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Abstract

An incomplete understanding of the molecular mechanisms responsible for myometrial activation from the quiescent
pregnant state to the active contractile state during labor has hindered the development of effective therapies for preterm
labor. Myometrial stretch has been implicated clinically in the initiation of labor and the etiology of preterm labor, but the
molecular mechanisms involved in the human have not been determined. We investigated the mechanisms by which
gestation-dependent stretch contributes to myometrial activation, by using human uterine samples from gynecologic
hysterectomies and Cesarean sections. Here we demonstrate that the Ca requirement for activation of the contractile
filaments in human myometrium increases with caldesmon protein content during gestation and that an increase in
caldesmon phosphorylation can reverse this inhibitory effect during labor. By using phosphotyrosine screening and mass
spectrometry of stretched human myometrial samples, we identify 3 stretch-activated focal adhesion proteins, FAK,
p130Cas, and alpha actinin. FAK-Y397, which signals integrin engagement, is constitutively phosphorylated in term human
myometrium whereas FAK-Y925, which signals downstream ERK activation, is phosphorylated during stretch. We have
recently identified smooth muscle Archvillin (SmAV) as an ERK regulator. A newly produced SmAV-specific antibody
demonstrates gestation-specific increases in SmAV protein levels and stretch-specific increases in SmAV association with
focal adhesion proteins. Thus, whereas increases in caldesmon levels suppress human myometrium contractility during
pregnancy, stretch-dependent focal adhesion signaling, facilitated by the ERK activator SmAV, can contribute to myometrial
activation. These results suggest that focal adhesion proteins may present new targets for drug discovery programs aimed
at regulation of uterine contractility.
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Introduction

In late pregnancy increasing fetal growth significantly increases

uterine wall tension. Compared to the nonpregnant uterus, human

uterine weight increases from 70 grams to about 1100 grams at

term pregnancy. Its total volume averages about 5000 ml, an

expansion in size of approximately 250 fold [1]. No other smooth

muscle organ in the human is able to stretch as much as the uterus.

Myometrial stretch has been implicated, clinically, in the

activation of the myometrium for labor, but the mechanisms

involved are unclear. For example, it is known that multiple

gestation pregnancies and polyhydramnios, conditions associated

with increased tension/stretch on the uterine wall, cause an

increased incidence of premature labor. Understanding the

molecular basis of uterine contraction will aid the better control

and manipulation of uterine contractile function in preterm and

dysfunctional labor.

Focal adhesion complexes (also called dense plaques in smooth

muscle) connect the intracellular cytoskeleton to the extracellular

matrix and are recognized sites of mechanotransduction [2].

Previous studies [3,4] in rodent myometrium have demonstrated

that focal adhesion signaling is activated at late pregnancy. The

authors suggested that neuronal and hormonal pathways alone

may not be sufficient to bring about myometrial activation for

labor and that a synergy of neuronal-hormonal pathways and

mechanotransduction pathways could play an important role in

parturition. Current knowledge of the roles of mechanical stretch

in uterine regulation is based on data from animal models, and

little information is available as to how this system works in human

myometrium. Furthermore, the identity of signaling molecules

involved in mechanotransduction pathways in human myometri-

um is little studied [5].

We have recently reported in the timed pregnant rat model that

mechanical stretch of pregnant uterine smooth muscle activates
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ERK via focal adhesion signaling. In the rat, we have shown that

in addition to classical GPCR-mediated pathways, this ERK

pathway, in a cause-and-effect manner, facilitates myometrial

contraction, and plays a distinct role in the switch from the

quiescent phase of pregnancy to a more contractile phenotype at

the end of pregnancy [6,7].

Smooth muscle archvillin (SmAV) is a regulator of ERK

pathways newly identified by our group [8,9]. It is a member of

the supervillin family that is preferentially expressed in smooth

muscle and was first identified as an interactor of the smooth

muscle differentiation marker, h-1 calponin in a 2-hybrid assay. Its

function in myometrium has not been previously studied.

In the present study, we tested the hypothesis that the stretch-

mediated activation of focal adhesion signaling molecules occurs

during human pregnancies and describe, for the first time, an up-

regulation during gestation and association with focal adhesion

complexes of the ERK regulator, SmAV, in human myometrium.

Materials and Methods

Human Myometrial Tissue Collection
Ethics Statement: The consent forms for human myometrial

tissue collection were approved by the Committee on Clinical

Investigations at Beth Israel Deaconess Medical Center and

Central Manchester Healthcare Trust LREC (UK). The human

pregnant myometrial samples were taken from the upper edges of

the lower segment uterine incision during Cesarean sections

(n = 44) or ex-utero intrapartum treatment (EXIT) procedures

(n = 3). The nonpregnant human myometrial samples (n = 8) were

collected from pre-menopausal patients undergoing hysterectomy

to remove the uterus for benign gynecological conditions and

samples were obtained at the uterine lower segment. Exclusions

for sample collection were patients with a history of hypertension

or pregnancy-induced hypertension who are on antihypertensive

medication, those with preterm labor who are currently on

medication treatment, or patients undergoing emergent cesarean

section from whom unable to obtain a formal consent.

Rat Myometrial Tissue Collection
All procedures were approved by the Boston Biomedical Research

Institute Animal Care and Use Committee and complied with he

American Physiological Society ‘‘Guiding Principles for Research

Involving Animals and Human Beings’’. Sprague-Dawley nonpreg-

nant and timed-pregnant rats (Taconic, Germantown, NY) were

euthanized by carbon dioxide inhalation. Delivery was observed to

occur on the 22nd or 23rd gestational day. For the collection of in-

labor uterine smooth muscle samples, the rat was closely observed

and the delivery of the first pup was used as the indication of labor.

Excised uteri were immersed immediately into oxygenated Krebs

solution at room temperature. The details of tissue handling and

protein extraction have been published previously [6,10].

Tissue Preparation and Force Recording
The whole-thickness human uterine smooth muscle strips were

microdissected to a size of approximately 106363 mm, and

oriented parallel to the longitudinal axis of muscle bundles. Four

myometrial strips were dissected from each sample for in vitro

stretch experiments. The satisfactory condition of each uterine

smooth muscle strip was confirmed before the experiment by the

presence of active, spontaneous contractions with or without

51 mM KCl treatment. Isometric force was recorded at 37uC as

previously described [10]. For in vitro stretch experiments, the

strips were stretched to 26 slack length. Tension was applied

gradually over 20–30 seconds and maintained for the duration of

experiment. The contractile activity was digitalized with MacLab/

8e, Chart v3.5.4 (AD Instrument, Castle Hill, Australia).

All the samples used for in vitro stretch experiments were term,

not in labor human pregnant myometrium. The justification for

stretch of 26 slack length is based on the optimal length of term

pregnant uterine smooth muscle strips in the rat model [7,10] and

the pilot stretch experiments on human myometrium. Also, this

optimal length is same as in vivo length as measured when the

uterine wall is stretched by the fetus in the rat model. Clinically, it

is impossible to measure the in vivo length of the uterine smooth

muscle that will be sampled later. In general, in vitro stretch to 26
slack length generates force in the range of 10–15 grams. This is

about a 20-fold increase in force compared to baseline tension of

term, not-in-labor uterine strips in the organ bath. The area under

the curve (AUC) was obtained by integrating the force signal (in

gram) over indicated time period (in second).

Immunoblotting
Strips were quick-frozen at different time points after a

mechanical stretch in a dry ice/trichloroacetic acid/acetone slurry

containing 10 mM DTT. The frozen samples were homogenized

as previously described [6]. Protein concentrations were quantified

by modified Lowry protein assay (DC Protein Assay Kit, Bio-Rad).

Protein-matched samples were boiled, separated by SDS-PAGE,

transferred to a PVDF membrane and analyzed by immunoblot-

ting with appropriate antibodies.

For caldesmon (CaD) and rat SmAV protein content quanti-

fication, the blots were visualized with a SuperSignal West Pico

peroxide solution (Pierce, Rockford, IL). The images were

detected with a chemiluminescence screen and quantified with a

Bio-Rad Phospho Imager and Multi-Analyst software. In rest

experiments, the intensity of Western blot signals was quantitated

by using an Odyssey Infrared Imaging System (LI-COR

Bioscience, Lincoln, Nebraska). To minimize the variation of the

signal intensity between different Western blotting experiments,

we developed blots to similar intensities or used a reference sample

in each blot for normalization if multiple samples were used from

different pregnant women.

Calcium sensitivity in alpha-toxin permeabilized human
myometrial strips

The method was identical to the method previously published

[10]. The force of contractions generated at 1027 M free calcium

concentration were recorded and expressed as a percentage of

maximal contraction at pCa 5. This measurement was used as an

index of calcium sensitivity.

Immunoprecipitation
The myometrial smooth muscle strips were frozen in a dry ice/

acetone slurry containing DTT. The tissue was pulverized with a

mortar and pestle cooled with liquid nitrogen. The tissue powder

was dissolved in a buffer containing 50 mM Tris (pH 7.4), 5 mM

EGTA, 140 mM NaCl, 1% NP40, 1% Na deoxycholate, 20KIU

aprotinin, 5 mM leupeptin, 5 mM pepstatin A, 2 mM Na3VO4,

and 1 mM NaF and centrifuged at 12,000 rpm at 4uC for 15 min.

The supernatant was precleared with protein A agarose and then

incubated with anti-phospho tyrosine or anti-ERK conjugated

agarose beads overnight at 4uC with gentle rotation. The immune

complex beads were washed, resuspended in a sample buffer

(25 mM Tris (pH 6.8), 4% SDS, 20% glycerol, 5% b-mercapto-

ethanol, 1 mM EDTA and 0.001% bromophenol blue), and

boiled at 100uC for 5 min. The proteins of interest were detected

by western blotting with specific antibodies.

Myometrial Stretch Activation
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Materials
An anti-SmAV antibody was produced from a bacterially

expressed, His-tagged, fragment containing the first 250 N-

terminal residues of ferret SmAV. The purified peptide was

injected into rabbits and polyclonal antiserum was developed by

Capralogics, Hardwick, MA. The antibody was affinity purified

from the serum (AminoLink Kit, Pierce Biotechnology) and the

purified antibody recognizes the antigen and also recognizes a

single protein band of appropriate molecular weight and no other

bands in aorta tissue homogenates. This antibody was used for

immunoblot and imaging studies.

The CaD polyclonal antibody (1:30,000) was raised against full-

length human myometrial CaD and was a gift from Dr. K.

Mabuchi (Boston Biomedical Research Institute). The phospho-

CaD antibody (1:500 Upstate, Lake Placid, NY) was produced

against a phosphopeptide containing the CaD sequencing

surrounding the Ser789 ERK phosphorylation site. The p44/42

MAP kinase1/2 (1:1000), phospho p44/42 MAP1/2 kinase

antibody (1:1500), phospho-FAK (Y925, 1:500) and phospho-

p130Cas (1:500) were purchased from Cell Signaling Technology

(Beverly, MA). Phospho-tyrosine monoclonal antibody, clone

4G10 (1:500–1500), anti-phospho-tyrosine and anti-MAP kinase

ERK1/2 agarose-conjugated beads were the products of Upstate.

P130Cas and Phospho-FAK (Y397, 1:1000) antibodies were

purchased from BD Transduction Laboratories (San Diego, CA).

FAK (1:300) was a polyclonal antibody from Santa Cruz

Biotechnology Inc. (Santa Cruz, CA). Monoclonal alpha-actinin

(1:1000) antibody was purchased from Sigma.

Mass Spectrometry
The protein band of interest was excised from one-dimensional,

Coomassie blue stained PAGE gels. Mass spectrometry for protein

identification was performed by the Tufts University Core Facility

(Boston, Massachusetts). Excised bands were subjected to in-gel

reduction, alkylation, and enzymatic digestion with trypsin (Roche

Applied Science, Indianapolis, IN). LC/MS/MS analysis was

performed on the in-gel digest extracts using an Agilent (Santa

Clara, CA) 1100 binary pump directly coupled to a mass

spectrometer. Nanobore electrospray columns were constructed

from 360 mm o.d., 75 mm i.d. fused silica capillary with the column

tip tapered to a 15 mm opening (New Objective, Woburn, MA)

and were packed with 200 Å 5 mm C18 beads (Michrom

BioResources. Auburn, CA.) to a length of 10 cm. The flow

through the column was split pre-column to achieve a flow rate of

300 nL/min. The mobile phase used for gradient elution consisted

of (A) 0.3% acetic acid 99.7% water and (B) 0.3% acetic acid

99.7% Acetonitrile. Tandem mass spectra (LC/MS/MS) were

acquired on a Thermo LTQ ion trap mass spectrometer (Thermo

Corp., San Jose, CA). The MS/MS spectra were searched against

the NCBI non-redundant protein sequence database using the

SEQUEST computer algorithm [11] to produce a list of proteins

identified in each sample. Confident protein identification was

determined by the Proteomics Browser software (Thermo Corp.,

San Jose, CA) and was defined as at least 4 unique peptides

matching for a given protein.

Immunohistochemistry
The whole-thickness, term, not-in-labor, human uterine smooth

muscle strips were microdissected and stretched to 2 fold slack

length for 7 minutes. Stretched muscles were fixed by immersion

in 4% paraformaldehyde for 2 hours at 4uC and embedded with

optimal cutting temperature compound (OCT, Tissue-Tek).

Frozen samples were sliced 10 micrometers thick and stained

with rabbit anti-SmAV and mouse anti-vinculin (Sigma). Alexa

568-conjugated goat anti-rabbit (red) and Alexa 488 goat anti-

mouse (green) secondary antibodies (Molecular Probe Inc.) were

used for staining. DAPI was used as a nuclei stain. Images of

immunostained myometrium were taken with a Nikon Eclipse TE

2000-E inverted microscope equipped with a Nikon Plan

Apochromat 60XA (NA 1.4) oil immersion objective. Images

were recorded by a high-resolution fluorescence CCD camera

(CoolSNAPTM HQ2, PhotometricsH) with NIS-Elements Ad-

vanced Research (Nikon) software. In all cases, it was confirmed

that there was no detectable background fluorescence by staining

cells in the absence of a primary antibody. In addition, for all

colabeling experiments, it was confirmed that there was no

detectable cross talk between fluorescent labels by exchanging

excitation/emission filters on single labeled samples. Resolution

was optimized by deconvolution microscopy software. The

algorithm used image information from different Z-slices

(Richardson-Lucy algorithm, constrained iterative-maximum like-

lihood estimation algorithm).

Statistics
Data were expressed as mean6 SE. Significance of difference

between two individual sets of means was taken at p,0.05 by an

unpaired Student’s t test unless indicated otherwise. In stretch

experiments, a one-way ANOVA test was used for the time course

study. The probability values of p,0.05 was considered

significant.

Results

Human myometrial CaD protein content and the [Ca2+]
requirement for contractile activation increase during
pregnancy

h-Caldesmon (CaD) is a smooth muscle-specific actin binding

protein that interferes with acto-myosin interactions [12]. In

myometrial samples collected from pregnant women who under-

went Cesarean sections or non-pregnant women who underwent

gynecological procedures, we confirmed the earlier reports of Word

et al [13] and Riley et al [14] that h-CaD protein expression levels

increase significantly during pregnancy (2690763535 in $37 weeks

group vs. 1365663752 in NP group)(Fig. 1A).

Since h-CaD is known to inhibit acto-myosin interactions in vitro

[15], we tested the relative Ca sensitivity of activation of the

contractile filaments of human myometrial preparations permeabi-

lized with alpha toxin [10]. Shown in Figure 1B are the average

contractile force responses of myometrial preparations from

nonpregnant women, women pregnant for ,37 weeks (not in

labor) and those pregnant for $37 weeks (not in labor) to a [Ca2+] of

1027 M, expressed as a percentage of the maximal force obtained at

1025 M [Ca2+]. Calcium responsiveness of the contractile appara-

tus is significantly decreased in the late pregnancy samples

compared to that of samples from non-pregnant women. Our data

are consistent with the hypothesis that the observed increased

inhibitory caldesmon protein content in human myometrium leads

to a decreased contractile responsiveness to Ca during pregnancy.

During a normal pregnancy the uterus is known to clinically display

a ‘‘myometrial quiescence’’ before labor. This decreased Ca

responsiveness of the contractile apparatus is one factor that could

explain this quiescence during pregnancy.

Gestation- dependent increases in h-CaD
phosphorylation in human myometrium

In the timed pregnant rat model, we have shown that as labor

begins, an ERK pathway is activated that phosphorylates CaD [10]

Myometrial Stretch Activation
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Figure 1. Gestation-dependent changes in CaD content, calcium sensitivity and CaD phosphorylation. A. h-CaD expression
increases during pregnancy. n = 3–7 samples in each group. * p,0.05 compared to NP. NP: nonpregnant. A single representative blot is
illustrated on the top. To minimize the variation of the signal intensity between different Western blotting experiments, a reference sample was used
in each blot for normalization since multiple samples were used from different pregnant women. B. Myometrial calcium sensitivity decreases
with gestation. Human nonpregnant and pregnant not in labor uterine strips were permeabilized with alpha-toxin. Contractile force at 1027 M
calcium is expressed as a percentage of contraction induced by 1025 M calcium. n = 3–5 samples in each group ** p,0.001 compared to NP. C.
Increased CaD phosphorylation at Ser789 occurs only with the onset of labor. Phosphorylated p-h-CaD is normalized to h-CaD protein level.
A single representative blot is included on the top. NP: nonpregnant, NIL: term, not in labor, IL: term, in labor. The samples used in experiments for
Fig 1A and Fig 1C are different. Figure 1C is an independent experiment. *p,0.05 vs. NP. n = 5–7 samples in each group.
doi:10.1371/journal.pone.0007489.g001
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and removes the inhibitory influences of CaD on actomyosin

interactions [15] and, as a result contributes to the onset of labor [7].

Whether this ERK-mediated phosphorylation of h-CaD during

labor occurs in the human has not been reported. We probed

quickly frozen human myometrial samples from nonpregnant

women, term pregnant women, but not in labor, and term pregnant

women and in labor. We found (Fig. 1C) that h-CaD phosphor-

ylation at an ERK specific site (Ser 789) increases significantly in

human myometrial tissue from pregnant women in labor

(1.9760.24 vs. 1.0160.27 in NP group) but not from those not in

labor (1.360.39). These results are consistent with phosphorylation

of CaD being a contributing factor for labor onset.

Stretch of human myometrium causes increased ERK
activation and h-CaD phosphorylation

The increased h-CaD phosphorylation seen at the end of term

could be due to many factors including hormonal factors as well as

the increased stretch of the myometrial wall. To test whether stretch

itself directly regulates ERK-dependent h-CaD phosphorylation, we

exposed human myometrial strips to in vitro stretch. Human

myometrial strips (term, not-in-labor) were stretched to 2x slack

length and quick frozen at indicated time points for the measurement

of CaD phosphorylation by immunoblot. Strips at slack length were

used as a control group. By 5–15 minutes after the onset of stretch,

CaD phosphorylation, normalized for total CaD protein, significantly

increased (Fig. 2A). Although the increase is modest, the change in

CaD phosphorylation levels is statistically significant.

The phospho-CaD antibody used for the immunoblots is

specific for CaD phosphorylation at a known [16] ERK

phosphorylation site, Ser789, suggesting that ERK could be the

kinase responsible for CaD phosphorylation and activation. To

test this hypothesis, we monitored ERK activation in response to

in vitro stretch by immunoblotting for phospho-ERK. As is shown

in Figure 2B, in vitro stretch does increase ERK2 phosphorylation

at Ser789 in a statistically significant manner. In contrast, phospho

ERK1 levels did not change significantly in response to stretch

(data not shown).

Mechanical stretch in vitro increases myometrial
contractility

The above data demonstrate that the existence of stretch-

sensitive elements in the pregnant myometrium that result in ERK

and CaD activation. Our previous work in a rat model suggested

that ERK activation and subsequent CaD activation lead to

corresponding changes in contractility [6,10]. This hypothesis was

tested in current study with term, not in labor human

myometrium. As shown in figure 3, in vitro stretch quickly switched

the uterine smooth muscle from relatively quiescent status to an

active contractile state, characterized by a significant increase in

amplitude. The changes in contractility before and during stretch

were quantified by measuring the area under the active tension

curve above the level of passive tone (AUC). The uterine

contractility increases in a highly significant manner in response

to 2 and 7 minutes stretch in vitro.

Stretch of human myometrium induces an increase in
tyrosine phosphorylation and activation of focal
adhesion signaling

The above data imply that gestational stretch due to the growing

fetus, and, in vitro stretch imposed experimentally on the human

myometrium, can induce ERK and CaD phosphorylation. Focal

adhesions (FA) make direct contact with the extracellular matrix

(ECM), providing a structural link between the ECM and actin

cytoskeleton. FAs are mechano-sensors or transducers of ‘‘outside-in

signaling’’ [17,18], which is known, in non-muscle cells, to involve

tyrosine phosphorylation of many proteins. In contrast, in

differentiated, non-migrating smooth muscle cells, most signaling

events regulating contractility involve Ser/Thr phosphorylation.

Thus, as a first screen for adhesion plaque signaling events we

probed human myometrial homogenates in the presence or absence

of stretch with an anti-phosphotyrosine antibody.

As is seen in Fig. 4, there was a trend toward increases in the

tyrosine phosphorylation of (approximately) 130 kDa, 125 kDa

and 100 kDa bands with stretch, so we probed the human samples

with protein-specific phospho-antibodies. Of note, in the pregnant

rat model, only the 125 kDa band showed a pronounced increased

tyrosine phosphorylation in this range of molecular weights [6].

Figure 2. Stretch of human myometrium directly increases h-
CaD and ERK phosphorylation. A. h-CaD phosphorylation increases
in response to stretch. Phosphorylated p-h-CaD is normalized to h-CaD
protein level. *p,0.05 and ** p = 0.01 compared to resting sample (by
ANOVA). n = 4 samples in each group. B. Stretch increases ERK2
phosphorylation. p-ERK2 signals are normalized to the total ERK2
protein levels. *p,0.05 compared to resting samples (by ANOVA).
n = 4–5 samples in each group.
doi:10.1371/journal.pone.0007489.g002
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The 125 kDa tyrosine phosphorylated protein in the timed

pregnant rat model was identified as focal adhesion kinase, so

we probed the human samples with protein-specific phospho-FAK

antibodies.

FAK phosphorylation at Y397 is thought to signal integrin

engagement whereas phosphorylation at FAK-Y925 is thought to

signal subsequent downstream signaling to an ERK pathway [19].

Interestingly, we could detect no change in FAK-Y397 phosphor-

ylation during acute in vitro stretch of human term myometrial

samples (Fig. 5A, top). It is possible that phosphorylation at this site

was already activated in vivo, before the samples were obtained.

However, acute stretch did cause a significant increase in FAK-

Y925 phosphorylation (Fig. 5A, bottom) perhaps mimicking events

that occur later in vivo during the switch to initiate labor.

p130 Cas is a well-known, stretch sensitive, adhesion plaque

protein [20,21], so we postulated that the 130 kDa molecular

weight tyrosine phosphorylated band could be Cas and then

probed with a Cas-specific phospho-antibody. The phospho-Cas

signals were normalized to total Cas protein content and expressed

as a ratio of p-Cas/Cas. As shown in figure 5B, Cas is significantly

phosphorylated within 5–8 min in response to in vitro stretch in

human myometrium.

Elevations of tyrosine phosphorylation of FAK and Cas

appeared to be transient in the myometrial stretch experiments.

This could be explained by the dynamic assembly and disassembly

of focal adhesion complexes as a function of stretch. In contrast,

the downstream of resulting serine/threonine phosphorylation of

ERK/CaD may integrate upstream signals and be more sustained

(Fig. 1C and Fig. 2).

Probing the 100 kDa band for candidates with similar

molecular weights was unsuccessful so we turned to a mass

spectrometry approach.

Identification of proteins tyrosine phosphorylated in
response to myometrial stretch by SDS/PAGE and Mass
Spectrometry

To further identify human myometrial proteins tyrosine

phosphorylated in response to stretch, we immunoprecipitated

proteins with an anti-phosphotyrosine antibody using protein-

matched homogenates of unstretched and stretched myometrial

strips (term pregnant, slack, or stretched 2x slack length for 29 or

7 min). Fig. 6A shows a Coomassie blue stained SDS/PAGE gel of

such immunoprecipitates. It is of note that many proteins in

Figure 3. In vitro stretch increases contractility in pregnant myometrium. Uterine contractility was measured and quantified as the area
under curve (AUC). AUC is the integral of the active force over a period time of 2 or 7 minutes before and after stretch. Dotted line indicates level of
passive stretch. Data presented in the bar graph were collected from 8 term, not in labor, pregnant human myometrial samples and total 17 smooth
muscle strips. ++ p,0.01 compared to the AUC of spontaneous contraction before 2 minute-stretch. ** p,0.01 compared to the AUC of spontaneous
contraction before 7 minute-stretch. An insert was the representative myograph recording of contractile force from term pregnant human
myometrium in response to in vitro stretch.
doi:10.1371/journal.pone.0007489.g003

Myometrial Stretch Activation
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myometrial tissue from pregnant women are heavily tyrosine

phosphorylated in the basal state. Bands at 250, 130 and 100 kDa

that displayed a consistent increase in intensity (indicating either

an increase in Tyr phosphorylation or a binding to such a protein

in the immunoprecipitate) after stretch were subjected mass

spectrometric analysis.

The 100 kDa protein band was found to contain both alpha

actinin 1 (13 peptide matches) and alpha actinin 4 (23 peptide

matches) isoforms. Fig. 6B illustrates the high degree of peptide

coverage (31%) for the alpha actinin 4 isoform. The finding was

confirmed by immunoblot of the 100 kDa anti-phosphotyrosine

immunoprecipitates with an alpha actinin-specific antibody. As is

shown in Fig. 6C, the amount of alpha actinin immunoprecipi-

tated with an anti-phosphotyrosine antibody significantly in-

creased with stretch, indicating either, that the protein itself is

tyrosine-phosphorylated with stretch, or, that its association with

other tyrosine-phosphorylated proteins increases with stretch.

Alpha actinin is known to be present in adhesion plaques and

dense bodies in smooth muscle where it links the extracellular

matrix to the actin cytoskeleton and the contractile filaments.

Alpha actinin is also known to be directly tyrosine phosphorylated

in vitro, and the effect is reported to play a role in pressure-

activated cell adhesion in colon cancer cells [22,23]. Disruption of

alpha-actinin-integrin interactions at focal adhesions renders

osteoblasts susceptible to apoptosis. A truncated form of alpha-

actinin (ROD-GFP) competitively displaces endogenous alpha-

actinin from focal adhesions, disrupts focal adhesions and reduces

tyrosine phosphorylation at focal adhesions. Thus alpha-actinin

plays a role in regulating stabilization of focal adhesions [24] and

its increased association with tyrosine phosphorylation could also

be a contributing factor to the onset of labor.

In mass spectrometric analysis of the 250 kDa band from the

phosphotyrosine immunoprecipitate strong matches to myosin

heavy chain and to filamin A were found. Myosin is known to

connect with adhesion plaques, and one isolated report has

indicated that myosin heavy chains under some conditions can be

tyrosine phosphorylated [25], but, we also cannot rule out the

possibility of myosin contamination of the mass spectrometry

samples given its abundance in smooth muscle. Filamin was also

identified in this band and is known to be associated with adhesion

plaques [26]. Filamin is also well known to be directly

phosphorylated by Src kinases and associated with adhesion

plaque turnover [27].

Analysis of the 130 kDa band that increased with stretch in the

phosphotyrosine immunoprecipitates, gave a confident match for

presence of caldesmon (CaD). Although tyrosine phosphorylation

of l-CaD has been described, to the best of our knowledge, h-CaD

has not been reported to be directly tyrosine phosphorylated.

Furthermore, the 130 kDa isoform of h-CaD is known to be

primarily located in contractile filaments. However, the detection

Figure 4. Stretch-induced tyrosine phosphorylation in human myometrium. A. A typical anti-phosphotyrosine immunoblot. Term pregnant
uterine smooth muscle strips unstretched or stretched to 2x slack length for 2 min. The tissue homogenates were immunoblotted with an anti-
tyrosine phosphorylation antibody. B–D. Term pregnant uterine smooth muscle strips were unstretched (rest) or stretched to 2x slack length at
indicated time period. Average densitometry of phospho-tyrosine bands of 130 kD, 125 kD and 100 kD. n = 3–5 samples in each group.
doi:10.1371/journal.pone.0007489.g004
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of h-CaD in the phosphotyrosine immunoprecipitates may reflect

the possible connection of the contractile filaments to the

phosphotyrosine-containing adhesion plaques. We were unable

to identify p130 Cas in these samples by mass spectrometry,

probably because of the relatively low abundance of this signaling

molecule compared to cytoskeletal proteins such as CaD, myosin,

alpha actinin and filamin.

Gestation-dependent increase in SmAV expression in
both human and rat myometrial tissues

Smooth muscle archvillin (SmAV) is an ERK regulator newly

identified in our laboratory [8,9]. Its presence and function in

myometrial smooth muscle have not been previously studied, but it

has been shown to regulate both ERK activation and contractility

in vascular smooth muscle [8]. Both SmAV and the founding

member of the protein family, supervillin are associated with

adhesion plaques [8,28]. Thus, we postulated that SmAV might be

involved in gestation- and stretch-sensitive changes in ERK

activation in pregnancy and it might be the link between

mechanical signal and activation of ERK/CaD pathway. We

developed a polyclonal, affinity-purified antibody to a recombi-

nant fragment of SmAV containing the first 250 N-terminal

residues. Specificity of the antibody was tested against a whole

tissue aorta homogenate and only a single band, at the expected

molecular weight, was detected. In contrast, preimmune serum

produced no bands in the same sample (Fig. 7A).

To test whether SmAV expression is gestation-dependent,

myometrial strips from nonpregnant, pregnant, not in labor, and

pregnant, in-labor women were quick-frozen. Densitometry of

protein-matched samples were analyzed in anti-SmAV immuno-

blots. SmAV protein expression increases significantly during

pregnancy in human myometrium (Fig. 7B). To confirm this

finding, the uterine samples from the timed-pregnant rat model

were also analyzed (Fig. 7C). In Sprague-Dawley rats, the average

length of pregnancy is about 23 days. Day16 pregnancy

corresponds to the second trimester and day 20-pregnancy

corresponds to the third trimester in human pregnancy [7]. On

immunoblot, we found that SmAV protein expression increases

significantly in the rat at day 16 of pregnancy but continues to rise

significantly at day 20. It was noted that SmAV protein levels

decreased in the rat in labor, possibly reflecting high level of

protease activity and initiation of involution at an accelerated pace

in the rat model [29]. Increases in SmAV protein levels in rat

myometrium were demonstrated for pregnant day 16, day 20 and

in labor samples.

Myometrial SmAV associates with tyrosine-
phosphorylated proteins and ERK in a stretch-dependent
manner

Gestational upregulation of SmAV expression implies a possible

role of this protein during pregnancy. To explore the possible

function of the gestation-induced increases in SmAV expression

in the human, we probed anti-phosphotyrosine immunoprecipi-

tates of control and stretched human myometrial strips (term

pregnant, stretched 2x slack length for 7 min) for SmAV. Stretch

of human myometrial smooth muscle significantly increases the

interaction (directly, or indirectly within a macromolecular protein

complex) between SmAV and tyrosine phosphorylated proteins

(Fig. 8A).

SmAV function has also been linked to ERK activation. There

are two ERK binding sites predicted from sequence analysis in the

N-terminal end of SmAV [8,9]. We previously reported that

spontaneous labor is associated with phosphorylation and

Figure 5. Identification of p125 as FAK and p130 as Cas. A.
Stretch selectively activates FAK at tyrosine site 925, not site
397. Term pregnant uterine smooth muscle strips were unstretched or
stretched to 2x slack length at indicated time period. The tissue
homogenates were probed with FAK site-specific antibodies. Phospho-
FAK signals are normalized to the total FAK protein or alpha-Tubulin.
*p,0.05 compared to unstretched control samples (by ANOVA). n = 3–5
in each group. Typical blots were shown on the top. Both FAK total
protein antibody and FAK-Y925 phospho antibody are rabbit polyclonal
antibodies, thus, a-tubulin mouse monoclonal antibody was chosen for
normalization of the FAK-Y925 signal. B. Stretch activates pCas130.
Phospho-Cas signals are normalized to Cas protein levels and expressed
as p-Cas/Cas ratios. *p,0.05 compared to unstretched control samples
(by ANOVA). n = 3–5 samples in each group.
doi:10.1371/journal.pone.0007489.g005
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activation of ERK in rat myometrium [7,10]. In order to test the

hypothesis that SmAV acts as a scaffolding protein to recruit ERK

in focal adhesion signaling, stretched and unstretched uterine

smooth muscle homogenates were immunoprecipitated (IP) with

an anti-ERK antibody. Immunoblots were probed with the anti-

SmAV antibody. As shown in Fig. 8B and 8C, stretching human

pregnant uterine smooth muscle induces a significant increase in

ERK-SmAV and the pERK-SmAV interactions. The interactions

could be direct or could represent association of both proteins with

the adhesion plaque complex. Thus, since phosphorylation of the

adhesion plaque protein FAK at residue 925 increases in these

samples with stretch, we probed for the association of phospho-

FAK-Y925 with ERK and, as is shown in Fig. 8D, this association

also increased with stretch.

Figure 6. Identification of 100 KD protein tyrosine-phosphorylation in response to myometrial stretch. A. Stretch-induced tyrosine
phosphorylation in human myometrium. Term pregnant uterine smooth muscle strips unstretched or stretched to 2x slack length for 7 min.
Coomassie blue staining of anti-phosphotyrosine immunoprecipitates separated by 10% SDS-polyacrylamide gel electrophoresis (n = 2). B. Mass
spectrometric identification of the 100 kD band. The protein band was excised from the gel. There is a 281/911 (31%) sequence coverage with
23 peptides matched to alpha 4 actinin, (in yellow) and 19% sequence coverage with 13 peptides matched to alpha 1 actinin (not shown). C. Alpha
actinin is tyrosine phosphorylated by stretch in human myometrium. Homogenates of stretched and unstretched term pregnant human
uterine smooth muscle were immunoprecipitated (IP) with an anti-phospho-tyrosine antibody and western immunoblotted (IB) with an alpha-actinin
antibody. The graph shows the average densitometry from 5 independent experiments. The inserts are typical western blots of immunoprecipitates.
*p,0.05 compared to unstretched control samples.
doi:10.1371/journal.pone.0007489.g006
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Sub-cellular localization of SmAV with the adhesion
plaque marker vinculin in pregnant human myometrium

In vascular smooth muscle cells, SmAV undergoes a stimulus-

induced translocation from the core of the cell to the cell cortex

[8]. To determine if indeed SmAV colocalizes with adhesion

plaques in myometrial cells from pregnant women, we used

immunohistochemistry on term, not in labor pregnant myometrial

tissue sections to identify the subcellular location of SmAV. As can

be seen in Fig. 9, SmAV and vinculin, an adhesion plaque marker,

localize at the cell surface after the myometrial strips were

stretched for 7 min (inset, arrows).

In summary, as illustrated in Fig. 8, the immunoprecipitation

experiments demonstrated interactions between these phosphor-

ylated proteins within focal adhesion complexes and point to a

direct mechanistic link between focal adhesions, SmAV and ERK

activation.

Discussion

One of the major findings of the current study is that the role of

ERK-mediated phosphorylation of CaD previously predicted from

rat studies can be extended to the human. CaD is an actin binding

smooth muscle protein that, like troponin in striated muscle, works

with tropomyosin to block the binding site of myosin on actin.

Upon phosphorylation of the ERK site on CaD, however, a

conformational change occurs that increases actin availability for

interaction with myosin. We have shown here that not only do

CaD protein levels increase with pregnancy, as previously

described, [13,30] but also that CaD phosphorylation increases

Figure 7. SmAV protein content increases with gestation in both the human and the rat. A. Specificity of the anti SmAV antibody. B.
Gestation-dependent increase in SmAV expression in human myometrium. Densitometry analysis of smooth muscle Archvillin (SmAV) protein levels
from immunoblots of human myometrium from nonpregnant (NP) and pregnant women. A typical blot is shown on the top. *p,0.05 vs. NP. n = 5–7
samples in each group. C. Gestation-dependent increase in SmAV expression in rat myometrium. A typical blot is shown on the top. *p,0.05 compared
to NP, **p,0.01 compared to NP. ++ p,0.01 compared to D16. n = 4 in each group. NP, nonpregnant, D16 and D20, pregnant day 16 or day 20.
doi:10.1371/journal.pone.0007489.g007
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in myometrial samples from women in labor, compared to those

from women not-in-labor. Furthermore, as predicted by the

known effects of CaD to inhibit Ca-dependent acto-myosin

interactions in vitro, we have directly shown that human

myometrial smooth muscle from pregnant women (.37 week,

not in labor) exhibits an increased Ca2+
i threshold for contraction

(decreased Ca sensitivity) as CaD levels increase with gestation. In

the rat model we have previously shown that an ERK inhibitor

delays the onset of RU486-induced preterm labor [7], pointing to

a cause-and-effect relationship between ERK and the onset of

labor.

Another major finding of the current study is that stretch of

human myometrium directly induces CaD phosphorylation in

vitro. Although myometrial quiescence in vivo is clinically

important for normal pregnancy, it has not been totally clear that

how the myometrium switches phenotypically from the ‘‘myome-

trial quiescence’’ typical of the early pregnant uterus to

‘‘myometrial activation’’ during labor. Similarly, it is known that

clinical conditions that increase uterine wall tension stimulate

uterine contractions; however, the molecular mechanisms involved

have not been clear. Our results support the hypothesis that stretch

from the growing fetus at term, when the rate of fetal growth is 7

times that in the first trimester [1], promotes uterine contractions

through activation of adhesion plaques and downstream ERK

signaling. Furthermore, this stretch-sensitive signaling pathway

would help explain the high incidence of preterm labor due to

abnormal uterine stretch in conditions such as multiple gestation,

polyhydramnios, and macrosomia. Additionally, the increased

CaD expression during pregnancy may minimize the level of CaD

phosphorylation per mole CaD and counteract the effect of

stretch-induced stimuli before the onset of labor.

In the present study we report that expression levels of a newly

identified smooth muscle protein, SmAV, increase significantly

during pregnancy. SmAV, a known regulator of ERK is likely to

Figure 8. SmAV co-immunoprecipitates with phosphotyrosine, ERK and FAK. A. Myometrial SmAV associates with tyrosine-
phosphorylated proteins in a stretch-dependent manner. Stretch and unstretched term pregnant human uterine smooth muscle
homogenates were immunoprecipitated (IP) with anti-phospho-tyrosine antibody and immunoblotted (IB) with SmAV antibody. **p,0.01 compared
to unstretched control samples. The insert is a typical SmAV western blot with IP samples. n = 5. B. Myometrial SmAV associates with ERK
protein in a stretch- dependent manner. Stretched and unstretched term samples were immunoprecipitated with anti- ERK antibody and
immunoblotted with anti-SmAV antibody. SmAV densitometry was normalized to input signals. n = 6. **p,0.01, ***p,0.001. C. Confirmation of
stretch induced ERK phosphorylation in human myometrium. Stretch and unstretched samples were immunoprecipitated with anti- ERK
antibody and immunoblotted with phospho-ERK antibody. The p-ERK2 infrared signals were also normalized to input signals. n = 6. **p,0.01. D.
Myometrial ERK associates with FAK in a stretch-dependent manner. Stretch and unstretched samples homogenates were
immunoprecipitated with anti- ERK antibody and immunoblotted with phospho-FAK925 antibody. The p-FAK infrared signals were normalized to
input signals. n = 6. ***p,0.001
doi:10.1371/journal.pone.0007489.g008
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facilitate the activation of ERK associated with the onset of labor.

Knockdown of SmAV in vascular cells has been shown to inhibit

agonist-induced activation of ERK and contraction [8]. We show

here that SmAV is biochemically associated with, the adhesion

plaque protein FAK in term human myometrium. This association

could be direct or, an indirect interaction through binding to other

adhesion plaque proteins. Its association with focal adhesion

molecules in human myometrium places it in a location where

mechanotransduction from the growth of the fetus is sensed and

can be transmitted to downstream ERK-dependent pathways

including CaD phosphorylation.

In the current study we used an in vitro experimental stretch

model to investigate the effect of stretch on ERK, CaD

phosphorylation and activation of focal adhesion signaling.

Previous studies have shown that myometrial stretch also can

activate focal adhesion signaling [3,4], MAP kinase [31,32] and

regulate expression of transforming growth factor [33]. The

current study demonstrates, for the first time the relationship of

stretch and CaD phosphorylation in human myometrium. Brief in

vitro stretch is clearly different from the in vivo stretch due to fetal

growth. This is a limitation of the in vitro stretch model. However,

the advantage of in vitro stretch is that it is allows the study of the

effect of stretch in the absence of circulating hormones and

neuronal inputs. Other investigators also used in vitro stretch

models to study the effect of stretching and shortening of human

myometrial strips on prostaglandin production. Those data

demonstrated a differential prostaglandin synthesis that is related

to myometrial stretching and shortening which could also play a

role in uterine quiescence during gestation and increased

contractility during parturition [34].

Here we have shown that the molecular mechanisms of stretch-

induced activation of human myometrium include (1) increased

tyrosine phosphorylation of FAK, and Cas, hallmarks of focal

adhesion signaling, (2) increased association of, or tyrosine

phosphorylation of, a-actinin with adhesion plaque complexes

and (3) downstream, stretch-induced increases in ERK and CaD

phosphorylation. We have previously shown in the timed

pregnant rat model that ERK is targeted to the cell cortex in

late term pregnancy [6] and the upregulation of SmAV expression

may be one factor that contributes to the targeting of ERK to

focal adhesions in a gestation-dependent manner. As illustrated in

the model shown in Fig. 10, we suggest that signals mediated

through GPCR pathways (such as oxytocin, prostaglandins,

endothelin etc) and signals mediated through focal adhesions

pathways (growth of fetus, polyhydramnios and multiple gesta-

tions) may synergize to activate myometrium and initiate the

labor contractions.

Taken together, these results indicate that gestational stretch of

human myometrium activates adhesion plaque (dense plaque)

signaling, and acting through the ERK scaffold SmAV, recruits

ERK to dense plaques, leading to the activation of ERK and the

subsequent phosphorylation of CaD to promote myometrial

contractility during labor. These results could also identify these

signaling molecules as target molecules for drug development

aiming in regulation of uterine contractility and interruption of

preterm contractions.

Figure 9. Smooth muscle Archvillin (SmAV) in pregnant human myometrium is localized with vinculin at cell surface. Term, not-in-
labor, human uterine smooth muscle strips were microdissected and stretched to 2 fold slack length for 7 minutes. The fresh frozen sections (10
sections for each sample) were stained with rabbit anti-SmAV and mouse anti-vinculin. Alexa-dye-conjugated goat secondary antibodies were used.
Left column, SmAV (red); middle column vinculin (green); right column, merged image. Top panels, scale bar, 20 mm. Lower 3 panels, expanded
magnification of boxed area in top merged image. SmAV localizes with the dense plaque maker vinculin (inset, white arrows) at cell surface. Scale bar,
10 mm, n = 3.
doi:10.1371/journal.pone.0007489.g009
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