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Abstract
The severe cutaneous adverse reaction epidermal necrolysis (EN) which includes toxic epidermal necrolysis and the

milder Stevens-Johnson syndrome is characterized by epidermal loss due to massive keratinocyte apoptosis and/or

necroptosis. EN is often caused by a drug mediating a specific TCR-HLA interaction via the (pro)hapten, pharmacologi-

cal interaction or altered peptide loading mechanism involving a self-peptide presented by keratinocytes. (Memory)

CD8 + T cells are activated and exhibit cytotoxicity against keratinocytes via the perforin/granzyme B and granulysin

pathway and Fas/FasL interaction. Alternatively drug-induced annexin release by CD14 + monocytes can induce formyl

peptide receptor 1 death of keratinocytes by necroptosis. Subsequent keratinocyte death stimulates local inflammation,

activating other immune cells producing pro-inflammatory molecules and downregulating regulatory T cells. Widespread

epidermal necrolysis and inflammation can induce life-threatening systemic effects, leading to high mortality rates.

Research into genetic susceptibility aims to identify risk factors for eventual prevention of EN. Specific HLA class I alleles

show the strongest association with EN, but risk variants have also been identified in genes involved in drug metabolism,

cellular drug uptake, peptide presentation and function of CD8 + T cells and other immune cells involved in cytotoxic

responses. After the acute phase of EN, long-term symptoms can remain or arise mainly affecting the skin and eyes.

Mucosal sequelae are characterized by occlusions and strictures due to adherence of denuded surfaces and fibrosis fol-

lowing mucosal inflammation. In addition, systemic pathology can cause acute and chronic hepatic and renal symptoms.

EN has a large psychological impact and strongly affects health-related quality of life among EN survivors.
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Search strategy
PubMed was searched until Feb 20 2019 for articles about

EN using following search term: "Stevens-Johnson Syn-

drome" OR "SJS"[tiab] OR "Stevens-Johnson Syn-

drome"[tiab] OR "Lyell’s syndrome"[tiab] OR "Stevens

Johnson Syndrome"[tiab] OR "Lyell syndrome"[tiab] OR

"SJS/TEN"[tiab]. To find information regarding the specific

topics, terms were added such as "pathogenesis", "sequelae",

"long-term", "susceptibility" and "HLA". Relevant references

from the articles found were used as well.

Introduction
The severe cutaneous adverse reaction epidermal necrolysis (EN)

includes toxic epidermal necrolysis (TEN) and the milder Ste-

vens-Johnson syndrome (SJS) and is characterized by epidermal

loss due to massive keratinocyte cell death through apoptosis/

necroptosis. Frequently, the eyes and mucous membranes are

affected as well.1,2 TEN and SJS are distinguished based on the

extent of skin detachment.2 By definition, SJS involves < 10% of

the body surface area (BSA), whereas the overlap syndrome SJS/

TEN shows detachment of 10%–30% of BSA and TEN > 30%.3

Epidermal necrolysis (EN) has been proposed as unifying term

for SJS and TEN.4

EN is often drug-induced but has also been related to infec-

tions or other causes. The adverse reaction is rare with an
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incidence estimated at 2–7 cases per million persons per year. Of

these, 0.4–1.9 cases per million persons per year are diagnosed

with TEN.2,5 There is no consensus about adequate, specific

treatment strategies, and mortality rates are high (23% at

6 weeks, 34% at 1 year).6 Despite several decades of ongoing

research, pathogenesis is still unclear.7 However, advances in

genetics have revealed interactions of specific HLA alleles with

EN-associated drugs, giving more insight in EN pathogenesis.8,9

As survivors of EN suffer from a variety of sequelae affecting for

instance the eyes and respiration, a disregarded chronic phase of

the illness has recently been highlighted.10,11

With EN being a rare life-threatening disease, global research

efforts are essential for better understanding of the disease pro-

cess and susceptibility. Increasing knowledge on disease pathol-

ogy might improve treatment strategies and elucidate risk

factors for both short and long-term consequences of EN. More-

over, enhancing common knowledge among medical practition-

ers and patients would alleviate uncertainty, which is a large

psychological burden. Hence, this review on EN will shortly

describe the disease and then give an overview on current knowl-

edge of pathogenesis, genetic susceptibility and sequelae.

Epidermal necrolysis in short
EN starts with a prodromal phase of typically 48–72 h, present-

ing with specific systemic symptoms such as fever and cough.5

Subsequently, erythematous macules and atypical target lesions

develop and spread rapidly within a few days. Blisters appear

and the epidermis detaches progressively up to one week. Muco-

sal lesions occur in almost all patients. Most frequently, the

oropharynx, eyes, genitals and anus are affected, but also the

nose, oesophagus, trachea and bronchi can be involved, which

can lead to respiratory problems. The severity of mucosal

involvement is not correlated with the area of skin affected.5 Re-

epithelialization usually takes 1–3 weeks.5 However, the acute

phase is often followed by sequelae as described later on.11

The massive keratinocyte death leads to systemic effects as the

barrier function of the skin is lost, leading to thermal dysregula-

tion and fluid loss affecting electrolyte and perfusion homeosta-

sis. Furthermore, the local inflammatory response can induce

systemic inflammation.5 Body systems such as the kidneys and

cardiovascular system can also be affected by complications.8

The major cause of death in EN is sepsis, but gastrointestinal

bleeding, pulmonary embolism, oedema and/or acute respira-

tory distress syndrome (ARDS), and myocardial infarction can

be fatal as well.12 To predict acute phase morbidity in patients,

the Severity of Illness Score for Toxic Epidermal Necrolysis

(SCORTEN) has been developed by Bastuji-Garin and colleagues

(Table 1) and validated in several studies.13–18 Although mortal-

ity in patients with respiratory involvement might be underesti-

mated, SCORTEN is the golden standard in predicting the

prognosis of EN.19 However, the use of SCORTEN is being ques-

tioned as supportive care has been improved since its

development and several factors such as age and percentage of

body surface area affected are not included.20 Recently, the

ABCD10 score has been proposed by Noe et al., which uses age,

serum bicarbonate level, active cancer, dialysis and the extent of

epidermal detachment to estimate mortality. The ABCD10 score

highlights the negative prognostic significance of renal insuffi-

ciency, although it does not predict outcome significantly differ-

ently from SCORTEN and requires further validation and

investigation into its clinical utility.21,22

About 75% of EN cases are drug-induced.23 A slightly higher

proportion for TEN specifically, with 80%–95% drug-induced

cases,24 might be explained by misclassification of SJS, which

resembles the infection-induced erythema multiforme major.

Main drug groups associated with EN include anticonvulsants,

antibiotics and nonsteroidal anti-inflammatory drugs (NSAIDs)

(Table 2).25–27 Research into causal drugs in an European and

Israeli population indicated allopurinol as most frequent drug-

related cause.28 Recently, novel targeted cancer drugs have been

implicated in EN.29–33

As the mean time to onset of EN usually ranges from 6 to

14 days after intake of the culprit drug, and many patients use

multiple drugs simultaneously, determining the causal drug can

be challenging.24 To improve the assessment of drug causality,

the algorithm of drug causality for epidermal necrolysis

(ALDEN) has been developed.34 ALDEN assigns a score based

Table 1 SCORTEN Severity of Illness Score for Toxic Epidermal
Necrolysis Assessment score developed for prediction of acute
phase morbidity in EN

Criteria: 1 point per condition Total score Mortality
rate (%)

• Age 40 years 0–1 3.2

• Heart rate > 120 beats per minute 2 12.2

• Comorbid malignancy 3 35.5

• Epidermal detachment > 10% body
surface area on day 1

4 58.3

• Blood urea nitrogen > 28 mg/dL 5 or more 90.0

• Glucose > 252 mg/dL

• Bicarbonate < 20 mEq/L

Table 2 Drugs most commonly reported to induce epidermal
necrolysis sorted according to drug groups

Group Drugs

Antibacterials Sulphonamides (e.g. sulphamethoxazole,
sulphasalazine), penicillins (e.g. amoxicillin),
quinolones (e.g. ciprofloxacin)

Anticonvulsants Phenytoin, carbamazepine, lamotrigine,
phenobarbitone

NSAIDs Oxicam-NSAIDs (e.g. piroxicam), diclofenac,
phenylbutazone

Antiretrovirals Nevirapine, abacavir

Antituberculous Isoniazid, ethambutol

Antigout Allopurinol

© 2020 The Authors. Journal of the European Academy of Dermatology and Venereology published by John Wiley & Sons Ltd
on behalf of European Academy of Dermatology and Venereology

JEADV 2020, 34, 1957–1971

1958 Kuijper et al.



on the presence of the drug prior and during disease progres-

sion, drug notoriety, previous adverse reactions and presence of

other aetiological causes.

Known non-drug-related causes of EN are infection with

Mycoplasma pneumonia, viral infections and connective tissue

diseases such as systemic lupus erythematosus.35–37 However, a

recent cohort study including 189 patients showed that only 5 of

17 non-drug-related cases could be shown to be caused by infec-

tion and connective tissue disease, leaving 12 cases unex-

plained.36 The absence of a clear cause can potentially be

explained by unintended drug intake, for instance via meat from

treated farm animals, or by an unexpectedly long delay between

drug intake and EN.

At the moment, the cornerstones of medical management

mainly consist of direct discontinuation of the causal drug and

supportive care, preferably in burn centres. As the main concern

is sepsis, patients have to be barrier-nursed, signs of systemic

infection must be carefully monitored and cultures of affected

skin must be performed regularly. Antibiotic prophylaxis should

be avoided, and antibiotics should only be applied if signs of

infections occur. Common causes of sepsis in EN are Staphylo-

coccus aureus and Pseudomonas aeruginosa.8,38

To date, no treatment has truly demonstrated superiority over

supportive care.39 Currently however, various systemic adjuvant

therapies are used in different centres: corticosteroids, intra-

venous immunoglobulins (IVIGs), tumour necrosis factor (TNF)

inhibitors and cyclosporine. IVIGs are thought to inhibit cellular

apoptosis, whereas the other therapies target the evoked immune

reactions. Some studies investigating the use of corticosteroids

have shown increased rates of infection and complications, but

evidence for the harm or benefit of current treatments are incon-

clusive.38,40 As EN is rare, most evidence is based on case reports

and case series. Only two randomized controlled trials (RCTs)

have been performed. An RCT investigating the use of thalido-

mide, a drug showing among others immunosuppressive activity,

demonstrated increased mortality compared with a placebo,

whereupon the study was terminated.41 In contrast, the TNF inhi-

bitor etanercept showed faster skin healing and less gastrointesti-

nal haemorrhages compared to treatment with corticosteroids in

an RCT.42 The efficacy of cyclosporine is still under discussion.

Although this immunosuppressant showed improved survival in

a recent meta-analysis, an epidemiological study containing 174

patients did not show a beneficial effect.43,44 A recent review

advised to consider the use of IVIG, etanercept or cyclosporine as

systemic therapy options alongside standard supportive care.40

Pathogenesis
Several mechanisms involving different cell types and inflamma-

tory mediators have been proposed as explanations for the

pathogenesis of EN. Often, studies address a single mechanism,

but it is likely that the currently proposed mechanisms should

be considered as complementary (Fig. 1).9

EN is generally considered as type IV hypersensitivity reac-

tion, characterized by antigen recognition by T cells which sub-

sequently induce an immune response.8 Studying the cell types

in blister fluid and skin biopsies indeed showed a predominant

fraction of CD8 + T cells.45–49 Furthermore, NK cells and a sub-

set of cytotoxic T cells exhibiting NK-cell characteristics (NKT

cells) have been found in blister fluid.47–49 Indeed, in vitro incu-

bation of blister fluid from acute stage EN with keratinocytes

has shown cytotoxicity whereas control blister fluid from burn

injuries did not.49 Macrophages and dendritic cells have also

been detected in skin biopsies and are involved in enhancing the

immune response.50,51

The cytotoxic T-cell reaction in EN is thought to be induced

by the interaction of a T-cell receptor (TCR) and keratinocyte

human leucocyte antigen (HLA) molecule. In the majority of

cases, this TCR-HLA interaction is drug-induced, for which

three models have been proposed (Fig. 2).52,53 First, the (pro)

hapten model involves intracellular processing of (a metabolite

derived from) the drug, whereupon a drug-derived peptide is

covalently conjugated to an endogenous peptide. This novel

(pro)hapten is presented by a HLA class I molecule and recog-

nized by a specific TCR on the cytotoxic T-cell membrane.

Examples of drugs implemented in this model are penicillin and

sulphamethoxazole.54,55 Second, the model of pharmacological

interaction with immune receptors (p-i model) describes non-

covalent binding of the drug to either the TCR or HLA molecule

to initiate the T-cell response in a peptide-independent way.56

The third model is characterized by an altered peptide repertoire

presented by the HLA molecule, due to the drug occupying and

changing the HLA peptide-binding groove. The peptides pre-

sented are thus no longer recognized as self-peptides and hence

elicit a T-cell response. Abacavir is an example of this mecha-

nism, as experiments have shown that the peptide repertoire

presented by abacavir-treated antigen-presenting cells (APCs)

differed markedly from untreated cells.57–59

All three aforementioned models share breaching of T-cell tol-

erance as unusual self-peptides are presented, evoking an

immune response. The skin-specific reaction induced by EN-re-

lated drugs could be explained by the involvement of a ker-

atinocyte-specific peptide or by skin-specific metabolism of the

drug involved.60,61 It has also been suggested that skin-specific

co-stimulatory signals might constitute the environment

required for the aberrant immune response to occur.9 The so-

called heterologous immunology model could also offer an

explanation for the skin-specific reaction. This model is based

on the assumption that one TCR can cross-react, recognizing

different peptides, for instance by molecular mimicry of the pep-

tide-HLA complex.62 White and colleagues proposed that a pre-

ceding skin infection with a pathogen could predispose someone

to EN by generating a pathogen-derived peptide-HLA complex

and evoking a cytotoxic T-cell response that later cross-reacts

with drug-induced peptide-HLA complexes.53 Memory T cells
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generated during the pathogen infection become reactivated

upon drug exposure, constituting the adverse drug reaction. As

memory T cells persist at the site of antigen encounter, the

pathogen infection site determines the location of the adverse

reaction. Although the reactivation of the T-cell response might

start at the previous infection site, the extension of the second

immune response depends on the distribution of the antigen

involved in this TCR-HLA interaction. This might explain the

expansive tissue involvement seen in EN.53 Direct evidence for

the heterologous model is still lacking.

Multiple players have been identified in the induction of ker-

atinocyte apoptosis with a focus on the perforin/granzyme

pathway, Fas/Fas Ligand (FasL) pathway and release of gran-

ulysin.7,8 These three mechanisms are all observed in (NK)T cells

and NK cells. The perforin/granzyme and Fas/FasL pathway are

dependent on cell–cell contact of the killing cells and their target

cell.63 In the first case, NK/T cells bind their target cell and

secrete granules containing perforin and granzyme B. Perforin

creates channels in the target cell membrane, allowing granzyme

B to enter and activate the intrinsic apoptotic pathway.8 Levels

of perforin and granzyme B in peripheral blood and blister fluid

of EN patients were shown to correlate with disease severity.64

Inhibition of the perforin/granzyme pathway decreased lympho-

cyte cytotoxicity to target cells in vitro.65

Figure 1 Integrated model of EN pathogenesis based on existing literature. The causal drug is thought to mediate a specific TCR-HLA
interaction involving a keratinocyte self-peptide via the (pro)hapten, pharmacological interaction (p-i) or altered peptide loading mecha-
nism. (Memory) CD8 + T cells are activated and exhibit cytotoxicity against keratinocytes via the perforin/granzyme B and granulysin
pathway and Fas/FasL interaction. In parallel, keratinocyte cytotoxicity can be induced by monocyte-derived annexin A1 binding to the
keratinocyte formyl peptide receptor 1. The subsequent keratinocyte death enhances local inflammation by attraction and activation of
other immune cells producing pro-inflammatory cytokines and death receptor ligands (TWEAK, TRAIL) and by downregulation of regula-
tory T cells. Local inflammation stimulates FasL expression on keratinocytes and perpetuation of keratinocyte cell death. Widespread epi-
dermal necrolysis and inflammation can induce systemic effects. Skin-specific drug metabolism, organ-specific co-stimulatory signals
and local memory T cells from previous infections are thought to contribute to the skin-specificity of this adverse reaction. An alternative
to date less validated mechanism by which drugs could induce keratinocyte death is via liver dysfunction and retinoid toxicity. Red boxes:
key events in pathogenesis; blue boxes: hypotheses on the localization of the adverse reaction in skin; dashed boxes/lines: hypotheses
not (yet) generally accepted by EN research community.
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Secondly, Fas is a death receptor triggering the intrinsic apop-

totic pathway when binding to FasL displayed on the surface of

another cell.8 FasL can also be released as soluble FasL (sFasL),

but sFasL is much less potent in inducing apoptosis.66,67 Con-

flicting data exist on the role of the Fas/FasL pathway in EN

pathogenesis.68 Fas is constitutively expressed on keratinocytes

and increased levels of sFasL have been detected in serum

and blister fluid from EN patients.69–71 However, given the

inability of sFasL to induce apoptosis, cytotoxicity is unlikely

mediated by sFasL, hence pointing towards membrane-bound

FasL binding the death receptor.65–67 Although Abe et al. did

not detect FasL on keratinocytes in 3 EN skin biopsies, others

did show FasL expression in control and TEN ker-

atinocytes.69,71,72 It is thought that FasL is retained intracellu-

larly in keratinocytes in physiological conditions, preventing

its cytotoxic function. In EN, the enhanced expression of

FasL leads to localization to the cell membrane mediating

cytotoxicity.71,72 FasL expression in keratinocytes is thought

to be upregulated by cytokines released by T cells in a nitric

oxide (NO)-dependent manner. TNFa and IFNc were shown

to induce iNOS expression in keratinocytes, enhancing NO

levels which subsequently stimulated FasL expression.67 This

way, initial T-cell cytotoxicity based on cell–cell contact can

generate a signalling cascade following which keratinocytes

express FasL and induce death of neighbouring cells.

Nonetheless, questions remain whether keratinocyte FasL

expression could also be protective by targeting T cells

instead of neighbouring keratinocytes, as well as whether

enhanced production of sFasL can counteract Fas/FasL-cyto-

toxicity.66,71,73

Thirdly, NK and T cells produce granulysin, a pro-inflamma-

tory molecule inducing cell death by disruption of the target cell

membrane. Being independent of cell–cell interaction or recep-

tor binding, granulysin can induce widespread cell damage.63

Granulysin has been detected in EN skin biopsies and in blister

fluid and serum of EN patients, where its levels correlated with

disease severity.49 Expression of granulysin by (NK)T and NK

cells is thought to be enhanced by IL-15 secreted by ker-

atinocytes.7,74 Chung and colleagues showed in vitro ker-

atinocyte cytotoxicity of granulysin, whereas antibody-mediated

depletion of granulysin prevented in vitro cytotoxic effects of

blister fluid. Moreover, injection of granulysin in immunocom-

promised mice induced blister formation.49

Thus, (NK)T cells and NK cells are thought to use the afore-

mentioned pathways to induce keratinocyte apoptosis in an

expansive manner, starting by cell–cell contact-dependent per-

forin/granzyme-mediated apoptosis and further activating FasL

on keratinocytes and producing the soluble mediator granulysin.

As inflammation is induced, other cell types and cytokines partici-

pate in the massive keratinocyte loss. Alarmins are released from

damaged keratinocytes, attracting innate immune cells.75 Mono-

cytes infiltrate and boost the T cells by enhancing their

TCR
T cell

p-i model (pro)hapten model altered peptide repertoire model

I II III

TCR
T cell

HLA
keratinocyte

peptide 2

drug (metabolite)

TCR
T cell

HLA
keratinocyte

peptide 1 peptide 1 

HLA
keratinocyte

HLA
keratinocyte

TCR
T cell

peptide 2peptide 1

+

Figure 2 Proposed models of drug-mediated TCR-HLA interaction in EN. HLA molecules expressed on the membrane of antigen-pre-
senting cells (APCs – here keratinocyte) show specificity for peptides they can present. Subsequently, the HLA-peptide complex is recog-
nized by a specific T-cell receptor (TCR) on the T-cell membrane. Peptides 1 and 2 cannot bind the TCR and HLA depicted constituting a
TCR-HLA interaction, unless a drug (metabolite) is present and an interaction is made following one of these three models: I) The (pro)
hapten model involves covalent binding of the drug or its metabolite during intracellular peptide processing, forming a novel HLA-peptide
complex that is recognized by a TCR. II) In the pharmacological interaction (p-i) model, the drug binds non-covalently to either the TCR or
HLA molecule, enabling the formation of an unusual TCR-HLA complex. III) The altered peptide repertoire model consists of the drug
binding to the HLA peptide-binding groove, changing the range of peptides the HLA molecule can present and thus altering the recogni-
tion by TCRs.
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proliferation and cytotoxicity.76 In addition, monocytes and

macrophages produce TNFa. Besides being involved in upregula-

tion of FasL in keratinocytes, TNFa participates in enhancing

HLA class I expression on keratinocytes, making them more sus-

ceptible to T cell-mediated cytotoxicity.8,71 Furthermore, TNFa
can function as death receptor ligand, inducing apoptosis via the

death receptor TNF-R1. Also death receptor ligands TWEAK and

TRAIL produced by monocytes and macrophages can be involved

in keratinocyte death.63

Moreover, activated monocytes are thought to be involved in

inducing keratinocyte necroptosis, which is proposed as an addi-

tional cytotoxic mechanism in EN besides apoptosis.77 During

necroptosis, a form of programmed cell death is induced show-

ing necrotic features such as mitochondrial swelling and bleb-

bing of the cellular membrane. Saito and colleagues

demonstrated that monocyte-derived annexin A1 binds to the

formyl peptide receptor 1 (FPR1) on keratinocytes, thereby

inducing necroptosis. Treatment of an EN mouse model with a

blocker of necroptosis prevented the development of EN-like

symptoms.

In contrast to the activation of pro-inflammatory cells, regula-

tory T cells (Tregs) are suppressed. Although Tregs do not show

altered frequencies in the skin, their inhibitory function is

decreased.78 This contributes to the escalation of the immune

reaction against keratinocytes.

Mawson et al. have hypothesized that EN-related drugs indi-

rectly cause elevated plasma levels of retinoids leading to toxicity

against keratinocytes, as EN symptoms resemble hypervita-

minosis A and the drugs implicated in EN could interact with

retinoid metabolism. However, evidence for this hypothesis is

limited in contrast to the TCR-HLA models explaining the

induced keratinocyte apoptosis by various drugs.79

Genetic susceptibility

HLA risk alleles
The strongest genetic associations found for EN are specific

HLA class I alleles, emphasizing the role of CD8 + T cells

in EN pathogenesis.27,80–106 These risk factors are often

drug-specific. For instance, HLA-B*15:2 is a risk factor for

carbamazepine-related EN, whereas HLA-B*58:1 predisposes

for EN induced by allopurinol. Moreover, the association

between HLA alleles and drugs can be related to a specific

severe cutaneous drug reaction. HLA-B*15:2 is related to

carbamazepine-induced EN, but not to other carbamazepine-

induced reactions such as drug reaction with eosinophilia

and systemic symptoms (DRESS). In contrast, HLA-B*58:1 is

associated to both DRESS and EN caused by allopurinol.27

HLA-A*31:1 is mainly related to carbamazepine-induced

DRESS and maculopapular exanthema instead of EN.81,107,108

The HLA risk alleles identified for EN also seem to differ

among populations. For example, the association between

carbamazepine and HLA-B*15:2 was detected in Han Chi-

nese, but not in Europeans, where HLA-B*57:1 appeared to

be a risk allele for carbamazepine-induced EN.27,109 These

population-specific genetic determinants suggest a role of

other (genetic) factors in EN development, differing among

populations. However, the ’findability’ of an HLA risk allele

depends on its population prevalence and regional difference

in drug prescription, which might also influence risk allele

identification. The different associations with HLA alleles

identified led to population-specific guidelines for genetic

testing before drug intake in order to reach cost-effective-

ness.39,110

The HLA risk alleles appear to be necessary but not sufficient

for developing EN after drug intake, as illustrated by the predict-

ing values of genetic testing. The negative predictive value

(NPV) is 100% for both HLA-B*15:2 and HLA-B*58:1 testing in

Southeast Asians for carbamazepine- and allopurinol-induced

EN, respectively, whereas the positive predicting values (PPV)

are respectively only 2%–8% for carbamazepine- and 2%–3%
for allopurinol-related EN.39,111

The requirement of an HLA risk allele for EN development is

in line with the central role of the TCR-HLA interaction in EN

pathogenesis: a drug must be able to constitute a TCR-HLA

interaction, which can only occur for HLA molecules to which

the drug can (non)covalently bind. Several studies have eluci-

dated the interaction of drugs with HLA risk alleles. For carba-

mazepine, the adverse reaction is likely established via the p-i

hypothesis, where the drug binds non-covalently to the HLA

molecule or TCR to activate T cells. A direct interaction between

HLA-B*15:2 and carbamazepine was shown by Wei et al. Carba-

mazepine-specific cytotoxic T cells only exhibited cytotoxicity

towards cells expressing HLA-B*15:2 or closely related HLA

molecules. Intracellular processing was not required for cytotox-

icity.112 Computational modelling confirmed binding of carba-

mazepine in the HLA binding groove and interaction with the

TCR to establish the TCR-HLA complex.112–114 Carbamazepine

did not alter the peptide repertoire of HLA-B*15:2, excluding

the altered peptide model of EN pathogenesis.115

Contrary to carbamazepine, the prohapten model has been

proposed for sulphamethoxazole. This drug is rapidly metabo-

lized and autoxidized into nitro sulphamethoxazole (SMX-NO),

which is chemically reactive and able to bind intracellular pro-

teins.116 HLA-mediated presentation of SMX-NO haptenated

proteins is required for T-cell activation.117

Novel HLA-drug interactions could possibly be predicted

based on structural features shared by these risk alleles. A shared

binding pocket motif was identified in different HLA-C risk alle-

les for nevirapine-induced hypersensitivity.118 Likewise, carba-

mazepine appeared to bind to several HLA-B alleles sharing a

conserved binding pocket.52

Specific genetic susceptibility for severe mucosal complica-

tions has been studied extensively. Genetic associations of HLA-
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A*02:6 and HLA-B*44:3 were detected in EN patients with sev-

ere mucosal involvement only.101 This could emphasize the role

of HLA-presented peptides as determinants of the localization of

the adverse reaction.

Other risk factors
Still, the low PPVs of HLA risk alleles indicate that other

factors must be involved in developing EN. Apart from the

HLA molecules, a specific TCR and peptide presented are

required to establish the TCR-HLA interaction.119–121

Recently, a preferential TCR clonotype was identified, bind-

ing to carbamazepine which can subsequently constitute the

interaction between this TCR and HLA-B*15:2.114 Regarding

the sequence and quantity of the peptide presented by the

HLA, variants in genes related to proteasomal function or

peptide generation can contribute to the risk for

EN.120,122,123 The function of metabolic genes and drug

transporters influence the availability of the drug (metabo-

lite) involved in the TCR-HLA interaction. For instance,

genetic variants in CYP2B6 and GSTM1 have been associated

with nevirapine-caused EN and CYP2C9 with EN due to

phenytoin.120,124–131 Furthermore, several players in the pro-

cesses following the TCR-HLA interaction, such as the

induction of apoptosis or the immune response involved,

have been suggested to facilitate the occurrence of disease

(Fig. 3 and Table 3).

Although numerous studies have investigated genetic risk fac-

tors for EN, studies are often underpowered due to small sample

sizes. Another challenge in the interpretation of EN-related SNPs

is the possibility of genetic linkage of closely located genes,

meaning that a suspected variant could be inherited with

another variant actually influencing disease development. Many

findings on genetic associations still require validation in other

cohorts and functional studies to confirm its influence on

Figure 3 Risk variants identified in various genes involved in EN
pathogenesis. Genetic associations have been shown in genes
involved in drug metabolism influencing the levels of the drug or its
metabolite involved (CYP2B6, CYP2C9, GSTM1); in cellular uptake
and peptide presentation by antigen-presenting cells (ABC trans-
porters, proteasome); in the HLA-TCR interaction (HLA I, TCR
repertoire); in factors influencing CD8 + T-cell function (CTLA4); in
other immune cells shaping the subsequent immune response
(HLA II, IL4R, IL13, EP3, TLR3, IKZF1, TRAF3IP2, FasL).

Table 3 Risk components identified in development of EN

Component/process within
pathogenesis

Risk components/pathways Reference

HLA-TCR interaction HLA class I Various HLA class I risk alleles 27,80–106

TCR clonotype: presence of a
TCR able to interact with
drug/HLA complex

Random TCR recombination 119–121

Immunologic history

Thymic TCR selection influenced by proteasomal activity

Availability of drug/drug metabolite Metabolic genes: e.g. CYP2B6 and GSTM1 (nevirapine),
CYP2C9 (phenytoin)

124–129,131

Drug transporters, e.g. ABC transport pathway 120,130

Peptide sequence and quantity Peptide generation: e.g. ERAP2, proteasomal function 120,122,123

Immune response Lymphocyte proliferation Apoptosis 120

Proteasomal pathway 120,137

Lymphocyte activation Co-inhibitory pathways PD-1 or CTLA4 135

CD4 + T cells Th17-cells producing IL-17 136

Regulation of cytokine production Proteasomal pathway 121

Act1 signalling 133

Innate immune response TLR3, IL4R, IL-13, PTGER3 138–144

Other PSORS1C1, HCP5 95,132,134
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disease susceptibility. Furthermore, epigenetic and environmen-

tal factors have been described, but are out of the scope of this

review.132

Disease sequelae
Following the acute phase of EN, many survivors experience

chronic complications of the disease. These sequelae affect the

skin and eyes, but can also be otorhinolaryngeal, pulmonary,

urogenital, gastrointestinal or hepatic or related to the kidneys

(Table 4). Moreover, patients frequently suffer from psychologi-

cal sequelae.11,133,134 As information is scarcely available, seque-

lae are often underrecognized and insufficiently treated. A

cohort study of 17 patients showed a discrepancy between medi-

cal follow-up and presence of complications, as for instance only

6% of patients were followed by an ophthalmologist, while 67%

suffered from ophthalmological complications.135 Therefore, it

is important to raise awareness towards the chronic phase of EN

and to unravel the pathogenic mechanisms involved to achieve

adequate management or even prevention of sequelae. Collabo-

ration between medical centres is essential to reach these goals.

An example is the International Registry for Toxic Epidermal

Necrolysis (IRTEN; www.irten.org), a large prospective registry

cohort of TEN patients recently established, which is more

extensively described later in this review.136

Dermatological sequelae
In the majority of patients, re-epithelialized skin shows dyspig-

mentation (hyper- or hypopigmentation, Table 4). Re-epithe-

lization, which can take up to 3–6 months, usually occurs

without scarring as the dermis is only slightly affected.2,137 How-

ever, delayed onset of re-epithelialization, in case of delayed

withdrawal of the culprit drug, unrelieved skin pressure or sec-

ondary infections, can increase the risk of hypertrophic scar-

ring.11,137,138 It is thought that the extension of re-

epithelialization allows pro-inflammatory cytokines, T cells and

macrophages to accumulate in the skin, which subsequently

influences scar formation.137 Application of skin grafts or surgi-

cal interventions can also induce abnormal scarring.11

The altered cutaneous micro-environment during regenera-

tion is also thought to be involved in the abnormal eruption of

nevi and conversion of pre-existing nevi into atypical nevi by

inducing melanocyte proliferation.139,140 When the local envi-

ronment stabilizes again after resolution of EN, the nevi stabilize

as well and remain benign.139,140

Nail changes and nail loss are other complications of EN.

Complete arrest of nail matrix production during acute EN is

proposed to lead to nail shedding.11 Involvement of nail changes

correlates with disease severity, as more overlap/TEN patients

than SJS patients present with this symptom.141

Although rarely seen, heterotopic ossification has been

reported as complication of EN. In EN, abnormal bone formation

is thought to be due to hypoxia resulting frommassive local tissue

death.142 Prolonged mechanical ventilation during acute EN

because of pulmonary complications has been described as risk

factor. Involvement of HLA genes has been suggested in relation

to heterotopic ossification, which could explain its rareness.143,144

Actions taken to limit dermatological sequelae include the

promotion of re-epithelialization by removing unviable skin and

covering the denuded areas with dressings.12 Management of

dermatologic sequelae focuses on protecting the vulnerable re-

epithelialized skin by for instance avoiding sun exposure and

improving skin elasticity with silicone gels in hypertrophic scar-

ring.11,138

Ocular sequelae
Mucosal lesions require more time to re-epithelialize than skin

and healing often involves scar formation.2 Of patients experi-

encing acute mucosal involvement during EN, 73% showed per-

sistent mucosal lesions.145 Chronic ocular complications are

most frequent, occurring in up to 90% of EN patients, and can

even cause blindness (Table 4).2,146 Inflammation appears to

play an important role in ocular sequelae, and risk factors related

to innate immunity-related have been identified.147–151 The ocu-

lar surface milieu shows pro-inflammatory, profibrotic and anti-

apoptotic characteristics. In short, the inflammatory process

during acute EN damages the mucin-producing goblet cells and

limbal corneal stem cells, which hinders re-epithelization. Mean-

while, the inflammation induces hyperproliferation of conjuncti-

val keratinocytes and fibrosis, forming hyperkeratinization and

scar tissue. The scar tissue subsequently obstructs ductal open-

ings of lacrimal glands, which – especially combined with goblet

cell deficiency – promotes eye dryness.146,152–157 Scarring also

forms aberrant adhesions within the eye (e.g. symblepharon)

and causes abnormal eyelid positioning (i.e. entropion, ectro-

pion) and misdirected eye lashes (i.e. trichiasis). As trichiasis

and eye dryness are triggers themselves for conjunctival inflam-

mation, a self-enhancing process has constituted involving per-

sistent conjunctival inflammation.158,159 The role of

inflammation in ocular sequelae is emphasized by the finding

that HIV patients show less severe ocular involvement.160

Acute ocular symptoms increase the risk but are not required

for the development of eye sequelae, which can arise up to dec-

ades after acute EN.11,12,161,162 Late development of ocular com-

plications could be explained by exhaustion of the transient

amplifying cells backing up for the limbal stem cell deficiency

induced during acute EN. When these cells cannot maintain the

corneal epithelium anymore, the stem cell deficiency becomes

clear. Stem cell failure might also be induced at a later time by

prolonged ocular inflammation after acute EN.158

Acute ocular care to minimalize chronic symptoms involves

topical corticosteroids to dampen inflammation, topical antibi-

otics to prevent infections and artificial tears to prevent dry-

ness.39 Moreover, amniotic membrane transplantation (AMT)

to the ocular surface during acute EN has been shown to prevent
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ocular sequelae. AMT forms a physical barrier to protect against

infections, has an anti-inflammatory and anti-fibrotic effect and

promotes re-epithelialization.163–165 After the acute phase, topi-

cal corticosteroids should be administrated for several months.39

To improve eye dryness, artificial tears, occlusion of the tear

drainage duct and smaller scleral contact lenses can be applied.

Oral mucous membrane transplantations might be required to

treat conjunctival sequelae, whereas eye lash depilation is used to

treat trichiasis.11,159

Other mucosal lesions
Although less common and less described, other mucosa present

long-term complications as well (Table 4). Similar to ocular

lesions, these are characterized by occlusions and strictures due

to adherence of denuded surfaces and fibrosis after mucosal

inflammation and epithelial sloughing.11,133,166 Restenosis often

occurs after surgical opening of strictures, probably due to the

underlying persistent inflammation.166,167

Options to prevent or control long-term mucosal complica-

tions are limited. Intravaginal glucocorticoids, vaginal moulds

and menstrual suppression can be utilized during acute EN as

preventive measures.168 Management of oral sequelae focuses on

oral hygiene,12 as salivary gland involvement leads to reduced

saliva activity which stimulates caries, gingival inflammation and

periodontitis.11 For pulmonary sequelae, there is no curative

treatment, but steroids, antibiotics and bronchodilators might

improve respiration. Monitoring is essential as lung transplanta-

tion is the only cure, but could be contraindicated because of

other complications or use of mechanical ventilation.167,169

Hepatic and renal sequelae
Chronic complications of the liver and kidney (Table 4) seem to

establish themselves differently from mucosal sequelae. Systemic

symptoms such as fluid loss and toxic effects of the drug might

induce acute hepatic or renal dysfunction rather than EN pathol-

ogy per se. Cholestasis and hepatitis usually resolve after the

acute phase of EN, but cases with chronic cholestasis presented

as a vanishing bile duct syndrome have been described.11,133 This

syndrome is thought to be caused by hepatocellular necrosis and

ischaemic hepatitis induced by fluid loss, but involvement of a

TCR-HLA interaction involving an antigen present in/on bile

duct epithelium has also been hypothesized.133 Hence, immuno-

suppression and TNFa blockers have been suggested as thera-

peutic options, but results have been inconsistent.170–172 Of

patients with acute kidney injury, 5% require long-term dialy-

sis.11 Moreover, studies have shown tubular damage and fibrotic

glomerular alterations, probably due to high cytokine levels and

nephrotoxic substances in addition to fluid loss.133

Psychological sequelae
It is becoming increasingly clear that EN also results in a psycho-

logical scar (Table 4). In 2011, the first article demonstrating the

Table 4 Overview of sequelae per organ, based on Lee et al. Br J
Dermatol. 2017; 177(4): 924–93511; Saeed et al. Burns. 2016; 42:
20–27146 and Dodiuk-Gad et al. Br J Dermatol. 2016; 175(2): 422–
424147

Organ Sequelae

Skin Dyspigmentation

Abnormal scarring

Eruptive nevi

Nail changes

Telogen effluvium

Chronic pruritus

Hyperhidrosis

Photosensitivity

Heterotopic ossification

Ectopic sebaceous glands

Eyes Corneal complications:

• Superficial punctate keratopathy,
epithelial defect, loss of the
palisades of Vogt, conjunctivalization,
neovascularization, opacification and
keratinization

Conjunctival complications:

• Hyperaemia and symblepharon
formation

Eyelid complications:

• Entropion

• Ectropion

• Trichiasis, mucocutaneous junction
involvement, Meibomian gland
involvement and punctal damage

Mouth Synechiae formation

Oral ulcers

Depapillation of tongue

Dental growth abnormalities

Ear, nose, throat Hypopharyngeal stenosis

Nasal septal synechiae

External auditory canal stenosis

Synechiae between ear pinna
and scalp

Pulmonary Interstitial lung disease

Respiratory tract obstruction

Bronchiectasis

Bronchitis

Bronchiolitis obliterans

Urogenital/gynaecological Vulvar and vaginal adenosis

Vaginal stenosis

Fusion of labia minora and majora

Gastrointestinal Oesophageal strictures

Intestinal ulceration

Hepatic Vanishing bile duct syndrome

Renal Chronic renal insufficiency

Glomerulonephritis

Psychological Post-traumatic stress disorder

Anxiety

Depression

Psychological distress
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persistent psychological impact of EN was published. Interviews

showed that patients had experienced their condition as avoid-

able and mistaken by healthcare professionals, who were insuffi-

ciently aware of EN. The majority of patients became afraid of

taking medicines in general.173 Analysis of internet messages

from EN survivors indicated that unanswered questions and

concerns remained after the acute phase.174 Clinical question-

naires confirmed post-traumatic stress disorder (PTSD) in 23%–
26% of EN survivors.134,175 In a study among 17 EN survivors,

65% showed symptoms related to PTSD, 71% experienced over-

all psychological distress and 71% were unemployed. Question-

naires on health-related quality of life pointed out that skin

conditions had a very to extremely large effect on life quality in

half of the patients.134 Given the large psychological impact,

evaluation for depression, anxiety, PTSD and fear of taking

medicines should be implicated in EN management. Clear com-

munication on disease progression and prognosis is important

both during the acute and chronic phase to reduce questions

and insecurities.173 Furthermore, individual and/or group sup-

port should be offered.39

IRTEN
The International Registry for Toxic Epidermal Necrolysis

(IRTEN) Registry (https://www.irten.org) was established to

investigate clinical features, prognostic predictors and outcome

of SJS and TEN patients worldwide. The aim of the IRTEN regis-

ter is to further our understanding of the causes, predisposing

factors, clinical characteristics, medical management including

therapy, and pathogenesis of SJS and TEN with the long-term

objective of identifying means to reduce the medical and eco-

nomic burden of these two severe cutaneous adverse reactions

(SCAR) on public health and improve the safety of medication

use.

In practice, the IRTEN Registry enables: (i) high-quality

prospective anonymized clinical data collection and continuous

surveillance of drug causality including newly registered drugs

with adequate pharmacoepidemiologic methodology; (ii) easy

online access to reference information on SJS and TEN; (iii) the

constitution of an international cohort of at least 300 docu-

mented SJS/TEN patients for Europe, Asia and America in order

to further study clinical and biological characteristics of SJS and

TEN including drug causality, outcome, prognostic factors, eth-

nic factors, sequelae and impact on quality of life; and (iv) the

decentralized collection of biological samples (plasma, lympho-

cytes, DNA, RNA and skin biopsy samples) with prior informed

consent for research purposes including high-quality studies on

pharmacogenetics, transcriptomics and pathomechanisms of SJS

and TEN.

Conclusion
The severe cutaneous adverse reaction EN is mediated by an

abnormal immune response most likely resulting from HLA

interactions with the causal drug and subsequent T-cell activa-

tion. The resulting cytotoxic response against keratinocytes

induces widespread keratinocyte apoptosis/necroptosis as well as

a progressive local inflammatory process, which can cause sys-

temic symptoms and contributes to long-term sequelae. Genetic

risk factors have been identified at several steps in EN pathogen-

esis, involving drug metabolism, drug-HLA and TCR-HLA

interaction and thus the shaping of the immune response. The

majority of genetic associations still require validation and func-

tional studies to show their role in disease pathogenesis and use

for genetic testing, a crucial step in prevention of EN. Until

genetic tests are widely implemented, awareness during the use

of EN-associated drugs is essential to quickly stop drug adminis-

tration upon disease development. Long-term symptoms seem

to be ameliorated by stimulating re-epithelialization during the

acute phase with adequate treatment. To that end, conclusive

evidence on therapeutic strategies is required, as a consensus is

currently still lacking. Survivors should be informed of the

chronic phase of EN, and long-term support is needed to reduce

development of psychological sequelae. International collabora-

tion in data collection is key to improve understanding, manage-

ment and outcome of this rare disease.
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