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Abstract: The tumor microenvironment (TME) has an essential role in tumor initiation and
development. Tumor cells are considered to actively create their microenvironment during
tumorigenesis and tumor development. The TME contains multiple types of stromal cells,
cancer-associated fibroblasts (CAFs), Tumor endothelial cells (TECs), tumor-associated adipocytes
(TAAs), tumor-associated macrophages (TAMs) and others. These cells work together and with
the extracellular matrix (ECM) and many other factors to coordinately contribute to tumor growth
and maintenance. Although the types and functions of TME cells are well understood, the origin
of these cells is still obscure. Many scientists have tried to demonstrate the origin of these cells.
Some researchers postulated that TME cells originated from surrounding normal tissues, and others
demonstrated that the origin is cancer cells. Recent evidence demonstrates that cancer stem cells
(CSCs) have differentiation abilities to generate the original lineage cells for promoting tumor growth
and metastasis. The differentiation of CSCs into tumor stromal cells provides a new dimension that
explains tumor heterogeneity. Using induced pluripotent stem cells (iPSCs), our group postulates that
CSCs could be one of the key sources of CAFs, TECs, TAAs, and TAMs as well as the descendants,
which support the self-renewal potential of the cells and exhibit heterogeneity. In this review, we
summarize TME components, their interactions within the TME and their insight into cancer therapy.
Especially, we focus on the TME cells and their possible origin and also discuss the multi-lineage
differentiation potentials of CSCs exploiting iPSCs to create a society of cells in cancer tissues
including TME.
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1. Introduction

Cancer stem cells (CSCs), identified as cancer-originating cells, are responsible for the maintenance
and development of malignant tumors being defined by the potentials of self-renewal, differentiation,
and tumorigenicity. The development of CSCs is generally considered to be regulated by genetic and
epigenetic changes resulting in tumorigenic abilities, cytoplasmic signal transduction and metastasis [1].
Accumulating evidence has revealed that CSCs have a pluripotent differentiation ability like normal
stem cells [2]. Moreover, CSCs have the potential to transdifferentiate into vascular endothelial cells
and pericytes in vitro and in vivo [3,4]. Furthermore, several differentiated cells have been directly
reprogrammed from one cell type into another with the induction of potent transcription factors [5].

Another study also supports that Osteopontin induces mesenchymal stem cells in the tumor
microenvironment (TME) to differentiate into cancer-associated fibroblasts (CAFs), which promotes
cancer development and can be stimulated to release periostin in the metastatic microenvironment [6,7].

TME has a vital role in cancer initiation and progression. During recent decades, the focus of cancer
research has widened from the malignant tumor cells themselves to the TME and the complicated
interactions between the host stroma and tumor cells [8,9]. The TME displays many similarities with
the normal wound microenvironment, including angiogenesis, infiltration of fibroblasts and immune
cells and widespread remodeling of extracellular matrix (ECM) [10]. Tumor bulk is heterogeneous
in their composition. Recent studies have indicated that TME arises from at least six distinct cellular
origins: fibroblasts [11], endothelial cells, pericytes, bone-marrow-derived mesenchymal stem cells
(MSCs) [12], adipocytes [13], macrophages [14], and other immune cells [15]. Many substantial pieces
of evidence indicate cellular transdifferentiation within the TME, both from tumor cells to stromal cells
and from stromal cells to stromal cells such as fibroblast transdifferentiation into activated myofibroblast
during the formation of tumor stroma [16]. Evidence has been suggested that this phenomenon may
be the transdifferentiation [17] or differentiation events, according to the microenvironments. In
certain conditions, pericyte can be transdifferentiated into tumor-associated stromal cells [18]. Another
example, evidence indicates that cancer cells can be transdifferentiated into stromal cells to promote
tumor growth [19].

Chronic inflammation has been hypothesized to stimulate the generation of CSCs.
The cancer-inducing niche should, therefore, be developed from chronic conditions stimulating
normal stem cells or progenitor cells to convert into CSCs, which are potent to differentiate into the
phenotype of cancer cells. Once CSCs develop, the CSC niche with/without the cancer-inducing
niche will provide a suitable microenvironment for sustaining CSCs, which in turn develop malignant
tumors. The phenotype of the malignant tumor seems to depend not only on the tissue-specific
microenvironment but on the niche of the CSCs, as previously reported [20]. We have originally
demonstrated that iPSCs can acquire CSC characters when exposed to the conditioned medium derived
from different cancer cell lines expressing various growth factors, cytokines, chemokines and so on [21].
CSCs will then establish their niche by themselves together with their progenies [22]. The cells in the
CSC niche not only maintain CSCs and tumor-associated cells but also produce factors promoting
invasion, metastasis, and angiogenesis. The components of CSC niche are typically considered as CAFs,
tumor-associated macrophages (TAMs), tumor-associated neutrophils, MSCs as well as CSCs [23].
Among these cells, cell-to–cell communications should be made via cell-mediated adhesion, soluble
factors and exosomes with their critical roles.

Our group succeeded in designing a model of CSCs derived from induced pluripotent stem cells
(iPSCs), which were reprogrammed from normal cells, in the conditioned medium from a variety
of mouse and human cancer cell lines. These obtained CSCs exhibited a capacity of self-renewal,
differentiation, and malignancy in vivo. Simultaneously, we demonstrated that CSCs are one of the
key sources of CAFs, tumor endothelial cells (TECs), tumor-associated adipocytes (TAAs), and TAMs
(Figure 1).

In this review, we summarize TME components discussing the origin of TME cells and the ability
of CSCs to differentiate into tumor stromal cells, CAFs, TECs, TAAs, and TAMs providing the progenies,
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which establish a society in tumor tissue. We also discuss the potential contributions of CSCs in tumor
progression, as well as an insight into cancer therapy.
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Figure 1. A schematic illustration showing cancer stem cells’ (CSCs) differentiation into tumor stromal
cells, Tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), Tumor endothelial
cells (TECs) and Tumor-associated adipocytes (TAAs). Created with BioRender.

2. The Tumor Microenvironment (TME)

The TME plays an important role in cancer development and progression. The TME is composed
of two different cellular and acellular components [24]. The cellular component consists of tumor
stromal cells, CAFs, TECs, pericytes, B lymphocytes, T lymphocytes, TAMs, TAAs and CSCs (Figure 2).
The acellular component is composed of ECM, soluble factors and extracellular vesicles such as
exosomes. Stromal cells, which form more than 80% of tumor bulk in pancreatic and breast cancers,
are considered to play a vital role in the growth and progression of cancer [25]. Growth-promoting
signals and intermediate metabolites secreted from the cellular component remodel the surrounding
tissue structure and establish the TME [26]. The reciprocal communication between the cells in the
microenvironment components eventually leads to enhanced proliferation and tumor metastatic
capacity. Tumor cells need stromal cells to construct their microenvironment [23].

ECM provides a physical scaffold for all cells not only to reside in the TME but also to move in
and out with a dynamic role causing the evolution and spread of cancers [27]. Cells are structurally
and biochemically supported by an ECM, which is a scaffold of fibrillar proteins, accessory proteins,
and molecules. The main component of the ECM is fibrillar collagen, the structure and mechanical
properties of which have a strong influence on the cellular phenotype [28]. The ECM consists of a
basement membrane and stroma, based on biochemical and structural characteristics. The basement
membrane is largely made up of collagen IV in most tissues, along with laminin, fibronectin, and
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several proteoglycan forms. The basement membrane’s main role is to provide a physical barrier
between the epithelial cells and the stroma of the organ, while still allowing the diffusion of gases
and transport of signaling molecules. The interstitial ECM, mainly produced by mesenchymal cells,
consists largely of collagens I and III, fibronectin, and proteoglycans. In cancer, the rupturing of the
basement membrane enables epithelial cells to undergo an epithelial-to-mesenchymal transition (EMT)
and migrate through the interstitial ECM into the surrounding stroma [29]. The ECM also contains
key growth factors, like angiogenic factors and chemokines, which intermingle with cell surface
receptors and provide that tissue with its tensile strength and elasticity, as well as its compressive
strength. Tumors are harder than the surrounding normal tissues as a result of CAFs’ secretion of ECM
components [30]. Large and rigid fibrils in the TME are caused by lysyl oxidase and transglutaminase
enzymes that can cross-link collagen and elastin fibers [31]. On the other hand, malignant cells, TAMs
and CAFs secret and stimulate matrix metalloproteases (MMPs), which degrade ECM proteins to
promote TME remodeling [32].

Exosomes are cell-derived nanometer-size particles that have a key role in cell-to-cell
communication. Most cells produce exosomes. Exosomes create the communication between the
cells shuttling DNA, RNA, proteins and membrane-bound factors [33]. Tumor-derived exosomes
(TEXs) affect the immediate TME. Furthermore, TEXs can affect distant tissues by the flow of blood
and lymph to create a pre-metastatic niche that can lead to metastasis. Recent research demonstrated
that TEXs were detected in the supernatant of cultured cells as well as body fluids. They can inhibit
immune cell proliferation by delivering tolerogenic signals to immune cells. Intriguingly, TEXs
exhibit certain ligands, like programmed death-ligand 1 (PD-L1), to generate an endocrine signal
extending a distance away from the primary tumor [34]. Exosomes derived from CSCs induce tumor
development and metastasis. CSC-derived exosomes significantly increase liver weight and serum
levels of cancer markers, α-fetoprotein, and gamma-glutamyl transferase, as well as liver enzymes
such as alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase. Severe
immunostaining for glutathione S-transferase, an HCC marker, and a significant increase of number
and area of tumor nodules were observed in rats received CSC-derived exosomes when compared
to HCC [35]. CSC-derived exosomes also decreased apoptosis, increased angiogenesis, enhanced
metastasis/invasion and induced EMT [36,37].
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3. Differentiation of CSC Population in the TME

CSCs were first detected in acute myeloid lymphoma [38] and were then isolated in a variety
of solid tumors including breast [39], colon [40], liver cancers [41], melanoma [42] and some other
tumors. CSCs reveal several characteristics of embryonic stem cells and typically determine persistent
activation of the Notch, Hedgehog, and Wnt pathways that are conserved in tissue development
and homeostasis. CSCs maintain their self-renewal ability by activating several stem cell signaling
pathways during cancer initiation and development while normal stem cells are involved in different
developmental processes and tissue homeostasis. CSCs are considered to have decelerated growth
rates and to be resistant to chemotherapy and radiotherapy [43].

In lung cancer, there is a rare population of undifferentiated tumorigenic cells expressing CD133,
which is recognized as an antigen present in the cell membrane of normal and cancer-primitive cells
of the hematopoietic, endothelial, neural and epithelial lineages [44]. Lung cancer CD133+ cells
grew indefinitely as tumor-spheres in serum-free medium supplemented with epidermal growth
factor and basic fibroblast growth factor (FGF-2). Once differentiated, these cells acquired the specific
lineage markers while losing the tumorigenic potential as well as CD133 expression [45]. iPSCs have
successfully been converted into CSCs with a conditioned medium of Lewis lung carcinoma cells [21],
as well as those of other cancer cell lines [20,46]. Very recently, not only iPSCs but also embryonic stem
cells have been converted to CSCs in the same manner [47]. The converted CSCs exhibited the potential
of self-renewal, differentiation and malignant tumorigenicity with metastasis [48]. According to the
CSC model, only certain subpopulations of cancer cells can drive the progression of cancer. They are
more specific and aggressive subtypes of cells which could be responsible for tumor progression and
recurrence [49].

The multidrug resistance (MDR) phenomenon means that resistance to therapy is not usually
limited to one drug [50]. The MDR of CSCs is induced by the endogenous expression of detoxifying
enzymes, increased DNA repair activity, increased pump levels of drug efflux, decreased drug response
and activated survival pathways [51]. Various therapeutic strategies have been considered to target
CSCs such as methods to target their cell-surface molecular markers, inhibit their self-renewal or
therapeutic resistance-related differentiation pathways, modify their metabolism through glycolysis
inhibition and mitochondrial regulation, as well as miRNA-based approaches to block CSCs [52]. New
therapeutic methods have been developed using immunotherapy, anti-angiogenic compounds, and
epigenetic trials to resolve CSC sensitivity to treatments [53].

CSCs can differentiate into various types of cells, including tumor cells and non-tumorigenic-
differentiated cells in response to the specific stimulation of differentiation [54]. All-trans retinoic
acid (ATRA), a carboxylic acid form of vitamin A, induced the differentiation of CSCs, increased
sensitivity to therapies and reduced their motility and tumorigenicity by blocking angiogenesis in
glioblastomas [55]. Treatment of breast CSCs with ATRA led to cell differentiation, diminished
penetration and migration, and enhanced sensitivity to anticancer treatment [56]. Glioblastoma CSCs
were capable of differentiation into mural-like endothelial cells [57]. As a result of CSCs’ differentiation,
the cellular heterogeneity in tumors, as well as inherent drug resistance and invasive potential
enhancement, plays a crucial role in tumor growth and metastatic progression [58]. Collectively, CSCs
could be considered as a dynamic subpopulation of cancer cells with plasticity.

4. Cancer-Associated Fibroblasts (CAFs)

CAFs are considered to play a critical role in tumorigenesis by mediating tumor growth,
inflammation, angiogenesis, stromal remodeling, metastasis and resistance to drug therapy (Figure 3).
CAFs are the major TME component in many tumors [59], so they become the main target for
suppressing tumor growth. The markers usually used to identify CAFs are α-smooth muscle actin
(α-SMA) [60], platelet-derived growth factor receptor-β (PDGFR-β) [61], fibroblast-specific protein-1
(FSP-1) [62], and fibroblast activation protein-α (FAP-α) [63]. The phenotypic characteristics of CAFs
are preserved even when cultured in the absence of interaction with cancer cells [64].



Cancers 2020, 12, 879 6 of 22

CAFs secrete growth factors, such as fibroblast growth factor (FGFs), insulin-like growth factor 1
(IGF1), hepatocyte growth factor (HGF) and members of the epidermal growth factor (EGF) family,
which stimulate the growth of malignant cells [12,65] (Figure 3). CAFs also secrete transforming
growth factor βs (TGFβs), which are considered to induce EMT in malignant cells and promote the
immune-suppressive microenvironment [66]. Stromal cell-derived factor-1 (SDF-1)/CXC12 chemokine
secreted from CAFs stimulates angiogenesis in breast cancer [12]. SDF-1 binds to CXCR4 facilitating
the proliferation of lung cancer cell and drug resistance [67]. Simultaneously, CAFs secrete MMP-2
and membrane type 1-MMP (MT1-MMP), which are considered as the prerequisites for angiogenesis
and metastasis in the carcinogenetic process [68].

Furthermore, CAFs secrete IL-6, IL-8, IL-4, and FAP that have vital roles in macrophage
differentiation and polarization that lead to an immunosuppressive microenvironment. Tumor
invasion and metastasis augmented by tumor necrosis factor (TNF) and IL-6 were identified as mast
cell chemo-attractants [69]. IL-8 is associated with colorectal tumor size, infiltration, cancer stage,
liver metastases, increased proliferation and migration of cancer cells [70,71]. TNF-α induces IL-8
expression in CAFs by the nuclear factor kappa B (NF-κB) activation [72].

A distinct ECM biomechanical architecture is required for tumor development and metastasis,
ECM proteins are produced and secreted by CAFs that also actively participate in the ECM proteolysis,
crosslinking and assembly processes [73]. One possible reason for tumor cells to escape from therapy
and drug infiltration is a rigid and extremely crosslinked tumor stroma [74]. CAFs also mediate ECM
remodeling by producing two main types of remodeling enzymes, the lysyl oxidase (LOX) family and
MMPs. CAFs react to the ECM stiffness in a LOX/MMP-dependent way and fine-tune the CAF-ECM
interactions as a highly adaptive and mechanically responsive stromal cell type [75,76]. Factors secreted
from CAFs in the absence of serum/supplements strongly increased anchorage-independent growth,
tumor-sphere formation, and expression of CSC-markers [77,78].

CAFs are morphologically like myofibroblasts and provide another TME pathway of ongoing
support for the cancer niche. The stimulation of myofibroblasts can produce organ fibrosis which
augments cancer growth [79]. Myofibroblasts are rich in many types of cancers and are as well-known
as CAFs [64].
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TEXs plays a crucial role in converting normal stromal cells to CAFs by TGF-β. CAFs are different
from normal fibroblasts in many ways, such as their increased collagen and ECM protein construction
and up-regulated secretion of pro-tumor factors [80]. The tumor stroma’s rigidity is affected by the
interactions between CAFs and the ECM [81].

Many potential novel strategies for cancer therapy are considered to target tumor cells with
genetic mutations rather than CAFs because of their genetic instability making them susceptible to
therapeutic approaches [82]. On the other hand, retinoic acid receptor β expressed in CAFs makes strong
chemoresistance, resulting in even complicated therapeutic responses of the cells [83]. CAFs also express
cell-surface molecules CD10 and GPR77 that contribute to the chemoresistance supporting CSCs [84].
In addition, CAFs are activated by exposure to radiation, which induces the secretion of insulin-like
growth factor-1 (IGF-1) from CAFs, resulting in making cancer cells resistant to such therapy. As a
promising approach to restore the chemosensitivity in tumors, re-education of CAFs toward the normal
fibroblasts by the epigenetic regulation of the dominant drivers responsible for CAF polarity is proposed
with their inhibitors targeting the surface molecules on CAFs to suppress the secretomes [85,86].

CAFs may originate from populations other than resident fibroblasts depending on different
mechanisms specific to tissues [87]. In breast, kidney, lung and liver carcinomas, a portion of CAFs has
been displayed to potentially differentiate from epithelial cells via an EMT. The EMT was described
to be engaged in the trans-differentiation of endothelial cells to a cell population with a phenotype
like CAF’s [88]. The blood vessel-linked cells, termed pericytes, can trans-differentiate into CAFs in a
platelet-derived growth factor (PDGF)-dependent manner [89].

Adipocytes were shown to differentiate into CAFs in breast cancer [90]. In liver and pancreatic
tumors, stellate cells, while they are normally involved in organ regeneration, are a possible source of
CAFs being involved in fibrosis preceding the occurrence of tumors [91,92]. Further than these local
sources, distant cells can be implicated in the differentiation of CAFs in the TME. An important source
of CAFs is mesenchymal stem cells that are normally found in the bone marrow but can be attracted to
the TME [93]. Correspondingly, fibrocytes can differentiate into CAFs after their enrollment into the
TME. They considered as a circulating inactive mesenchymal cell population arising from monocyte
precursors which are recruited to the sites of chronic inflammation [94,95].

Furthermore, our group proved that CSCs converted from iPSCs could be the source of the CAFs
which provide for tumor maintenance and persistence. We produced CSC-like cells by treating mouse
iPSCs with conditioned medium from breast cancer cell lines [96]. CSC and pluripotency markers
were expressed on the resulting cell population forming malignant tumors in vivo. The CSC-like cells
isolated from the tumor have always developed heterogeneous population surrounded by cells like
myofibroblasts. The cells displayed a CAF-like phenotype, suggesting that they had the potential to
differentiate into another subpopulation of cells sustaining CSC self-renewal.

5. Tumor Endothelial Cells (TECs)

New vessel development is a sign of tumor growth and progression (1–3). When a basic
tumor mass (nearly 1–2 mm3) is formed, cancer cells require the promotion of angiogenesis with a
tumor-associated neovasculature to efficiently supply nutrients and oxygen to themselves [97,98].
Tumor growth depends on angiogenesis. As all cells need to be close to the blood vessels that provide
oxygen and nutrients, solid tumors cannot grow by more than a few millimeters in diameter without
recruiting their own blood supply [99]. Tumor cells and various other cell types or the extracellular
matrix in the tumor microenvironment release the endogenous molecules that affect the angiogenic
balance. Angiogenesis stimulators include hypoxic conditions that activate the hypoxia-inducible
factor alpha (HIF-1 alpha), which can upregulate angiogenic proteins, various growth factors such
as vascular endothelial growth factor (VEGF), FGF and PDGF, as well as angiogenic oncogenes such
as Ras. The effect of hypoxia on CSCs and their secretion of angiogenic factors resulting in tumor
vascularization remains doubtful [100]. Tumor angiogenesis is considered to initiate from the growth
of TECs stimulated by angiogenic factors, such as FGF, VEGF, and PDGF, including inflammatory
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cytokines secreted from tumor cells. As a result, MMPs and plasminogen activators are induced to
cause the degradation of the vessel basement membrane allowing TECs to invade the surrounding
tissues [101]. Then, the TECs deposit a new basement membrane and secrete growth factors, which
will attract cells such as pericytes, ensuring the stable neovascular vessels to support the continued
tumor growth. The TECs support the progression and metastasis of tumors [102,103] (Figure 4).
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TECs, which have irregular shape and size, are completely different from normal endothelial
cells (ECs). They have ruffled borders and long, fragile cytoplasmic processes extending outward
and throughout the vessel lumen [104,105]. The tips of certain branched TECs could pierce the
lumen, establishing openings or small intercellular gaps in the vessel wall. These openings permit
extravagated erythrocytes to a pool of tumor blood vessels creating “blood lakes”. The appearance
of tumor endothelium is defined as “mosaic” [106]. Only 0.1% to 3% of all ECs in normal tissues are
estimated to turn over daily, and the percentage may decline with age. The rate of EC turnover in
tumors is greatly accelerated 20–2000 times more than that in normal tissues [107,108].

Tumor angiogenesis has been considered to occur with the proliferating of endothelial cells in
the blood vessels. Conversely, circulating endothelial progenitor cells CD34+/ VEGF receptor 2+

(VEGFR-2) were supposed to home into the areas of damaged tissue and encompass sites of active
angiogenesis [109,110]. Other researchers identified similar cells, which were localized at angiogenesis
sites within tumors circulating in blood [111]. Mesenchymal stem cells exhibiting endothelium
formation in hemangioma are thought other sources for TECs [112]. Stem-like tumor cells could
transdifferentiate to form endothelium as well [113]. Bone marrow MSCs may also be involved in
tumor angiogenesis. MSCs can penetrate tumors and may augment cancer development [114] and
under certain conditions, MSCs can differentiate into ECs [115,116]. ECs and MSCs appear able to
transdifferentiate into each other being accelerated by the tumor microenvironment and contributing
to tumor progression [117].

Several studies have shown that CSCs can support tumor angiogenesis and metastasis. CSCs may
directly contribute to angiogenesis by differentiating into tumor vasculogenic stem/progenitor cells
or creating a tumor microcirculation by developing vasculogenic mimicry devoid of an endothelial
pattern [118,119]. CSCs were described to express angiogenic factors and alter elongated endothelial-like
cells in vitro under hypoxia conditions [120]. CSCs were supposed to significantly transdifferentiate into
ECs in tumor vasculogenesis. A population of tumor stem cells has been described to differentiate into
TECs with the expression of the endothelial markers such as CD31, Factor VIII and, VEGFR2, acquiring
the ability to form capillary-like structures after 6 h on Matrigel [121,122]. A model of CSCs induced
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from mouse iPSCs were demonstrated to differentiate into TECs [22]. The features of vasculature
were evaluated in vivo showing neovascularization and vasculogenic mimicry formation [123]. CSCs’
subpopulation derived from mouse iPSCs was found to dominantly express angiogenic factors such
as VEGF-A and FGF2. These results suggest that these CSCs have an important role in not only the
enrollment of host endothelial vessels into tumor, but also in the development of endothelial linages
with their progenies [124].

Pericytes are normally located on microvessel walls within a basement membrane opposed to the
side of endothelium and typically recognized as extremely slender, elongated, and branched shape [125].
Pericytes were illustrated by the expression of α-SMA, platelet-derived growth factor receptor beta
(PDGFRβ), desmin, CD146, and nerve/glial antigen-2 (NG2) proteoglycan [102]. The expression of
α-SMA, CD146, PDGFRβ, and NG2 is not only limited to pericytes but varies depending on the type
of tissue and the stage of maturation as well as the pathological conditions [126]. During the tumor
progression, pericytes are considered to contribute to tumor angiogenesis, allowing endothelial cells
to form vascular branches, surviving and circulating throughout the body [127]. However, little is
known about the biology of these subpopulations of cells, nor about the exact origin of these cells
or the development process. The basic functional roles of pericytes have long been recognized as
maintenance and improvement of vasculature regulation of blood flow and vessel permeability [128].
Pericytes also essentially support ECs in a mechanical and physiological manner, which is critical for
the vessel to remodel and mature [129]. Although, until now, the relationship between pericytes, stem
cells, and CSCs has been obscure, pericytes are supposed to be comprised of stem cells of various cell
types. Pericytes could be differentiated into chondrocytes and adipocytes [130]. Pericytes could also
be a source of osteogenic cells [131,132].

6. Tumor-Associated Adipocytes (TAAs)

Adipocytes are the least studied stromal cells in all types of cancers, despite the fact that in some
types, cancer cells are in direct connection with the adipocytes [133,134]. Adipose tissue is constituted
of lipid-filled adipocytes and the stromal vascular fraction [135]. Monocytes/macrophages represent a
large part of the stromal vascular fraction. Macrophages are remarkably plastic and can be assumed as
multiple phenotypes [136]. Extra adiposity, namely obesity, is related to cancer risks, which is attributed
to higher levels of pro-inflammatory factors secreted from the adipocytes chronically triggering wound
healing. For instance, adipocyte-derived trophic factors (adipokines) could also promote the growth of
tumors [137]. While adipose tissue-associated macrophages have been well described leaning against
obese adipose depots [138], TAAs have not been studied in this regard. TAAs are supposed to serve as
a depot of tumor-infiltrating activated macrophages, which might support tumor growth potentially
activating neovascularization and exacerbating inflammation. Tumor cells modify adjacent TAAs
by inducing inflammation, angiogenesis, and fibrosis [139,140]. TAAs in highly vascularized and
angiogenic tumor tissues may support the expansion and progression of the tumors. These insights
make tumors such as breast tumors, which are typically initiated by adipocytes within adipose tissues,
feasible to grow directly or metastasize to lymph nodes [141,142].

In the case of caloric excess over a long time, adipocytes become hypertrophic and lose both
metabolic activity and the control of pro-inflammatory cytokines, free fatty acids, and hormone
liberation [143]. Dysfunctional adipose tissue is considered a hallmark for a chronic state of
inflammation. The enhanced secretion of pro-inflammatory cytokines together with raised lipid
metabolites promotes tumor progression [144]. Prominently, recent studies demonstrated that cancer
cells and neighboring adipocytes in the tumoral stroma directly interact with each other [145].
This interaction will lead to activated adipocytes with tumor supportive phenotype, which is
usually recognized by lipolysis, loss in adipocyte markers and overexpression of pro-inflammatory
cytokines [146]. Adipocytes in breast TME also enhance tumor cell survival, increasing resistance to
chemotherapy. The proliferation and invasion of tumor cells into adjacent tissues could be attributed
to the roles of TAAs within the tumor tissue, while the origin of TAAs remains unclear [147].
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Our group previously reported that CSCs converted from iPSCs could arise from normal stem cells
when treated in the cancer microenvironment [21], including tumor-derived extracellular vesicles, which
were secreted from lung cancer-derived cells. Interestingly, the CSCs generated by the treatment with
the vesicles from mouse iPSCs exhibited malignant liposarcomas with aggressive dissemination into
the abdominal cavity in vivo. The CSCs established from primary tumors showed the differentiation
potential to adipocytes as well as the capacity of self-renewal. These results suggest that CSCs could
be the origin of TAAs in some cases [148,149].

7. Tumor-Associated Macrophages (TAMs)

Macrophages are the most abundant immune cells in the TME. Macrophages are considered
to have immunologic tumoricidal activity [150] while they adopt a pro-tumoral phenotype both in
primary and metastatic sites [151].

As one of the types of immune cells in the TME, macrophages have been considered to play an
important role in tumor progression depending on the stage of tumor growth and the type of tumor [152].
TAMs are tolerated through various mechanisms to enhance tumor progression. Conventionally,
macrophages are classified into two subgroups of M1 and M2. M1-type macrophages are classically
defined as ones activated by pathogens and innately fighting against invading pathogens [153].
Alternatively, M2-type macrophages are active macrophages that play important roles in tissue repair
or tumor progression. Many studies have shown that Notch signaling plays a crucial role in the
polarization of M2 macrophages [154]. A previous study showed that the transcription factor Gata-6,
which plays a key role in fixing the phenotype of macrophages by altering their transcriptome,
can be expressed specifically by mouse peritoneal macrophages and renewing macrophages in
the inflammatory response [155]. Several cytokines, such as IL-6 have found to be involved in the
development and preservation of the macrophage subsets and their functions in inflammation and tissue
homeostasis [156]. Many soluble factors responsible for the polarization of macrophage-supporting
tumor progression have been identified. Monocytes enroll in the tumor tissue as a result of chemokine
CCL2 and macrophage colony-stimulating factor [157]. Interleukins such as IL-4, -10 and -13, as well
as other cytokines in the TME, stimulate the differentiation of monocytes into TAMs [158]. Although
the ability to present antigens is very weak, TAM is considered to have the potential to promote
tumor progression through a variety of mechanisms, which are not known in detail. In lung cancer,
macrophages are found polarized to a pro-tumoral phenotype at the time of tumor initiation [159].
These activities include the suppression of T cell responses [160]. Also, macrophages facilitate many
essential tumor progression features including angiogenesis, invasion of tumor cells, motility, tumor
cell extravasation enhancement and persistent growth [161]. Each of these behaviors is provided by an
identifiable subpopulation of macrophages. Immune cell commitment by tumors is necessary for their
acquisition of a malignant phenotype. This argument came from data mentioned above together with
previous studies showing that the ablation of macrophages inhibits tumor progression and metastasis.
TAMs, therefore, could be an important therapeutic target for cancer treatment [162,163].

TAMs secrete a huge number of angiogenic factors, such as VEGF and PDGF (Figure 5), which
can stimulate tumor angiogenesis [164]. TAMs also secrete various growth factors, MMPs, which
promote tumor cell proliferation, invasion and metastasis. Furthermore, TAM has recently been found
to express PD-L1 directly inducing T cell apoptosis [165]. TAMs are also considered to inhibit T cell
growth by diminishing the local concentration of arginine, which is an essential amino acid for T cell
metabolism to survive [166]. Being adopted by tumors, macrophages with an M2-like phenotype
decrease their MHC class II molecules and become ineffective antigen-presenting cells [167].

The high density of TAM correlates with therapeutic resistance and poor prognosis of cancer
patients. Hence, limiting tumor growth and metastasis as well as restoring chemotherapeutic
responsiveness have been successful after macrophage depletion [168]. For example, Trabectedin, which
is a DNA-binding agent, applies selective cytotoxicity to circulating monocytes and TAM populations
by stimulating the extrinsic apoptotic pathway depending on the tumor necrosis factor [TNF]-related
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apoptosis-inducing ligand (TRAIL). In particular, monocytes are sensitive to TRAIL because they express
very minimal levels of TRAIL decoy receptors [169]. The production of cytokines, including CCL2 and
IL-6, which are important in promoting tumor growth, is significantly inhibited by trabectedin in four
different mouse tumor models. TAMs produce CCL18 and stimulate the invasiveness of breast cancer
cells via phosphatidylinositol transfer protein membrane-associated 3 [170,171].

The origins of macrophages are still elusive in many cancers, especially in the early stages [172].
The recruitment and differentiation are likely to be different from those when exposed to microbial
products and more complex in cancers, especially in colon cancer, than those in acute inflammation.
Nevertheless, the possibility of therapies targeting the pro-tumoral macrophages that spare the resident
macrophages associated with homeostasis from anti-tumoral activities is tantalizing, because the
investigation of the origins of TAMs and their measures of recruitment, maintenance, and differentiation
make up the primary stages of them [173,174].

The historic concept of adult resident tissue macrophages as exclusively derived from bone
marrow (BM) has recently been proved incorrect. Most tissue macrophages arise from yolk sac
progenitors, with some exceptions such as those from intestines. In contrast, macrophages responding
to pathogens appear to come from circulating BM-derived monocytes [175,176]. Several embryonic
origins contradict the belief that TAMs derive from the BM in the primary tumor. Recently, evidence
of different origins and responses with the presence of TAMs as resident yolk sac-derived microglia
and recruited BM-derived monocytes has been shown in a mouse model of glioma. TAMs in the TME
have different behavior to anti-macrophage treatments based on the inhibition of colony-stimulating
factor-1 signaling, which regulates the lineage [151,177].

CSCs could be the source of TAMs in the TME. Our group has recently analyzed a malignant tumor
developed from CSCs converted from human iPSCs. High immunoreactivity to both anti-human and
anti-mouse CD68 antibodies was detected, suggesting that the tumor tissue was enriched by TAMs
originated from both human and mouse cells.

In mouse models, pharmacological macrophage inhibition has shown great promise and several
agents are currently under clinical investigation. Macrophage depletion and recruitment should be
included in several strategies targeting macrophages within the TME [157,178].
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8. CSCs: Challenges and Limitations

There is still no precise information on the differentiation abilities of CSCs even though they have
shown pivotal characters as a subpopulation of cancer cells, such as chemoresistance and metastatic
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ability. The definition of CSCs suggests that these cells have also differentiation ability as well as
normal stem cells. This raises a question— “What are the boundaries of this ability?”.

Major obstacles must be overcome to comprehend resultant cell phenotypes and mechanisms
of differentiation. Identification and isolation of CSCs are two of these obstacles. To isolate CSCs,
antibodies against specific surface markers or specific culture conditions should be used that why
until now obtaining CSCs is still considered a challenging and demanding procedure. At the same
time, genetic manipulation or reprogramming cells into CSCs is ignoring the epigenetic effects on
inducing CSCs. To get through this issue, our lab developed a novel method for converting iPSCs
into CSCs. The conversion was accompanied by tumorigenicity acquiring, elevating CSC markers
and maintaining stemness markers. Interestingly, the number of hypomethylation of CpG islands in
the converted CSCs was found more than that in iPSCs [179]. This observation suggested CSCs were
highly plastic having potentially active genes more than iPSCs did. As mentioned above, using these
models, we have proved that multiple phenotypes could be differentiated from CSCs converting from
iPSCs. These differentiated cells have also shown supportive roles in maintaining CSCs.

Studying CSCs converted from iPSCs to identify different subtypes of CSCs and their heterogeneous
plasticity could be helpful to establish new methods for isolation and expansion of patient-derived
CSCs. Still needed to explore is their relevance to patient-derived CSCs although the importance of
CSCs converted from iPSCs in the cancer research field has been conveyed.

In the meantime, the fundamental question remains if patient-derived CSCs or cancer cells are
exhibiting the same plasticity as CSCs converted from iPSCs and what is the difference between their
plasticity. A part of this question has come to light since several studies from different groups have
proved the ability of bulk cancer cells or cancer cells with stemness characteristics for differentiation
into other cell phenotypes. Xenografts of glioma stem cells have shown to contain vessels of human
origin. Glioma and colorectal cancer stem cells had displayed the ability to differentiate into endothelial
and smooth muscle-like cells [122,180–184]. These results coincide with our results which showed the
ability of CSCs converted from iPSCs to differentiate into endothelial cells with the ability of tube
formation [123]. Regarding blood and immune cells, many studies have shown that polyploidy giant
cancer cells with the expression of stemness markers can differentiate into myoepithelial, endothelial
and erythroid cells with a marker of hemoglobin [185–189]. This is in particular interesting because the
well-believed concept of the bone marrow origin of TAMs have considerably changed recently. TAMs
are now considered to have embryonic origin rather than bone marrow origin [190,191]. This fact
is raising a question on the possibility of TAMs having CSC origin. Finally, breast cancer cells have
differentiated into functional adipocytes which also prove the transdifferentiation ability of cancer
cells [192–194].

In the summary, the CSCs converting from iPSCs have proposed some differentiation patterns of
CSCs, which were further confirmed using other types of cancer cells and CSCs. Thus, exploring the
roles of different cell phenotypes arising from CSCs in the TME could provide more efficient treatment
strategies and drug combinations for cancer in the future.

Although there are increasing studies that examine the plasticity of CSCs, there is still a lot of
information missing regarding mechanisms, factors, and conditions that drive CSCs to give other
types of cells in the TME. Thus, further studies are needed to evaluate the plasticity of CSCs converted
from iPSCs, CSCs derived from cell lines and patient-derived CSCs. Correspondingly, it appears
very important to identify different stages of plasticity in CSCs and ones to be targeted so that the
differentiation cascade could be stopped to provide progenies.

9. Conclusions

Here, we described our hypothetical view of the differentiation ability of CSCs into some types of
cells in the TME which may support CSCs and tumor growth based on our results obtained by the
CSCs converted from iPSCs. At the same time, we discussed some recent studies that proved the same
idea using CSCs from cancer cell lines. While many cell phenotypes are still not explored yet, we



Cancers 2020, 12, 879 13 of 22

believe that this review could prompt more discussion in the community of cancer science about the
potential of CSCs to construct their own niche by differentiating into other cell phenotypes.
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Abbreviations

Abbreviations Full Names
ATRA all-trans retinoic acid
BM bone marrow
CAFs cancer-associated fibroblasts
CSCs cancer stem cells
ECM extracellular matrix; ECs: endothelial cells
EMT epithelial mesenchymal transition
FAP-α fibroblast activation protein-α
FGF-2 fibroblast growth factor
FGFs fibroblast growth factor
FSP-1 fibroblast-specific protein-1
HGF hepatocyte growth factor
HIF hypoxia-inducible factor
IGF1 insulin-like growth factor 1
LOX lysyl oxidase
MDR multidrug resistance
MMPs matrix metalloproteases
MSCs mesenchymal stem cells
MT1-MMP membrane type 1-MMP
NF-κB nuclear factor kappa B
NG2 nerve/glial antigen-2
PD-L1 programmed death-ligand 1
PDGF platelet-derived growth factor
PDGFR-β platelet-derived growth factor receptor-β
SDF-1 Stromal cell-derived factor-1
TAAs tumor-associated adipocytes
TAMs tumor-associated macrophages
TECs tumor endothelial cells
TEX tumor-derived exosomes
TGFβs transforming growth factor βs
TME tumor microenvironment
TNF tumor necrosis factor
TRAIL TNF-related apoptosis-inducing ligand
VEGF vascular endothelial growth factor
VEGFR-2 VEGF receptor 2
iPSCs induced pluripotent stem cells
α-SMA alpha-smooth muscle actin.
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