main sources and forms of nucleic acids
that accumulate during obesity, (ii) the sensing pathways required for their detection, and
(iii) the key cellular players involved in this process. Fully elucidating the role of nucleic acids
in the induction of inflammation induced by obesity would promote the identification of
new and long-awaited therapeutic approaches to limit obesity-mediated complications.

Keywords: nucleic acids, obesity, metabolic syndrome, metainflammation, inflammation, nucleic acid sensing, non-
alcoholic steatohepatitis
Abbreviations: WAT, White adipose tissue; NA, Nucleic Acids; NAFLD, Non-Alcoholic Fatty Liver Disease; NASH, Non-
Alcoholic Steatohepatitis; HFD, High Fat Diet; PRR, pathogen recognition receptors; PAMP, Pathogen-associated molecular
pattern; DAMP, Danger-associated molecular pattern; NETosis, cell death by Neutrophil Extracellular Traps; gDNA, Genomic
Desoxyribonucleic Acid; mtDNA, mitochondrial DNA; CfDNA, Cell-free DNA; MP, Microparticles; HMGB1, high–mobility
group box 1; RNA, Ribonucleic Acid; TLR, Toll-Like-Receptor; AIM2, absent in melanoma 2; cGAS, cyclic GMP–AMP
synthase; STING, stimulator of interferon genes; NLRP3, NLR family pyrin domain containing 3; TRIF, TIR-domain-
containing adapter-inducing interferon-b; MyD88, myeloid differentiation protein 88; NF-kB, nuclear factor-kappa B; IRFs,
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OBESITY-ASSOCIATED METABOLIC
SYNDROME: A GLOBAL EPIDEMIC WITH
AN INFLAMMATORY ORIGIN

Over the past 4 decades the prevalence of overweight and obese
individuals has continuously and substantially increased,
affecting almost one-third of the world population (1). The
main cause of obesity is an imbalance between consumed and
burned calories (2). Obesity is associated with the development
of metabolic syndrome, which is commonly defined by
hypertension, hyperglycemia, excess abdominal fat, and
abnormal lipidemia (1). Metabolic syndrome frequently has a
“domino effect” as it leads to the development of severe diseases
such as type II diabetes (T2D), non-alcoholic fatty liver
disease (NAFLD), atherosclerosis, and ischemic cardiovascular
disease (2). Therefore, obesity has far-reaching consequences for
life expectancy, quality of life and healthcare costs (3). Treatment
options for obesity are limited and include lifestyle changes that
generally do not induce marked and/or sustainable weight loss
and bariatric surgery, which effectively induces weight loss and
reduces comorbidities but increases perioperative mortality,
surgical complications and is associated with relapse (4).
Furthermore, specific therapeutic targeting of either interleukin
(IL-)1b (5) or tumor necrosis factor (TNF-)a (6) have
shown limited success. It is therefore essential to develop new
therapeutic avenues to ameliorate and prevent obesity-associated
complications (7).

The main tissue affected by obesity is the white adipose tissue
(WAT), which becomes hypertrophied and heavily infiltrated by
immune cells that adopt a pro-inflammatory profile in response to
endogenous signals (8). The resulting chronic low-grade
inflammation state, also called metabolic inflammation, or
“metaflammation”, plays a crucial role in the development of
obesity-associated metabolic syndrome and further complications
(8). In particular, macrophages (Mj) that originate mostly from
circulatory monocytes and to lesser extent from tissue resident
Mj, accumulate in the adipose tissue of obese individuals (9) and
adopt an M1 pro-inflammatory phenotype (8). This switch from
anti-inflammatory M2 Mj, that are dominant in the adipose
tissue of lean individuals, to M1 Mj during obesity promotes the
production of pro-inflammatory cytokines (e.g.,TNF-a and IL-1b)
that can directly inhibit insulin signaling and lead to
cardiovascular and metabolic complications related to obesity
(8). However, targeting these cytokines has shown marginal
clinical benefits for obese patients (5, 6). Furthermore, recent
single-cell RNA sequencing studies have revealed a higher
complexity beyond the classic M1/M2 distinction of Mj in the
WAT of obese individuals and mice (10). Therefore, the cellular
and molecular mechanisms that are responsible for obesity-
triggered metaflammation are not yet fully understood.

The activation of inflammatory pathways is mediated by
pathogen recognition receptors (PRRs) upon sensing of
exogenous pathogen associated molecular patterns (PAMPs)
and endogenous damage associated molecular patterns
(DAMPs). Excess nutrient intake causes an accumulation of
DAMPs such as free fatty acids and cholesterol crystals but
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also of PAMPs such as lipopolysaccharides (LPS) originating
from the intestinal microbiota in response to obesity-promoted
intestinal permeability (11). These DAMPs and PAMPs were
shown to contribute to obesity-mediated metaflammation by
activating multiple PRRs including Toll-like receptors (TLR)2
and TLR4 and the NLR family pyrin domain containing 3
(NLRP3) inflammasome (12). It is becoming clear that obesity
also induces the accumulation of nucleic acids (NA), which
function similarly to DAMPs and thus activate innate immune
responses (13). The source and the form of these NA are diverse
and their recognition by NA sensing PRRs expressed by dendritic
cells (DCs) or MF seems to be a key initiating event in the
pathogenesis of obesity (14–16). Here, we will focus on (i) the
main sources and forms of these NA, (ii) the sensing pathways
involved in their detection, and (iii) the key cellular players
involved in this process.
SOURCES AND FORMS OF NUCLEIC
ACIDS THAT ACCUMULATE
DURING OBESITY

Multiple recent studies have reported that obese individuals or
mice exposed to a high-fat diet (HFD) show elevated levels of
circulatory cell-free DNA (cfDNa) (14, 15). Sources of cfDNA
vary among obese patients and mouse models of obesity
(Figure 1). Murine hepatocytes from livers affected by
NAFLD were shown to acquire the potential to release
mitochondrial DNA (mtDNA) in microparticles (MPs) (15).
This MP-associated mtDNA was significantly increased in the
plasma of obese patients, particularly in those who had active
NAFLD (15). Obesity was also reported to induce neutrophils
and MF to release extracellular traps (ET), which are composed
of NA and antimicrobial peptides (16). Such ET were more
abundant in the WAT of obese mice compared to lean mice and
showed potent inflammatory properties in vitro (16).
Importantly, bone marrow-derived myeloid cells from obese
mice fed HFD were more susceptible to extrude ET containing
DNA upon in vitro stimulation, indicating that obesity may
systemically boost the potential of myeloid cells to release ET
(16). Finally, oxidative stress, hypoxia, inflammation and
aberrant adipogenesis that occur during obesity lead to
heightened cell death of adipocytes that release both their
genomic (g)-DNA and mtDNA, and thus contribute to the
systemic accumulation of cfDNA (17). Accordingly, Nishimoto
et al. observed in vitro that epididymal fat from mice fed HFD
constitutively released more cfDNA than the fat from animals
on normal diet (14). Furthermore, explant of WAT from obese
individuals released elevated levels of self-DNA in culture
supernatants (18). The DNA released by WAT explants was
associated with high mobility group box 1 (HMGB1), a nuclear
protein that was previously shown to be an endogenous DAMP
and increases the inflammatory potential of self-DNA (19).
Importantly, systemic levels of these cfDNA and HMGB1
positively correlated with the severity of metabolic syndrome
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induced by obesity including the extent of visceral fat tissue,
insulin resistance, and liver injury (14, 15, 20, 21).

In addition to their elevated quantity, the quality of cfDNA is
also affected by obesity. Obesity-mediated inflammation induces
an accrual of reactive oxygen species (ROS) that cause DNA
oxidation (DNA-OH) (22). Guanosines are the targets of ROS-
mediated oxidation and the 8 hydroxydeoxyguanine (8-OHdG)
represent the main DNA oxidation marker. Garcia-Martinez
et al. showed that the vast majority of mtDNA contained in the
circulatory MPs of obese individuals affected by NAFLD contain
8-OHdG reflecting its oxidized nature (15). Such oxidized forms
of mtDNA from obese individuals exhibit an elevated potential
to stimulate DNA sensing PRR (15) as previously reported in
autoimmune contexts (23, 24), likely due to its protection form
the degradation by nucleases (25).

Obesity not only modulates systemic levels of self-DNA, but
also causes bacterial DNA leakage from the gastrointestinal tract.
Frontiers in Immunology | www.frontiersin.org 3
HFD was shown to modulate intestinal permeability and to
contribute via the portal circulation to the transport of
bacterial DNA to the liver where it ultimately activates
inflammatory responses and promotes NAFLD development
(26). However, the impact of bacterial DNA to NAFLD
pathogenesis was only observed in inflammasome-deficient
animals, which present a major intestinal dysbiosis (26). Thus,
these observations may explain the susceptibility of certain
individuals to obesity-mediated pathogenesis rather than
represent a general mechanism of action of obesity.

Overall, obesity appears to induce the accumulation of NA
originating from various sources and such NA participate in
obesity-mediated pathogenesis (Figure 1). Not only obesity
increases the quantity of NA, but it also affects their overall
quality. Various forms of cfDNA with an enhanced
immunogenic potential are preferentially detected in obese
individuals, including MPs associated-DNA, ET associated-
FIGURE 1 | Central role of self-nucleic acids in obesity-mediated metaflammation. Obesity induces an accumulation of different sources and forms of self-nucleic
acids (NA). Genomic-, mitochondrial, oxidized-DNA (OH-DNA) and potentially RNA can be released in aberrant amounts during obesity by dying adipocytes, NASH
hepatocytes, or NETosis. Self-NA can activate cytosolic or endolysosomal pathogen recognition receptors in macrophages or dendritic cells such as Toll-Like-
Receptor 3/7/9, cGAS-STING pathway, AIM2 and NLRP3 inflammasomes. Their activation induces in situ production of i) proinflammatory cytokines (IL6, TNF-a…)
through the activation of NF-ΚB, ii) type I interferon through the transcription factors IRF3/7, and iii) IL1-b, through the caspase 1 activation, all of which contribute
directly to obesity mediated-metaflammation. Figure was created with biorender.com.
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DNA, HMGB1 bound-DNA and oxidized-DNA. While different
sources and forms of DNA were reported to accumulate during
obesity, their individual contribution to complications induced
by obesity remain unknown. Besides, whether self-RNA
accumulate in obese patients and in which forms, require
further investigation.

Multiple safeguard mechanisms are involved in the disposal
of dying cells and their NA, preventing NA ability to activate
inflammatory immune responses. These protective mechanisms
include the clearance of apoptotic cells by phagocytes
(efferocytosis) (27) and the digestion of extracellular DNA by
circulatory deoxyribonucleases (DNASEs) (28). It is becoming
clear that obesity impairs phagocytes ability to clear apoptotic
cells by affecting lipid composition of cell membranes and their
expression of scavenger receptors (29, 30). Furthermore, HFD in
mice was reported to reduce the overall circulatory DNASE
activity (16). However, treatment of obese mice with
recombinant DNASE1 did not affect the development of
metabolic syndrome (16). This absence of therapeutic potential
of DNASE1 may be due to soluble mediators present in obese
mice that block DNASE1 function and/or to its inability to clear
all sources of pathogenic DNA that accumulate during obesity.
Indeed, DNASE1 is only capable of digesting “naked” DNA in
the extracellular space, so exploring the role of other circulatory
DNASES in the regulation of obesity-mediated pathogenesis is
essential. It will be particularly relevant to address the function of
DNASE1L3 in this context, since it is specifically expressed in
immune cells infiltrating metabolic tissues and digest both
MP-associated DNA (31, 32) and neutrophil ET-associated
DNA (33), the two main forms of DNA that accumulate
during obesity. Overall, in addition to an accrual endogenous
DNA release, obesity also impair safeguard mechanisms
that are involved in their disposal, and these processes
together participate in the accumulation of self-DNA in
obese individuals.
NUCLEIC ACID SENSING PATHWAYS
INVOLVED IN OBESITY-MEDIATED
METAFLAMMATION

The sensing of NA is operated by two major classes of PRRs,
including endolysosomal and cytosolic NA sensors (Figure 1),
which in response to stimulation trigger the production of
inflammatory cytokines such as type I interferons (IFN-I),
IL-1b, and TNF-a, playing a crucial role in obesity-mediated
metaflammation (13).

TLRs comprise all-known NA sensing endolysosomal PRR.
Among them, TLR9 is specialized in the recognition of DNA,
and its deficiency was recently reported to protect from the
development of metabolic syndrome induced by HFD. Indeed,
Tlr9-deficient mice displayed a reduction in WAT and liver
inflammation and improved insulin sensitivity compared to
wild-type mice upon HFD (14, 16). Injection of the TLR9
ligand CpG DNA (ODN2395) in mice increased fasting
glucose levels and immune cell infiltration in WAT and liver,
Frontiers in Immunology | www.frontiersin.org 4
indicating that even in the absence of obesity TLR9 activation
leads to metabolic deregulations (16). Conversely, administration
of TLR9 antagonist (iODN2088) to HFD-fed mice attenuated
metabolic tissue inflammation, improved glucose metabolism
(14), and ameliorated manifestation of liver steatosis (15),
confirming the crucial role of TLR9 in obesity-mediated
pathogenesis. This aberrant activation of TLR9 during obesity
was shown to be mediated by the recognition of self-DNA
released by dying adipocytes, MPs loaded with mtDNA as well
as ET (14–16, 18). TLR3 and TLR7 are also endolysosomal PRRs,
but they are involved in the recognition of ds and ssRNA,
respectively. The contribution of TLR3 and TLR7 to obesity-
mediated pathogenesis was established when their deficiencies
were shown to restore glucose tolerance, decrease metabolic
inflammation and ameliorate NAFLD in HFD fed animals (16,
34, 35). TLR8, which is also a sensor of ssRNA, showed an
increased expression in MF infiltrating the WAT of obese
patients with or without T2D, and TLR8 expression
significantly correlated with disease severity and metabolic
tissue inflammation (36). Although TLR8 is unresponsive to
ssRNA in mice, its deficiency induced mild metabolic
abnormalities and increased the liver inflammation in HFD fed
mice (37). This observation was mainly due to increased TLR7
expression in TLR8 knock-out mice (37). The net contribution of
TLR8 in obesity thus requires further investigation particularly
in transgenic mice expressing human TLR8 (38). While RNA-
sensing TLRs seem to play a role in obesity, the origins of the
pathogenic RNA, its form and its regulation during obesity
remain unknown. Most TLRs signal through the adaptor
molecule myeloid differentiation primary response (MyD)-88
with the exception of TLR3, which transduces signaling via TIR-
domain-containing adapter-inducing interferon-b (TRIF).
MyD88 activation leads to the production of inflammatory
cytokines through the activation of nuclear factor kappa-B
(NF-ΚB) which was shown to play a critical role in obesity-
mediated inflammation (12). Alternatively, endolysosomal TLR3
signaling activates the transcription factor interferon regulatory
factor (IRF)-3 via TRIF and TLR7-9 activate IRF7 via MyD88
(Figure 1). Both IRF3 and IRF7 are involved in the induction of
IFN-I production (39), which has also been reported to play an
important role in obesity-mediated metabolic syndromes.
Specific deletion of Irf7 (40) or IFN-I receptor (Ifnar)
improved obesity-mediated inflammation and insulin
resistance (41). In contrast, the role of IRF3 in obesity is more
controversial. Irf3 deficiency was shown to alleviate adipose
tissue inflammation and insulin resistance in HFD-fed mice
(42), yet it also exacerbated the development of NAFLD
induced by HFD (43). Therefore, IRF3-mediated IFN-I
production may have tissue-specific functions and play a
protective role in liver pathology induced by obesity.

Cytosolic NA sensing PRRs include Rig-I like receptors
(RLR) that are specialized in the sensing of RNA, the DNA-
sensor cyclic GMP-AMP Synthase (cGAS), and the absent
in melanoma (AIM)-2 inflammasome that specifically detects
dsDNA. While RLR function in obesity-mediated inflammation
is poorly studied, a role for cytosolic DNA sensing pathways is
January 2021 | Volume 11 | Article 624256
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being defined (44). The DNA sensor cGAS signals through
stimulator of IFN genes (STING) to induce the production of
IFN-I in an IRF3-dependent manner and the production of
inflammatory cytokines through NF-ΚB (45) (Figure 1). STING
expression was reported to be upregulated in the livers of NASH
patients compared to healthy controls (46). Furthermore, liver
inflammation and steatosis was significantly improved in mice
deficient for Tmem173 (gene encoding STING) that were fed a
HFD (46, 47). Despite the effect on liver pathology, Tmem173
deficiency did not show any impact on glucose metabolism in
obese mice (47). The activation of cGAS-STING pathway upon
HFD was shown to be mediated by mtDNA released by
hepatocytes, which via NF-ΚB leads to preferential production
of TNF-a and IL-6 (47). IFN-I was not detected in the liver of
HFD mice or in supernatants of liver MF (Kupffer cells)
stimulated with mtDNA isolated from hepatocytes (46, 47),
suggesting that the cGAS pathway contributes to NASH
independently of IFN-I. These observations are in accordance
with the previously discussed literature indicating that IRF3
may protect against NASH development induced by obesity
(43). More recently, obesity induced either by HFD or
genetically by the deficiency of the leptin receptor (db/db
mice) was shown to promote the accumulation of mtDNA
and the activation of the cGAS pathway in adipocytes (48).
The accumulation of mtDNA into the cytosol of adipocytes was
suggested to be due to the inhibition of the disulfide-bond A
oxidoreductase-like protein (DsbA-L), which is a mitochondrial
matrix chaperone. Accordingly, fat-specific deficiency of DsbA-
L aggravated the weight gain and glucose intolerance of HFD-
fed mice while WAT-specific overexpression of DsbA-L
protected mice from obesity-induced inflammation and
insulin resistance (48). These results suggest that beyond
NASH cGAS may contribute to obesity-induced metabolic
syndromes. However, it remains to be explored whether the
impact of DsbA-L deficiency is dependent on the cGAS-STING
pathway in vivo.

Finally, various members of the inflammasome play a crucial
role in obesity-mediated pathogenesis (11). Among
inflammasomes, DNA is primarily detected by the AIM-2
inflammasome. AIM-2 triggers caspase-1 activation which is
essential for the cleavage of pro-IL-1b and pro-IL-18 into their
mature and biologically active forms. Recently circulatory
mtDNA isolated from patients with T2D was reported to
contribute to AIM-2 inflammasome-dependent caspase-1
activation and IL-1b and IL-18 secretion by MF (49) (Figure
1). However, the in vivo role of AIM-2 in obesity remains
controversial. Gong et al. have observed spontaneous obesity,
impaired glucose metabolism, and increased WAT inflammation
in Aim-2 deficient mice (50). These results are not only
intriguing but also consistent with the observation that the
inflammasome has a dual role in obesity, contributing to
obesity-mediated inflammation via IL-1b (51) and preventing
its negative impact by the production of IL-18 (52). Finally, the
NLRP3 inflammasome was previously reported to promote
obesity-mediated pathogenesis upon its activation by
intracellular ceramide (53). Interestingly, oxidized mtDNA (54)
Frontiers in Immunology | www.frontiersin.org 5
and oxidized DNA originating from NETs (55) were also shown
to activate the NLRP3 inflammasome (Figure 1). Therefore, such
DNA that accumulates during obesity is likely to contribute to
obesity-mediated pathogenesis though the activation of NLRP3
as well.
CELLULAR PLAYERS INVOLVED IN
NUCLEIC ACID DETECTION DURING
METAFLAMMATION

Innate immune cells, in particular DC and MF, play a crucial
role in the recognition of NA and the ensuing production of
inflammatory cytokines. While innate immune cells have been
shown to participate in obesity-associated inflammation, the
contribution of their ability to recognize NA to this process in
only beginning to be understood.

It was recently proposed that NA originating from ETs, which
accumulate in obese mice, directly activate the production of
proinflammatory cytokines by MF via TLR-7 and TLR-9 (16).
Targeted deletion of Tlr9 in MF using LysM-Cre protected mice
from the development of NAFLD induced by HFD (15).
Furthermore, the transfer of STING-deficient bone marrow
cells ameliorated HFD induced NAFLD in bone marrow
chimeras. In view of these results the authors suggested that
the activation of the cGAS-STING pathway in Kupffer cells was
crucial for NAFLD pathogenesis (46). However, Kupffer cells are
radioresistant and the contribution of bone marrow cells for their
replenishment is low (56), therefore it is more likely that cGAS-
STING pathway is required in another cell type of hematopoietic
origin for the development of NAFLD.

DC contribution to obesity-mediated pathogenesis was
previously documented (57); however, specific deletion of
NA sensing pathway in DCs during obesity has not yet been
investigated. TLR9 is broadly expressed among immune cells
in mice, but only in plasmacytoid dendritic cells (pDCs) and B
cells in humans (18). Importantly, pDCs are a subset of DCs
that are specialized in the production of IFN-I upon sensing of
microbial and self-NA (58). pDCs were recently shown to be
recruited to the WAT of obese mice and individuals (18, 57, 59)
and their infiltration into the WAT correlated with obesity-
associated insulin resistance (59). Importantly, DNA-
complexed with HMGB1 released by human adipocytes
stimulated pDC production of IFN-I in a TLR9-dependent
manner (59). Moreover, specific ablation of pDCs ameliorated
obesity-associated metabolic syndrome and insulin
resistance in vivo (41). However, whether pDC-specific
expression of TLR9 and production of IFN-I are directly
involved in obesity-mediated metabolic syndromes in vivo
require further investigation.

Despite the systemic accumulation of cfDNA in obese
individuals, its ability to activate inflammatory responses in
circulatory leukocytes remains poorly documented. It appears that
cfDNA primarily activates innate immune cells within metabolic
tissues (18, 46). Inflammatory cytokines produced in response to
such stimulation are then redistributed systematically upon their
January 2021 | Volume 11 | Article 624256
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release in the circulation. Given the potential of inflammatory
cytokines to activate circulatory leukocytes and to further fuel
systemic inflammation, it is quite difficult to distinguish the
stimulatory impact on circulatory leukocytes of inflammatory
cytokines from the one of cfDNA. Nevertheless, in vitro
stimulation of a monocytic cell line with healthy individuals’
plasma was recently shown modulate their innate immune
functions, mostly through cfDNA (60). Given that such cfDNA
accumulate during obesity, its ability to directly stimulate circulatory
leucocytes and ultimately contribute to obesity-mediated
metaflammation requires further investigation.

The cGAS-STING pathway is ubiquitously expressed. It was
recently reported that obesity induces the accumulation of
mtDNA directly in adipocytes, which ultimately activates the
cGAS-STING pathway. In response to such stimulation, these
adipocytes produce inflammatory cytokines including IFN-I,
contributing to the overall metaflammation induced by obesity
(48). These observations indicate that obesity-mediated
metaflammation is driven by not only immune cells but
also adipocytes.

IFN-I that is produced in response to self-DNA sensing, induces
the expression of a plethora of IFN-stimulated genes (ISGs) whose
expression was reported to be associated with adipose tissue and
systemic insulin resistance in obese patients (18). This pathogenic
role of IFN-I in obesity is likely due to its ability to (i) polarize
adipose tissue MF toward a proinflammatory M1 phenotype (18),
(ii) activate innate and adaptive immune responses (61, 62) and
(iii) to amplify adipocytes’ cell-intrinsic inflammatory capacity
(63). Apart from the indirect impact on inflammatory processes,
IFN-I was also shown to directly interfere with insulin signaling in
metabolically active tissues, particularly in adipocytes (64) and
hepatocytes (65). Therefore IFN-I induced in response to the
aberrant sensing of self-NA by immune and non-immune cells
clearly contributes to obesity-mediated pathogenesis.
FUTURE DIRECTIONS AND
THERAPEUTIC AVENUES

In addition to their contribution to inflammatory and
in autoimmune diseases (13), it is now clear that NA
Frontiers in Immunology | www.frontiersin.org 6
accumulation and its sensing by various PRRs contribute to
the development of metabolic syndrome induced by obesity (as
summarized in Figure 1). The identification of these novel
pathways has opened new therapeutic options. Indeed,
Hydoxychloroquine, which blocks endosomal acidification and
thus endolysosomal TLR function (66), may have beneficial
effects on insulin resistance in obese non-diabetic individuals
(67) and prevent the onset of diabetes in patients with
autoimmune diseases (rheumatoid arthritis, SLE, psoriasis…)
(68, 69). Furthermore, specific antagonists of TLR7,9 and
STING, which are in early-phase trials for SLE (70) and
various interferonopathies (71), respectively, also show promise
for obesity treatment given their therapeutic potency in mouse
models of the disease. Similarly, monoclonal antibodies targeting
IFN-a (sifalimumab) (72) or IFNAR1 (anifrolumab) (73) and
specific ablation of pDCs, which are the main IFN-I producing
cells (74), may also have therapeutic value in obese individuals in
addition to SLE patients in view of the importance of the pDC-
IFN-I axis in obesity. Despite these advances, the specific
mechanisms through which HFD and obesity modulate the
abundance of nucleic acids remain poorly understood.
Understanding these mechanisms will provide a better
understanding of the initiation and progression of obesity
pathogenesis as well as novel potential therapeutic approaches.
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