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Abstract: As an important task in computer vision, head pose estimation has been widely applied
in both academia and industry. However, there remains two challenges in the field of head pose
estimation: (1) even given the same task (e.g., tiredness detection), the existing algorithms usually
consider the estimation of the three angles (i.e., roll, yaw, and pitch) as separate facets, which disregard
their interplay as well as differences and thus share the same parameters for all layers; and (2) the
discontinuity in angle estimation definitely reduces the accuracy. To solve these two problems, a
THESL-Net (tiered head pose estimation with self-adjust loss network) model is proposed in this
study. Specifically, first, an idea of stepped estimation using distinct network layers is proposed,
gaining a greater freedom during angle estimation. Furthermore, the reasons for the discontinuity in
angle estimation are revealed, including not only labeling the dataset with quaternions or Euler angles,
but also the loss function that simply adds the classification and regression losses. Subsequently, a self-
adjustment constraint on the loss function is applied, making the angle estimation more consistent.
Finally, to examine the influence of different angle ranges on the proposed model, experiments are
conducted on three popular public benchmark datasets, BIWI, AFLW2000, and UPNA, demonstrating
that the proposed model outperforms the state-of-the-art approaches.

Keywords: head pose estimation; angle estimation discontinuity; tiered estimation; loss limitation

1. Introduction

As an important task in computer vision, head pose estimation has been applied in a
wide range of applications, such as tiredness detection and autonomous driving. The pri-
mary approaches mainly rely on either landmark detection [1–5] or depth information [6–9].
For example, when building fine 3D face models, the landmark detection approach usu-
ally attains 3D and 2D mapping and matching. When depth information is used, the
detection approach usually makes up for the missing spatial information in 2D images.
The corresponding approaches reveal good robustness despite small-area occlusion, but
perform badly when the masking area is extended or there is a large deflection of facial an-
gles [6,10–12]. It has also been revealed that by introducing convolutional neural networks
(CNNs) into head pose estimation tasks, performance degradation can be enhanced due
to missing facial key points [10–18]. Among the corresponding approaches, the difficulty
is generally addressed by direct regression [16–18]. Inspired by the idea of soft stagewise
regression in age estimation tasks [19], CNN is applied in head pose estimation tasks with
leapfrogging findings [10–15].

Furthermore, capsule networks [20] are also employed in head pose estimation tasks,
which have commonalities with CNN-based works. Among these studies, a balance be-
tween the yaw, pitch, and roll is preserved by linearly combining the features extracted from
the network, estimating all the three angles simultaneously [6,10–15]. The effectiveness
of these approaches has been confirmed on numerous public benchmark datasets [21–24].
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Since the parameters of each layer are shared in the three-angle estimation process, al-
though the computational cost is reduced, it leads to the problem of tuning interference
between the layers [25–29]. Additionally, recent studies have demonstrated that the use of
quaternion or Euler angles (taken as 3D rotational representation labels of datasets) has
several shortcomings, leading to discontinuity problems in angle estimation [11,30–32].
Meanwhile, the inconsistency in the training and testing loss function is also a cause of
discontinuity [11]. To summarize, the reasons for the discontinuity in angle estimation are
revealed in Figure 1. Notably, as one of the main causes of the angle estimation disconti-
nuity problem, Euler angles and quaternion labeling are adequately tackled using vector
matrices [11,12]. However, neither the tuning interference difficulties between the three
angles nor the conflict between loss functions is solved.
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Figure 1. Example of frequent models and loss functions for training and testing on the 300W-LP
dataset (AP is the average pooling operation, and FC is a fully connected layer; α equals 1 or 2).

For clarification, the two difficulties mentioned above are illustrated. Figure 1 reveals
the estimation for a single image from the 300W-LP dataset. The yaw with less expected
loss may become worse when the model’s parameters are adjusted using the loss feedback
from other angles. When the head pose’s true angles are [6.1◦, −3.2◦, −15◦] and the
expected angles are [5.9◦, −1.9◦, −9.9◦], the traditional loss inaccurately reverses the true
loss relationship between yaw and pitch, leading to an imbalance of losses on both sides of
the classification line. The intermittent nature of the losses and the erroneous inversions
make the model tedious to learn; consequently, this problem is discussed and solved further
in Section 3 without using the rotation matrix or soft stagewise regression.

In other ways, it has been reported that an imbalance in the dataset’s distribution can
damage the model’s performance [33–39]. To eliminate the imbalance, the oversampling
mentioned in [33] is employed, the effect of angle distribution is examined on the BIWI
dataset, and then it is compared with datasets that have different angular ranges [24].

Apart from these challenges, some exciting findings have been reached in the studies
related to neural networks. Among them, multi-scale feature fusion, as a combination
of feature pyramid network [40,41] and feature weight assignment based on attention
mechanism [42], has a positive effect on almost all computer vision (CV) tasks [43–45].
Additionally, some studies have attempted to enhance the performance of the optimizer [46]
and activation function [47], with positive findings. Based on the above studies, a series of
advancements are made in this study, aiming to minimize the estimation loss of head pose
estimation. In summary, the primary contributions of our study are as follows:

(1) An idea of tiered estimation by combining multi-output task and multi-scale estima-
tion fusion is proposed, which can not only provide greater freedom of adjustment for
the three head attitude angles, but also efficiently minimize the interaction between
tuning angles and further lower the estimation loss of each angle.

(2) To remove the inconsistency in loss function, which is the main cause of angle esti-
mation discontinuity problems, an easy-to-use dynamic self-adjusting loss function
is developed.
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(3) To examine the influence of the range of angle distributions on the proposed model,
a test is conducted on three public benchmark datasets, demonstrating that our
approach maintains remarkable performance for various angle ranges.

The rest of the paper is organized as follows. The existing work on head pose estima-
tion is presented in Section 2. The tiered estimation module and loss limitation method
are described in Section 3. The experimental findings on various datasets are depicted in
Section 4. Finally, a summary is given in Section 5.

2. Related Work
2.1. Estimation with Key Points

By matching key facial points, which are recognized from images with 3D face land-
marks, the head pose can be computed by the landmark-based approaches. For instance,
in [5], every landmark was considered as a separate part, and a tree-structured model
was employed to capture the global elastic deformation of the face. In addition, the direct
predictive estimation of face landmark positions using an ensemble of regression trees
was suggested in [1], which can optimize the sum of squared error loss. In parallel to this
machine learning approach, in [3,4], a 3D face model combined with specially developed
algorithms was employed, in which depth information was captured by the camera for the
head pose estimation task.

Some deep learning-based approaches have also generated findings. For example,
in [7], a CNN-based model was developed, in which the classification and regression were
integrated to evaluate approximate regression confidence. Their results demonstrated
that the training of the CNN can achieve near saturation with both 2D and 3D facial
landmark-labeled datasets. In addition, in [3], a residual network was integrated with
landmark localization structures. In [18], a Face-pose-Net network was built, showing how
a simple CNN can be precisely trained and robustly regressed to head pose directly from a
single image. In [4], to tackle the face alignment issue, an iterative approach for learning
an effective Heatmap-CNN regressor was introduced for unrestrained face crucial points
estimation and pose estimation.

Although a great deal of work exists in this area to enhance the accuracy of landmark
detection, the reliance on landmark detection hinders its performance in the cases of a
significant area occlusion and substantial angle deflection.

2.2. Estimation without Key Points

With the remarkable performance of deep learning approaches in different tasks in the
CV field, head pose estimation models independent of landmarks are developed. In [14],
a CNN paired with adaptive gradient algorithms was employed to achieve estimation
under field datasets without depending on important points, but the estimation precision
is unideal. Thereafter, a novel milestone of landmark-free head pose estimation was
achieved in [15], which employed the fundamental Resnet-50 structure [20] and classified
the head pose into an interval by 3◦. In [10], the concept of soft stagewise regression
was presented, and a fine-grained structural mapping of spatial features was employed
to discover the spatial relationship between features. Shortly thereafter, in [3], a feature
decoupling module was added into the CNN, which can explicitly learn the discriminative
features of each bit pose by adaptively calibrating the channel response and bounding the
variable subspace distribution.

In addition, by means of the angular annotation of the dataset, it is demonstrated that
the labeling of quaternion or Euler angles can lead to discontinuities in angle estimation [31].
In order to solve the non-stationary problem (that is caused by labeling datasets using
Euler angles), on the one hand, L2 loss was integrated with regression loss based on
quaternion [16]; on the other hand, a rotation matrix was applied. For instance, in [30], the
Frobenius norm’s solution was computed by replacing the singular value decomposition
with fundamental algebraic operations. In [48], a two-dimensional Lorentz distribution
and angular weight assignment were applied to solve the problems caused by uneven label
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distribution. In [49], an anisotropic angular distribution learning (AADL) network was
proposed, in which Kullback–Leibler scatter was chosen to measure the predicted labels
and the ground truth labels. In [12], the matrix Fisher distribution was presented, using the
rotation matrix to model the head rotation uncertainty. In the latest study [11], the head
pose was represented as three vectors and the model performance was evaluated using the
mean absolute error of vectors (MAEV).

In summary, in the above methods, the features related to head pose were generally
learned autonomously through neural networks, which did not require additional key point
information and can return the head pose directly from the image perspective. Although the
addition of the rotation matrix can efficiently eliminate the angle estimation discontinuity,
the loss function or even the model itself needs to be further redesigned and improved.

2.3. Multitask and Feature Pyramid

Previously, several estimation tasks were conducted simultaneously using multi-
task estimation approaches under one CNN model. For example, in [28], CNNs with
residual blocks and lateral skip connections were employed to simultaneously perform
landmark-based face alignment and head pose estimation. Similarly, a cascaded structure
was employed in [27] for face alignment and face detection tasks, which improved the
performance significantly due to the fact that the correlation within tasks can contribute to
facilitating the complementary information of each other. Similarly, this inter-task synergy
was also specifically explained by [28]. In [25], model construction and selection related to
multitask convolution were explained in detail. In 2021, a fine-feature encoder and three
decoders were employed to achieve estimations for three different tasks [29].

At the same time, the idea of multi-scale prediction emerged in target detection. For
example, the idea of feature pyramids was proposed in [40] to efficiently capture small-scale
information that is usually neglected in deep layers. A global-and-local transformation was
used in [44], aiming to solve the reconfiguration problem and reuse of feature hierarchies
in the process of constructing feature pyramids. Recently, top-down and bottom-up feature
connections were proposed in [41], integrating features at various scales. Furthermore, an
adaptive spatial feature-fusion structure was proposed in [43], which can spatially filter
conflicting information to delete inconsistency.

To the best of our knowledge, the estimation of three head pose angles has been
considered as three branches belonging to the same task and sharing the same layers.
However, this increases the burden of model tuning for each angle. Inspired by the
multitasking output, in this study, the three angles of the head pose are considered as
three different tasks, which are assigned to the three network layers and the corresponding
feature scales are enriched using a feature pyramid.

3. Method

In this section, first, the basic process of head pose estimation is outlined, and then the
proposed THESL-Net model is described in detail. Second, a concept of tiered estimation is
proposed and the modified loss function is given.

3.1. Problem Formulation

Generally, the head pose estimation can be summarized by the following steps. Given
a set of face images X = {xn | n = 1, . . . , N} and the pose vector yn for each image xn,
where N represents the image number, the elements of yn comprise the angles of yaw, pitch,
and roll, denoted as φ, θ, and ψ, respectively. The aim is to discover a mapping function F
by minimizing the mean absolute error (MAE) with respect to the estimation ŷ = F(x) and
ground truth y:

F(X) =
1
N ∑N

i=1

∣∣∣∣φ̂i − φi
∣∣+ ∣∣θ̂i − θi

∣∣+ ∣∣ψ̂i − ψi
∣∣∣∣ (1)

where φ̂i, θ̂i, and ψ̂i represent the estimations of ŷi after the target of evaluation is split into
three different angles.
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3.2. Overview of THESL-Net

The framework of the proposed THESL-Net model is shown in Figure 2. The proposed
model comprises one backbone and one tiered estimation module. In particular, the
proposed THESL-Net model is an end-to-end model, and the backbone is Resnet-50 with
a feature pyramid structure. Ideally, the loss predicted by the proposed model should
have a similar growth trend as that of the real loss; thus, a limiting factor β is added to the
cross-entropy loss used in this study.
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Figure 2. Structure and details of the proposed THESL-Net model, where EA represents external
attention and dwi | i = 1, 2, 3 represents different downscaling layers.

After the fixed-size images go through the model, a feature mapping is obtained at
each stage of the backbone network, and the features extracted from neighboring stages are
fused using down-sampling and maximum pooling to maintain c× w× h constant. The
final fused features are input into the tiered estimation module, and three head branches
with varied parameters are generated by minimizing the channel number. The traditional
regression and classification loss are employed to compute the total estimation loss in the
training process, where each head branch is spread out by a linear layer. Furthermore,
external attention is used to perform feature selection [37], which better differentiates the
three angles.

Details on feature fusion, tiered estimation, and limitations on the loss function will
be depicted in the following subsections.

3.3. Tiered Estimation

Three linear layers, each of which is responsible for predicting a single vector, are
commonly employed in head pose estimation. The three linear layers share the same
convolutional layer parameters, as shown in Equation (2):[

φ̂, θ̂, ψ̂
]
= [K1Γ + b1, K2Γ + b2, K3Γ + b3] (2)

where K denotes the various weights, Γ denotes the feature obtained by the convolu-
tion layer, and b represents the bias factor. Suppose the estimation loss of an image is
L(ŷ, y) = [0, 5, 10]. Since the network layer is shared in gradient backpropagation, the esti-
mation loss after tuning can be denoted as L(ŷ, y) = [2, 3, 5]. Although the total predicted
loss is lowered, it is not the best model for yaw.

Inspired by the idea of feature pyramid network, a tiered structure is developed in
this study. In the feature fusion, only the down-sampling technique is adopted, and the
estimation findings under various scales are not fused. For the 1/2 ratio case, a 3 × 3
convolution layer with a stride of 2 is employed; for the 1/4 ratio case, a two-step max-
pooling layer is added before the 2-stride convolution; and for the 1/8 ratio case, fusion is
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not applied, as shown in Figure 2. Each phase of the backbone network is denoted by S,
the features are fused as follows:

Sj = γ1Sj + γ2S→j
j−1 + γ3S→j

j−2 (3)

where Sj
∣∣ j = 3, 4 denotes the last two stages,→j denotes fusion with the current layer

as the spatial scale standard, and γ represents the fusion weight. When j is equal to 1 or
2, γ2 or γ3 is 0, respectively. Similar to [43], we force γ1 + γ2 + γ3 = 1 | γ1, γ2, γ3 ∈ [0, 1] .
Particularly, three 1× 1 convolution layers are employed to compute the weight scalar
maps for each of λγ1 , λγ2 , and λγ3 from γ1, γ2, and γ3, respectively.

γ1 =
eλγ1

eλγ1 + eλγ2 + eλγ3
(4)

In the tiered estimation module, a 3 × 3 convolution layer with padding of 1 is em-
ployed to maintain the spatial resolution unchanged, as 1/2 spatial scale ratio downscaling
is performed three times, generating features dw1, dw2, and dw3 in sequence. The external
attention comprises two layers of 1× 1 convolution that are responsible for the common
feature selection in the dataset. Then, softmax is conducted on the probability matrix of
yaw, pitch, and roll, which are generated from the linear layer. From this, the interaction
between the three angles is weakened, as shown in Equation (5):[

φ̂, θ̂, ψ̂
]
= [K1Γ1 + b1, K2Γ2 + b2, K3Γ3 + b3] (5)

where Γ1, Γ2, and Γ3 are the parameters of dw1, dw2, and dw3, respectively. Γ1, Γ2, and Γ3
are related to each other as follows:

Γ2 = W1Γ1 + b4

Γ3 = W2Γ2 + b5

(6)

In Equation (6), W1 and W2 are parameters of the new convolution, and b4 and b5 are
new bias terms.

In the proposed model, head pose estimation is considered to be three tasks, and
additional tuning space is also employed. As demonstrated in Figure 3, Grad-CAM [50]
is used to visualize the original single-branch structure and the proposed three-branch
structure (i.e., dw1, dw2, and dw3), aiming to show the changes brought about by the
tiering: the areas of concern are no longer identical between the three angles.
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(a) Hope-Net and (b) the proposed THESL-Net.

3.4. Dynamic Loss Adjustment

Rotation matrices are employed to solve the angle discontinuity challenges caused by
a quaternion or Eulerian angle labeling, although effective, specially designed models are
often required. However, it is discovered that the loss function’s incoherence is another
cause of the discontinuity; in detail, this discontinuity in angle estimation is due to the
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classification loss being larger than the MSE loss at about 1◦ from the classification edge.
Taking a single picture as an example, the typical loss function is as follows:

L(ŷ, y) = −
k

∑
i=1

Yiclog
(
σ(Ŷi)

)
|Lce + Lmse (7)

where k represents the number of categories; Yic is 0 or 1, corresponding to whether the
classification is correct; Ŷi is the probability matrix; and σ denotes softmax.

Another simple example to illustrate the loss imbalance at both ends of the classifica-
tion is as follows. Set the ground truth to [0◦, 3◦, 5◦] and estimation to [1◦, 3.5◦, 7◦], and
then divide (−99◦, 99◦) into 66 groups with 3◦ as an interval. When the truth error between
estimation and ground truth is within 1◦, the regression task appears in two cases: the
estimation is correctly classified, which is called intra-class regression, or the estimation is
incorrectly classified, which is called inter-class regression. To be specific, in the case when
the estimation is intra-class, the cross-entropy loss is minimal, and the total loss follows the
truth loss trend. However, in the case when estimation is inter-class, the cross-entropy loss
is larger than the mean squared loss (because of the index of 2), leading to the total loss
being inverse to the truth loss trend, as stated in Section 1. This makes the model difficult
to learn.

In [15], a coefficient α = 2 is provided for the MSE, as shown in Equation (8):

L(ŷ, y) = Lce + α(∑k
i=1 dYidσ(Ŷi)− 99− y)

2
| Lmse (8)

where d represents the category length and Yid represents the category label. Here, 99 is
the regression constant term, as a result of restricting the angle to between −99◦ and 99◦

during the processing of the dataset. When Lmse is considerably small, multiplying by a
factor α = 2 can relatively alleviate the discontinuity problem caused by the loss function.
However, it does not capture the matter’s crux and can further increase this incongruity
when an intra-class loss is greater than an inter-class loss.

Considering the synergy present between the two losses, we set an additional con-
straint for classification loss: β = (ŷ− y)2/((ŷ− y)2 + 1). Then, the cross-entropy loss after
the update is given by

Lce′ = −
(ŷ− y)2

((ŷ− y)2 + 1)

k

∑
i=1

Yiclog
(
σ
(
Ŷi
))

(9)

After restriction, β ∈ [0, 1] is also added to the backpropagation gradient, making the
resulting penalty small when the true loss is small. In the above example, when multiplying
by β, the CE loss of pitch can be lowered to 1/5 of its original. This resets the model’s total
loss to the same trend as the true loss. Subsequently, 2β is employed to improve the error
penalty for loss above 1◦, which can accelerate the model’s convergence.

To confirm the effectiveness of the proposed approach, in our study, another set of
loss functions is developed based on the rotation matrix, as demonstrated in Equation (10),
which comprises the MSE and MAEV. The concept is that the vectors corresponding to the
three angles in the rotation matrix must be perpendicular to each other, or else a penalty
is given.

L(ŷ, y) = Lmse +
1
3

µ ∑
i 6=j

V(i)
t V(j)

p | Lmaev (10)

where Vt represents the rotation matrix of ground truth; Vp represents the estimation
rotation matrix; i, j denote vectors of yaw, pitch, roll, i, j = 1, 2, 3; and µ denotes the
range [0.1, 0.5] given by [11]. The experimental findings reveal that our loss-limiting
approach (i) has similar performance to the rotation matrix-based approach under the same
conditions and (ii) can solve the discontinuity problem from two aspects, as demonstrated
in Section 4. Algorithm 1 details the proposed approach’s training process.
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Algorithm 1 Training procedure for the Tiered estimation network with self-adjust loss

Input: A batch of images T and the hyper parameters β.
Output: The loss reverse gradient5lφ,5lθ,5lψ.
1: Initialize the reverse gradient5lφ,5lθ,5lψ;
2: for t = 1, . . . , T do
3: Extracting the feature matrix Y = (Yφ , Yθ, Yψ);
4: Selecting features by EA Ye= (Yφe , Yθe, Yψe);
5: Computing by tiered Yt =

(
Yφt1 , Yθt2, Yψt3) with (5);

6: Calculating loss L = (Lφ , Lθ, Lψ) with (7);
7: Limiting cross-entropy loss Lce = βLce with (9);
8: 5lφ,5lθ,5lψ ← (5lφ,5lθ,5lψ) β;
9: return5lφ,5lθ,5lψ.

3.5. Optimization

To further improve the proposed model, a series of measures are employed to enhance
the baseline of Resnet-50 as the backbone, and the enhancements caused are also listed,
as shown in Figure 4. First, the dataset is kept in balance using both oversampling and
left–right mirroring with Hopenet [15] as the benchmark. The distribution ratio of the
large, medium, and small (about 30◦ for each interval size) angles is 2:2:1 in the balanced
dataset. Then, according to the previous research on the Resnet network and transformer
structure [35,36] the ReLU is modified to the Dynamic ReLU stated in [47] to enhance
the model’s representation ability, and the AdamW optimizer [46] instead of the Adam
optimizer is employed to enhance the model’s generalization. The combination of these
approaches leads to a 0.5◦ reduction in baseline loss.
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and the remaining is for testing.

4. Experiments
4.1. Implementation Details

Pytorch is used to implement the proposed network. All images are cropped to
224× 224 size (surrounding the face) and then normalized using transform mean and
standard deviation. During training, random masks are introduced to all images using
CutOut. An AdamW optimizer with a weight decay of 1× 10−5 is employed, the learning
rate is set to 1× 10−3, the learning rate decayed is set to the original 0.9 every 20 epochs,
and the loss-limit factor is set to 2β. In addition, the linear layer’s learning rate is adjusted
to 5× 10−3, and both the first convolution layer and batch norm layer are kept frozen. The
model is trained for 200 epochs with a batch size of 64, and four GTX 1080Ti GPUs are
employed for this process.

4.2. Datasets and Evaluation

As shown in Figure 5, the proposed model is examined on four popular public bench-
mark datasets: 300W-LP [21], BIWI [23], AFLW2000 [22], and UPNA [24].
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300W-LP: The 300W-LP [21] dataset is an extended version of the 300 W [51] dataset,
which has over 120 k images for face alignment with 68 landmarks.

BIWI: The BIWI dataset [23] has 24 videos produced from 20 subjects, totaling
15,678 frames, each corresponding to both RGB and depth images. Since face position
is not offered in this dataset, in our study, Yolo5-face [52] is employed to produce the
persons’ head borders.

AFLW2000: The AFLW2000 [22] dataset is derived from the first 2000 images in the
AFW [53] dataset with 68 landmarks. Faces in this dataset have complicated pose variations
and backgrounds.

UPNA: The UPNA [24] dataset has 10 groups, each with 12 videos from one subject.
Each video contains only a single direction of head pose variation and uses 54 landmarks,
totaling 36,000 images. The face deflection range in this dataset is small and solitary.

For comparison with other the-state-of-the-art approaches, as stated in Hopenet [15],
FSA-Net [10], and TriNet [11], the same training and testing setup is used in our study, and
the images with Euler angle deflection outside of −99◦ to 99◦ are filtered out. In particular,
it is discovered that the angle distributions of the UPNA and BIWI datasets are between
[−48◦, 36◦] and [−75◦, 85◦], respectively. Figure 5 shows samples of the datasets, and this
study is conducted in the following two scenarios:

(1) The model is trained and evaluated on the datasets of 300W-LP, BIWI, AFLW2000,
and UPNA.

(2) In total, 70% of the BIWI and UPNA datasets are employed for training and 30% for
testing. The train set is not crossed with the test set. For example, in the BIWI dataset,
16 videos are employed for training and 8 videos for testing.

In all of the above studies, to assess the performance of the proposed model, the MAE
is used as the loss function.

4.3. Competing Methods

To show the effectiveness, we compare the proposed approach with other state-of-the-
art approaches on public benchmark datasets, with data from either the original article or
experimental findings.

The following is a brief description of previous work related to the proposed model,
all based on RGB images. Dlib [1] addresses 2D to 3D fitting challenges by matching face
landmark points for head pose estimation. 3DDFA [21] employed a CNN to develop an
approach for fitting 3D face models to 2D images that skips the step of facial landmark
detection. There are also more popular methods that do not rely on key points. For
example, Hopenet [15] suggested a concept of head pose estimation without key points
based on Resnet-50, considerably enhancing the model’s performance under complex
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scenes. Thereafter, FSA-Net [10] introduced the idea of soft stagewise regression and
developed a fine-grained structural mapping to capture spatial features. QuatNet [16]
employed a multivariate loss function based on quaternion to address the difficulty of
the non-stationary property caused by Euler angle representation. FDN [13] elaborates
a feature decoupling network with cross-category center loss to restrict the distribution
of the latent variable subspaces. MFDNet [12] constructed the triplet module and the
matrix’s Fisher distribution module to address the uncertainty of head rotation. TriNet [11]
re-labeled dataset samples using orthogonal constraints on the three vectors and assessed
them using MAEV. To enhance the accuracy of head pose estimation for drivers, ref. [54]
proposed a spatial temporal vision transformer (ST-ViT) model, taking a pair of image
frames rather than one single frame as the input.

4.4. Experiment Results

We explore the performance variation of the model using different backbone networks.
The comparison between three various backbones (including ResNet-50, ResNext-101, and
the latest ConvNext) is given in Table 1. Notably, in this study, all orientations are shown
in degrees.

Table 1. Performance comparison between various backbones.

Backbone With/Without
AFLW2000 BIWI

Yaw Pitch Roll MAE Yaw Pitch Roll MAE

ResNet-50 w/ 4.22 5.42 3.56 4.40 3.53 4.64 2.51 3.56
ResNet-50 w/o 6.47 6.56 5.44 6.16 5.17 6.98 3.39 5.18
ResNet101 w/ 6.63 5.19 6.02 5.62 4.43 5.13 2.91 4.15
ResNet101 w/o 6.70 7.89 4.33 6.31 2.63 4.98 6.18 4.60
ConvNext w 12.06 5.27 6.20 7.84 3.90 7.87 6.83 6.19
ConvNext w/o 14.12 8.18 6.74 9.68 6.82 6.30 9.46 7.53

First, we note that “w” denotes with the proposed method (see the odd rows in
Table 1), and “w/o” denotes without the proposed method (see the even rows in Table 1).
The comparison between the odd and even rows shows that the proposed method can
improve the model performance for all three backbones. Taking ResNet-50 as an example,
by introducing the proposed method, the average MAE value (of yaw, pitch, and roll) on
the AFLW 2000 dataset can be improved from 6.16◦ to 4.40◦, and the average MAE value
(of yaw, pitch, and roll) on the BIWI 2000 dataset can be improved from 5.18◦ to 3.56◦.

Second, the comparison between the three backbones show that the best performance
can be achieved by using ResNet-50. Taking the validation on the AFLW 20,000 dataset, for
example, the MAE values on ResNet-50, ResNet101, and ConvNext are 4.40◦, 5.62◦, and
7.84◦, respectively. Since the best results are achieved with the ResNet-50 backbone, the
experiments will be conducted on ResNet-50.

Tables 2 and 3 show the findings of our proposed model, which is compared with other
state-of-the-art approaches. We note that the proposed model is trained on the 300W-LP
dataset. In Table 2, the test results on the AFLW2000 dataset are shown. From this table, we
can see that the proposed model THESL-Net attains the minimum error on a roll, and the
MAE is somewhat higher than that of MFDNet, but the structure of the proposed approach
is much simpler and thus can be readily conducted on other models. Furthermore, in
Table 3, the test results on the BIWI dataset are shown. From this table, we can see that
THESL-Net realizes the best performance with an MAE reduction of 0.06◦ compared to
the second-best approach (MFDNet). The proposed approach does not rely on landmark
detection, and the loss limitation factors can be adjusted automatically with the evaluation
process without additional settings.
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Table 2. Comparisons on the AFLW2000 dataset (all methods are trained on the 300W-LP dataset).

Method Yaw Pitch Roll MAE

Dlib [1] 23.1 13.6 10.5 15.8
3DDFA [21] 5.40 8.53 8.25 7.39

Hopenet [15] 6.47 6.56 5.44 6.16
FSA-Net [10] 4.50 6.08 4.64 5.07
QuatNet [16] 3.97 5.62 3.92 4.50

FDN [13] 3.78 5.61 3.88 4.42
MFDNet [12] 4.30 5.16 3.69 4.38

TriNet [11] 4.04 5.77 4.20 4.67
THESL-Net 4.22 5.42 3.56 4.40

Table 3. Comparisons on the BIWI dataset (all approaches are trained on the 300W-LP dataset).

Method Yaw Pitch Roll MAE

Dlib [1] 16.8 13.8 6.19 12.2
3DDFA [21] 36.2 12.3 8.78 19.1

Hopenet [15] 5.17 6.98 3.39 5.18
FSA-Net [10] 4.27 4.96 2.76 4.00
QuatNet [16] 4.01 5.49 2.94 4.15

FDN [13] 4.52 4.70 2.56 3.93
MFDNet [12] 3.40 4.68 2.77 3.62

TriNet [11] 4.11 4.76 3.05 3.97
THESL-Net 3.53 4.64 2.51 3.56

Table 4 reveals the findings compared with other approaches on the BIWI dataset,
where 70% and 30% of the data were employed for training and testing, respectively, with-
out crossover. All compared methods are based on RGB, and the finding of Hopenet [15]
are derived from re-runs in [11]. THESL-Net is first fine-tuned, resulting in the best finding
on yaw, and the MAE decreases by 0.36◦ compared to the second place. Other indica-
tors are also in the upper middle position, which indicates the effectiveness of our tiered
estimation concept.

Table 4. Comparisons of the BIWI dataset (70% of the BIWI dataset is employed for training and 30%
for testing).

Method Yaw Pitch Roll MAE

Hopenet [15] 4.33 4.42 4.09 4.28
FSA-Net [10] 2.89 4.29 3.60 3.60

FDN [13] 3.00 3.98 2.88 3.29
MFDNet [12] 2.99 3.68 2.99 3.22

TriNet [11] 2.93 3.04 2.44 2.80
ST-ViT [52] 3.27 2.82 3.12 3.07
THESL-Net 2.53 3.08 2.95 2.85

The performance of the proposed method on the UPNA dataset is given in Table 5,
where ‘/’ means the corresponding value is not given in the original article. To make a fair
comparison, we make up the experiment by using 90% of the UPNA dataset for training
and 10% of the UPNA dataset for testing. From this table, it can be seen that the best MAE
was achieved by the proposed method when using the same dataset-partitioning method.
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Table 5. Comparisons of the UPNA dataset (90% of the UPNA dataset is employed for training and
10% for testing).

Method Yaw Pitch Roll MAE

Nao [55] / 4.10 2.50 3.30
ResNet50+YL2 [56] 2.49 3.89 / 3.19

Dense 3D [57] 0.98 2.71 1.53 1.74
AAM+POSIT [24] 1.04 1.63 2.19 1.62

THESL-Net 1.32 2.05 1.16 1.54

To examine the influence of head deflection angle range on the proposed model,
we further compare the BIWI dataset with the UPNA dataset and generate the findings
as shown in Figure 6. Both datasets are obtained in an experimental setting with low
disturbance, containing three angles of different intervals. We only employ the MAE to
evaluate the change in model performance. The experimental findings reveal that the
proposed model has good performance in various angle ranges. Table 6 shows the details.
Equation (10) shows further development of a new loss function, which consists of MSE
and MAEV. It is compared with the proposed approach to show the extent to which the
loss function and labeling affect the angle estimation discontinuity, as shown in Table 6.
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the BIWI dataset.

Table 6. Comparison with the rotation matrix-based approach on the BIWI dataset with 70% of the
dataset for training and 30% for testing.

Loss Yaw Pitch Roll MAE

Ours (Equation (9)) 2.53 3.08 2.95 2.85
MSE + MAEV 2.67 3.19 2.88 2.91
Ours + MAEV 2.59 3.73 2.85 3.06

By combining the loss limitation and the rotation matrix, as shown in Equation (11),
the overall loss increases instead.

L(ŷ, y) = 2βLce + Lmse + Lmaev (11)

A reasonable explanation is that loss-limiting and labeling approaches have similar
influences, and simply adding them together equals 4β, which destroys the loss function’s
coordination within 1◦ of the prediction error again.

4.5. Visualization

In this section, the process of model training and the comparison between different
approaches are visualized. First, Figure 7 shows the performance of the proposed approach
in the case of occlusion and significant angle deflection. We have selected a part of the
images with significant angle deflection in the AFLW2000 dataset. Both the Hopenet and
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THESL-Net models, which have a similar backbone, are employed to forecast the head
pose. We plot various colored lines to visualize the head deflection, where the blue, green,
and red lines are used to indicate the front, bottom, and side of the face, respectively. Our
approach minimizes the MAE by more than 10◦ in deflection cases and also reduces the
MAE by about 4◦ for the case where the face is obscured.
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Figure 7. Comparison of head pose estimation in the AFLW2000 dataset for significant angle deflec-
tion and masking cases.

Figure 8 shows the function of the tiered estimation module in the training process.
A batch of features generated from the backbone network is taken as input, and then a
1 × 1 convolution layer is used to deflate the number of channels. The three colors in the
figure denote the respective regions of interest in the estimation task of yaw, pitch, and
roll. Finally, the features after weight assignment go through a layer of 1× 1 convolution
to reduction channel numbers before outputting to the linear layer. Notably, we use the
external attention mechanism to detect common features among different character samples,
although other tasks may require different attention mechanisms. The concept of tiered
estimation minimizes the influence of fine-tuning between the three angles.
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Figure 8. Visualization of the tiered estimation process (showing the estimated task of yaw, pitch,
and roll in red, blue, and green colors, respectively).

Furthermore, demonstrating the changes more explicitly in the model during the
training process, Grad-CAM [50] is employed to visualize the areas that the model focuses
on before the tiered layer, as shown in Figure 9: columns (a) and (c) have separate identities,
columns (a) and (b) have different postures, and columns (a) and (d) are both different.
As the training epochs improve, the external attention makes the model’s area of interest
gradually focus on those common features, which leads to good robustness in the head
pose estimation model for people with a similar pose, but separate identities. Additionally,
for the same person, the regions that the model focuses on are alsso different for different
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head poses. This indicates that the proposed model is simultaneously identity-robust and
pose-robust.
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Figure 9. Visualization of the model regions of interest in training. A total of 100 epochs were trained
on the BIWI dataset. (a–d) are people in the same posture but with different identities.

4.6. Ablation Study

In this section, the effect of different blocks (tiered estimation module and various
loss limits) on the THESL-Net model performance is investigated. The ablation studies are
performed following the enhancement of Resnet-50; the three techniques used are shown
in Figure 4. For this, two sets of studies are developed. The first set is trained on 300W-LP
and tested on the AFLW2000 and BIWI datasets. The second set employs 70% of each of
the BIWI and UPNA datasets as the training set, and 30% as the test set. Each set of studies
examines the influence of with/without the tiered idea and with β/2β/without loss limit
on the findings differently. The experimental findings are shown in Tables 7 and 8.

Table 7. Ablation study over different components (with/without tiered module and with/without
loss limit) on the AFLW2000 and BIWI datasets. All methods are trained on the 300W-LP dataset.

Tiered Module Loss-Limit
AFLW2000 BIWI

Yaw Pitch Roll MAE Yaw Pitch Roll MAE

w/o w/o 4.37 6.33 6.24 5.65 7.14 4.38 2.94 4.82
w/ w/o 5.75 4.50 6.18 5.48 3.05 5.87 4.28 4.40

w/o β 3.53 4.06 7.49 5.03 4.83 3.63 5.21 4.56
w/ β 4.60 5.97 4.08 4.88 3.33 4.56 4.31 4.07

w/o 2β 4.38 5.06 4.71 4.72 3.16 3.94 4.30 3.80
w/ 2β 4.22 5.42 3.56 4.40 3.53 4.64 2.51 3.56

Table 8. Ablation study over different components (with/without tiered module and with/without
loss limit) on the BIWI and UPNA datasets. In total, 70% and 30% of the datasets were used for
training and testing, respectively.

Tiered Module Loss Limit
BIWI UPNA

Yaw Pitch Roll MAE Yaw Pitch Roll MAE

w/o w/o 3.16 3.94 4.27 3.79 2.04 1.44 7.93 3.81
w/ w/o 3.17 3.75 3.60 3.51 1.91 1.30 7.14 3.45

w/o β 2.77 4.34 3.47 3.53 3.62 1.14 5.40 3.39
w/ β 2.87 3.39 3.70 3.32 3.74 1.11 4.98 3.28

w/o 2β 3.05 3.31 3.30 3.22 1.93 1.21 4.65 2.60
w/ 2β 2.53 3.08 2.95 2.85 2.35 1.12 3.79 2.42
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As observed in Table 7, the MAE of the base model is 5.65◦ on AFLW2000 and 4.82◦

on the BIWI dataset when either module is not used. However, the model performance is
significantly improved when either of the two modules is added alone. Among them, the
performance of THESL-Net is optimal when using the tiered module with loss limit = 2β,
which reduces by 1.25◦ and 1.26◦ on the AFLW2000 and BIWI datasets, respectively. This
shows that both of our strategies are effective.

In Table 8, we introduce the ablation findings for the BIWI and UPNA datasets, which
have different angle distribution ranges, whereas the UPNA dataset alone has a smaller
and more concentrated one. The losses using the best combination in the BIWI and UPNA
datasets are minimized by 0.94◦ and 1.39◦, respectively, and the final MAE of the two
are not considerably different, indicating that our model performs well at various angle
ranges. Figure 10 further reveals the details of the experimental findings for each module
of the model at various angles. As seen from the figure, using the combination of the two
techniques always attains optimal findings.
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5. Conclusions

To overcome the two challenges in the field of head pose estimation, in this study,
THESL-Net is proposed, which comprises the tiered estimation module and the loss-
limit component. To be specific, to solve the problem of mutual interference between the
angles in regulation, the tiered structure forms three branches by dimensionality reduction,
corresponding to the three angles of the head pose estimation. By separating the three
angles’ network parameters, the mutual interference between the yaw, pitch, and roll tuning
is substantially decreased, which makes the estimation loss have space for more reduction.
In addition, to solve the problem of discontinuity in angle prediction, unlike the rotation
matrix-based approach, we solve the problem from the perspective of the loss function by
restricting the loss function, while the effect is comparable to that of the rotation matrix.

On the popular public standard datasets AFLW2000, BIWI, and UPNA, the exper-
imental findings reveal that our approach has better identity robustness than previous
approaches and demonstrates state-of-the-art performance.
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