

Received 1 December 2015 Accepted 15 January 2016

Edited by P. Roussel, ENSCL, France

Keywords: crystal structure; apatite structure type; calcium rare earth oxide silicate

CCDC reference: 1447637 Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of apatite type $Ca_{2.49}Nd_{7.51}(SiO_4)_6O_{1.75}$

Thu Hoai Le,^a Neil R. Brooks,^b Koen Binnemans,^b Bart Blanpain,^a Muxing Guo^a and Luc Van Meervelt^b*

^aKU Leuven - University of Leuven, Department of Metallurgy and Materials Engineering, Kasteelpark Arenberg 44 - bus 2450, B-3001 Heverlee, Belgium, and ^bKU Leuven - University of Leuven, Department of Chemistry, Celestijnenlaan 200F - bus 2404, B-3001 Heverlee, Belgium. *Correspondence e-mail: luc.vanmeervelt@chem.kuleuven.be

The title compound, $Ca_{2+x}Nd_{8-x}(SiO_4)_6O_{2-0.5x}$ (x = 0.49), was synthesized at 1873 K and rapidly quenched to room temperature. Its structure has been determined using single-crystal X-ray diffraction and compared with results reported using neutron and X-ray powder diffraction from samples prepared by slow cooling. The single-crystal structure from room temperature data was found to belong to the space group $P6_3/m$ and has the composition $Ca_{2.49}Nd_{7.51}(SiO_4)_6O_{1.75}$ [dicalcium octaneodymium hexakis(orthosilicate) dioxide], being isotypic with natural apatite and the previously reported $Ca_2Nd_8(SiO_4)_6O_2$ and $Ca_{2.2}Nd_{7.8}(SiO_4)_6O_{1.9}$. The solubility limit of calcium in the equilibrium state at 1873 K was found to occur at a composition of $Ca_{2+x}Nd_{8-x}(SiO_4)_6O_{2-0.5x}$, where x = 0.49.

1. Chemical context

The study of calcium rare earth oxide silicates is important because they are usually observed in nuclear waste along with rare earth silicates. So far, the calcium rare earth oxide silicates of Nd (Fahey & Weber, 1982; Fahey et al., 1985), Sm (PDF 29-365; Smith, 1977), Eu (PDF 29-320; Smith, 1977), Gd (PDF 28-212; Smith, 1976), Tb (PDF 38-256; Lacout, 1986), and Ce (Skakle et al., 2000) have been studied. Fahey & Weber et al. (1982) and Fahey et al. (1985) published the structure and stoichiometry limits of the $Ca_{2+x}Nd_{8-x}(SiO_4)_{2-0.5x}$ system using X-ray and neutron powder diffraction. In that study, the samples were synthesized at 1523 or 1873 K and cooled at a rate of 250 K per hour. However, such a slow cooling process may lead to undesired modifications of the obtained specimens since the solubility of calcium does not remain constant but decreases with decreasing temperature. This problem is avoided in the present work by rapid quenching of the $Ca_{2+x}Nd_{8-x}(SiO_4)_6O_{2-0.5x}$ samples in their equilibrium state at 1873 K to room temperature within a few seconds. Consequently, compositions of the samples can be preserved better.

2. Structural commentary

The single crystal structure determined from room temperature data was found to belong to the space group $P6_3/m$ and has the composition $Ca_{2.49}Nd_{7.51}(SiO_4)_6O_{1.75}$ and is isotypic with natural apatite and the previously reported $Ca_2Nd_8(SiO_4)_6O_2$ and $Ca_{2.2}Nd_{7.8}(SiO_4)_6O_{1.9}$ (Fahey & Weber, 1982; Fahey *et al.*, 1985). The solubility limit of calcium in the equilibrium state at 1873 K was found to occur at a composition of $Ca_{2+x}Nd_{8-x}(SiO_4)_6O_{2-0.5x}$, where x = 0.49.

research communications

Figure 1

View of the coordination spheres of the Nd/Ca and Si atoms [displacement ellipsoids shown at the 50% probability level; symmetry codes: (i) $x, y, -z + \frac{1}{2}$; (ii) y, -x + y, -z; (iii) $y, -x + y, z + \frac{1}{2}$; (iv) -y + 1, x - y, z; (v) $y - x, -x, -z + \frac{1}{2}$; (vi) y - x, -x, z; (vii) y - x + 1, -x + 1, z; (viii) $y, -x + y, z - \frac{1}{2}$; (ix) $-y + x + 1, x, z - \frac{1}{2}$; (x) $-x + 1, -y + 1, z - \frac{1}{2}$].

There are two metal positions in the asymmetric unit of the structure (Fig. 1) and both contain disordered Nd and Ca ions: Nd1/Ca1 occupies the lower symmetry site 6h and Nd2/Ca2 the higher symmetry site 4f. The occupancies of these metal sites were refined resulting in 0.887 (5)/0.113 (5) for Nd1/Ca1 and 0.546 (4)/0.454 (4) for Nd2/Ca2. The majority (80%) of calcium is situated at the 4f site. In the structures of $Ca_2Nd_8(SiO_4)_6O_2$ and $Ca_2_2Nd_{7,8}(SiO_4)_6O_{1,9}$, these values are 89 and 73%, respectively (Fahey et al., 1985). The refined value of the amount of Nd in the structure gives a value of 0.49 for x in the equation $Ca_{2+x}Nd_{8-x}(SiO_4)_6O_{2-0.5x}$. For charge-balance purposes, the occupancy of O^{2-} in the structure must be 2 - 0.5x or 1.755. Initially, the occupancy of the O²⁻ position O4 in the structure was allowed to refine freely and its value was close to what is required for charge balance; however, it was fixed at 0.146 as the refinement of heavy-atom positions is the most reliable and exact charge balance is required.

The Nd1/Ca1 site is seven coordinate and the Nd/Ca-O bond lengths vary between 2.3909 (19) and 2.721 (3) Å for oxygen atoms of the SiO₄²⁻ unit but the shortest bond length of 2.2681 (2) Å is to the O²⁻ ion, O4 (Fig. 1; Table 1). The Nd2/Ca2 site is nine coordinate and only bonds to SiO₄²⁻ units with six short distances [Nd-O = 2.4231 (17), 2.4715 (18) Å] and three long distances [Nd-O = 2.830 (2) Å] (Fig. 1; Table 1) are observed. The distances are similar to those reported by

Table 1	
Selected bond ler	ngths (Å).

Nd1-O1	2.721 (3)	Nd2-O2 ^{iv}	2.4715 (18)
Nd1-O2 ⁱ	2.463 (3)	Nd2-O3 ^v	2.830 (2)
Nd1–O3 ⁱⁱ	2.3909 (19)	Si1-O1	1.621 (3)
Nd1–O3 ⁱⁱⁱ	2.547 (2)	Si1-O2	1.623 (3)
Nd1-O4	2.2681 (2)	Si1-O3 ^{vi}	1.629 (2)
Nd2-O1 ⁱ	2.4231 (17)		

Symmetry codes: (i) -y + 1, x - y, z; (ii) $y, -x + y, z + \frac{1}{2}$; (iii) $-x + y, -x, -z + \frac{1}{2}$; (iv) $x - y + 1, x, z - \frac{1}{2}$; (v) -x + 1, -y + 1, -z; (vi) $x, y, -z + \frac{1}{2}$.

Fahey *et al.* (1985) for the structures of $Ca_2Nd_8(SiO_4)_6O_2$ and $Ca_{2,2}Nd_{7,8}(SiO_4)_6O_{1,9}$ determined by powder X-ray diffraction.

The O4 atom (O^{2-} ion) is coordinated to three different Nd1/Ca1 ions whilst the SiO₄⁴⁻ group has eight contacts to different Nd/Ca positions. The O1 atom coordinates one Nd1/Ca1 position and two Nd2/Ca2 positions, the O2 atom coordinates one Nd1/Ca1 position and two Nd2/Ca2 positions and the O3 position coordinates one Nd1/Ca1 and one Nd2/Ca2 positions. These contacts generate the packing, which can be seen viewed down the *c* axis in Fig. 2.

3. Synthesis and crystallization

A mixture of appropriate amounts of fine powders of Nd_2O_3 (99.99%), CaO (99.9%) and SiO₂ (99.9%) was put into a sealed Pt-20%Rh tube and heated to 1873 K in an argon atmosphere and maintained at that temperature for 24 h. CaO

View along the c axis of the packing arrangement.

 Table 2

 Experimental details.

Crystal data	
Chemical formula	Ca _{2.49} Nd _{7.51} (SiO ₄) ₆ O _{1.75}
M _r	1763.24
Crystal system, space group	Hexagonal, $P6_3/m$
Temperature (K)	298
a, c (Å)	9.5507 (3), 7.0513 (3)
$V(Å^3)$	557.03 (3)
Z	1
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	18.18
Crystal size (mm)	$0.05\times0.05\times0.05$
Data collection	
Diffractometer	Agilent SuperNova (single source at offset. Eos detector)
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Agilent 2012)
T + T	0.717 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	2616, 878, 813
R _{int}	0.024
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.821
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.019, 0.035, 1.11
No. of reflections	878
No. of parameters	42
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.79, -0.86

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

was made by calcination of $CaCO_3$ at 1373 K for 12 h. The sample was then quenched in a cold-water bath to give a lightblue crystalline solid, from which a single crystal of the title compound was selected. The sample was further analyzed by EPMA–WDS, giving a composition of 20.2% SiO₂, 72.1% Nd₂O₃ and 7.7% CaO. The converted formula according to the EPMA–WDS result was $Ca_{2.45}Nd_{7.45}Si_6O_{25.775}$ (O was calculated).

4. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2. There are two metal positions in the structure and the Nd and Ca ions are disordered on both of these sites. Nd/Ca occupancy on each of the two positions was refined and the occupancy of Nd was found to be 88.7 (5)% for one site and 54.6 (4)% for the other, giving a value of 0.49 for x in Ca_{2+x}Nd_{8-x}(SiO₄)₆O_{2-0.5x}. The occupancy of the anionic O atom was fixed at 2 - 0.5x. Constraints were applied so that the Nd and Ca on the same site had identical positional and displacement parameters.

Acknowledgements

The authors thank the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/ 0035.

References

- Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Fahey, J. A. & Weber, W. J. (1982). The Rare Earths in Modern Science and Technology, Vol. 3, edited by G. J. McCarthy, H. B. Silber & J. J. Rhyne pp. 341–344. Berlin: Springer.
- Fahey, J. A., Weber, W. J. & Rotella, F. J. (1985). J. Solid State Chem. 60, 145–158.
- Lacout, J. (1986). Private communication to the ICDD. PDF 38-256.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Skakle, J. M. S., Dickson, C. L. & Glasser, F. P. (2000). Powder Diffr. 15, 234–238.
- Smith, C. (1976). ICDD Grant-in-Aid. PDF 28-212.
- Smith, C. (1977). ICDD Grant-in-Aid. PDF 29-365, PDF 29-320.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2016). E72, 209-211 [doi:10.1107/S205698901600089X]

Crystal structure of apatite type Ca_{2,49}Nd_{7,51}(SiO₄)₆O_{1,75}

Thu Hoai Le, Neil R. Brooks, Koen Binnemans, Bart Blanpain, Muxing Guo and Luc Van **Meervelt**

Computing details

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Dicalcium octaneodymium hexakis(orthosilicate) dioxide

Crystal data	
Ca _{2.49} Nd _{7.51} (SiO ₄) ₆ O _{1.75} $M_r = 1763.24$ Hexagonal, $P6_3/m$ Hall symbol: -P 6c a = 9.5507 (3) Å c = 7.0513 (3) Å V = 557.03 (3) Å ³ Z = 1 F(000) = 790	$D_x = 5.256 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1649 reflections $\theta = 4.3-35.5^{\circ}$ $\mu = 18.18 \text{ mm}^{-1}$ T = 298 K Block, light blue $0.05 \times 0.05 \times 0.05 \text{ mm}$
Data collection	
Agilent SuperNova (single source at offset, Eos detector) diffractometer Radiation source: SuperNova (Mo) X-ray Source Mirror monochromator Detector resolution: 15.9631 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2012)	$T_{\min} = 0.717, T_{\max} = 1.000$ 2616 measured reflections 878 independent reflections 813 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$ $\theta_{\max} = 35.7^{\circ}, \theta_{\min} = 3.8^{\circ}$ $h = -15 \rightarrow 15$ $k = -15 \rightarrow 15$ $l = -11 \rightarrow 5$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.019$ $wR(F^2) = 0.035$ S = 1.11 878 reflections 42 parameters 0 restraints 4 constraints	Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map $w = 1/[\sigma^2(F_o^2) + (0.0072P)^2 + 0.3232P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.79$ e Å ⁻³ $\Delta\rho_{min} = -0.86$ e Å ⁻³

Extinction correction: *SHELXL2014* (Sheldrick, 2015), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$

Extinction coefficient: 0.0062 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Nd1	0.24279 (2)	0.01102 (2)	0.2500	0.00756 (7)	0.887 (5)
Cal	0.24279 (2)	0.01102 (2)	0.2500	0.00756 (7)	0.113 (5)
Nd2	0.6667	0.3333	-0.00110 (5)	0.00906 (10)	0.546 (4)
Ca2	0.6667	0.3333	-0.00110 (5)	0.00906 (10)	0.454 (4)
Si1	0.37185 (11)	0.40114 (11)	0.2500	0.0077 (2)	
01	0.4886 (3)	0.3232 (3)	0.2500	0.0127 (5)	
O2	0.4707 (3)	0.5974 (3)	0.2500	0.0144 (5)	
O3	0.2528 (2)	0.3424 (3)	0.0659 (3)	0.0209 (5)	
O4	0.0000	0.0000	0.2500	0.0141 (10)	0.88

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Nd1	0.00740 (10)	0.00713 (10)	0.00733 (9)	0.00301 (7)	0.000	0.000
Ca1	0.00740 (10)	0.00713 (10)	0.00733 (9)	0.00301 (7)	0.000	0.000
Nd2	0.00913 (12)	0.00913 (12)	0.00892 (15)	0.00456 (6)	0.000	0.000
Ca2	0.00913 (12)	0.00913 (12)	0.00892 (15)	0.00456 (6)	0.000	0.000
Si1	0.0069 (4)	0.0079 (4)	0.0085 (4)	0.0039 (3)	0.000	0.000
01	0.0116 (12)	0.0187 (13)	0.0123 (12)	0.0108 (10)	0.000	0.000
O2	0.0120 (12)	0.0085 (11)	0.0222 (14)	0.0049 (9)	0.000	0.000
O3	0.0158 (9)	0.0382 (13)	0.0131 (9)	0.0166 (9)	-0.0042 (7)	-0.0098 (8)
O4	0.0052 (12)	0.0052 (12)	0.032 (3)	0.0026 (6)	0.000	0.000

Geometric parameters (Å, °)

Nd1—Nd1 ⁱ	3.9284 (3)	Si1—Nd2 ^{viii}	3.2527 (8)	
Nd1—Nd1 ⁱⁱ	3.9284 (3)	Si1—Nd2 ^{xi}	3.2527 (8)	
Nd1—Nd2 ⁱⁱⁱ	4.0666 (3)	Si1—Ca2 ^{xi}	3.2527 (8)	
Nd1—Si1	3.2877 (9)	Si1—Ca2 ^{viii}	3.2527 (8)	
Nd1—Si1 ⁱ	3.1738 (9)	Si1—O1	1.621 (3)	
Nd101	2.721 (3)	Si1—O2	1.623 (3)	
Nd1—O2 ^{iv}	2.463 (3)	Si1—O3 ^{xii}	1.629 (2)	
Nd1—O3 ^v	2.3909 (19)	Si1—O3	1.629 (2)	

supporting information

Nd1—O3 ^{vi}	2.3909 (19)	O1—Nd2 ⁱⁱⁱ	2.4230 (17)
Nd1—O3 ⁱ	2.547 (2)	O1—Ca2 ⁱⁱⁱ	2.4230 (17)
Nd1—O3 ^{vii}	2.547 (2)	O2—Nd1 ⁱⁱⁱ	2.463 (3)
Nd1—O4	2.2681 (2)	O2—Ca1 ⁱⁱⁱ	2.463 (3)
Nd2—Si1 ^{vi}	3.2527 (8)	O2—Nd2 ^{viii}	2.4715 (18)
Nd2—Si1 ^{viii}	3.2527 (8)	O2—Nd2 ^{xi}	2.4715 (18)
Nd2—Si1 ^{ix}	3.2527 (8)	O2—Ca2 ^{xi}	2.4715 (18)
Nd2—O1 ⁱⁱⁱ	2.4231 (17)	O2—Ca2 ^{viii}	2.4715 (18)
Nd2—O1 ^{iv}	2.4231 (17)	O3—Nd1 ⁱⁱ	2.547 (2)
Nd2—O1	2.4230 (17)	O3—Nd1 ^{xiii}	2.3909 (19)
Nd2—O2 ^{viii}	2.4715 (18)	O3—Ca1 ^{xiii}	2.3909 (19)
Nd2—O2 ^{ix}	2.4715 (18)	O3—Ca1 ⁱⁱ	2.547 (2)
Nd2—O2 ^{vi}	2.4715 (18)	O3—Nd2 ^{viii}	2.830 (2)
Nd2—O3 ^x	2.830 (2)	O3—Ca2 ^{viii}	2.830 (2)
Nd2—O3 ^{viiii}	2.830 (2)	O4—Nd1 ⁱⁱ	2.2681 (2)
Nd2—O3 ^{vi}	2.830 (2)	O4—Nd1 ⁱ	2.2681 (2)
Si1—Nd1 ⁱⁱ	3.1738 (9)	O4—Ca1 ⁱⁱ	2.2681 (2)
Si1—Ca1 ⁱⁱ	3.1738 (9)	O4—Ca1 ⁱ	2.2681 (2)
			()
Nd1 ⁱⁱ —Nd1—Nd1 ⁱ	60.0	O3 ^{viii} —Nd2—Si1 ^{ix}	92.88 (4)
Nd1 ⁱⁱ —Nd1—Nd2 ⁱⁱⁱ	103.981 (6)	O3 ^{vi} —Nd2—Si1 ^{viii}	92.88 (4)
Nd1 ⁱ —Nd1—Nd2 ⁱⁱⁱ	150.673 (5)	O3 ^{vi} —Nd2—Si1 ^{vi}	30.06 (4)
Si1—Nd1—Nd1 ⁱⁱ	51.249 (17)	O3 ^x —Nd2—Si1 ^{viii}	123.63 (4)
Si1 ⁱ —Nd1—Nd1 ⁱⁱ	113.889 (17)	O3 ^{vi} —Nd2—O3 ^{viii}	117.44 (2)
Si1 ⁱ —Nd1—Nd1 ⁱ	53.889 (17)	O3 ^x —Nd2—O3 ^{vi}	117.45 (2)
Si1—Nd1—Nd1 ⁱ	111.249 (17)	O3 ^x —Nd2—O3 ^{viiii}	117.45 (2)
Si1—Nd1—Nd2 ⁱⁱⁱ	58.326 (14)	Nd1 ⁱⁱ —Si1—Nd1	74.86 (2)
Si1 ⁱ —Nd1—Nd2 ⁱⁱⁱ	134.034 (14)	Nd1 ⁱⁱ —Si1—Nd2 ^{viiii}	81.18 (2)
Sil ⁱ —Nd1—Sil	165.14 (2)	Nd1 ⁱⁱ —Si1—Nd2 ^{xi}	81.18 (2)
O1—Nd1—Nd1 ⁱⁱ	80.66 (5)	Nd1 ⁱⁱ —Si1—Ca2 ^{xi}	81.18 (2)
O1-Nd1-Nd1 ⁱ	140.66 (5)	Nd1 ⁱⁱ —Si1—Ca2 ^{viii}	81.18 (2)
O1—Nd1—Nd2 ⁱⁱⁱ	35.26 (3)	Ca1 ⁱⁱ —Si1—Nd1	74.86 (2)
O1-Nd1-Si1 ⁱ	165.45 (5)	Ca1 ⁱⁱ —Si1—Nd1 ⁱⁱ	0.000 (8)
O1—Nd1—Si1	29.41 (5)	Ca1 ⁱⁱ —Si1—Nd2 ^{xi}	81.18 (2)
O2 ^{iv} —Nd1—Nd1 ⁱ	120.15 (6)	Ca1 ⁱⁱ —Si1—Nd2 ^{viii}	81.18 (2)
O2 ^{iv} —Nd1—Nd1 ⁱⁱ	179.85 (6)	Ca1 ⁱⁱ —Si1—Ca2 ^{xi}	81.18 (2)
O2 ^{iv} —Nd1—Nd2 ⁱⁱⁱ	75.88 (5)	Ca1 ⁱⁱ —Si1—Ca2 ^{viii}	81.18 (2)
O2 ^{iv} —Nd1—Si1	128.60 (6)	Nd2 ^{xi} —Si1—Nd1	139.386 (19)
O2 ^{iv} —Nd1—Si1 ⁱ	66.27 (6)	Nd2 ^{viii} —Si1—Nd1	139.386 (19)
O2 ^{iv} —Nd1—O1	99.18 (8)	Nd2 ^{xi} —Si1—Nd2 ^{viii}	65.31 (2)
O2 ^{iv} —Nd1—O3 ⁱ	71.01 (7)	Nd2 ^{xi} —Si1—Ca2 ^{viiii}	65.31 (2)
O2 ^{iv} —Nd1—O3 ^{vii}	71.01 (7)	Ca2 ^{xi} —Si1—Nd1	139.386 (19)
O3 ^v —Nd1—Nd1 ⁱ	110.42 (6)	Ca2 ^{viii} —Si1—Nd1	139.386 (19)
O3 ⁱ —Nd1—Nd1 ⁱ	58.32 (5)	Ca2 ^{xi} —Si1—Nd2 ^{xi}	0.000 (10)
O3 ^v —Nd1—Nd1 ⁱⁱ	94.99 (5)	Ca2 ^{viii} —Si1—Nd2 ^{viii}	0.000 (10)
O3 ^{vi} —Nd1—Nd1 ⁱ	110.42 (6)	Ca2 ^{xi} —Si1—Nd2 ^{viii}	65.31 (2)
O3 ⁱ —Nd1—Nd1 ⁱⁱ	109.12 (5)	Ca2 ^{xi} —Si1—Ca2 ^{viii}	65.31 (2)
O3 ^{vii} —Nd1—Nd1 ⁱⁱ	109.12 (5)	O1—Si1—Nd1	55.53 (10)

O3 ^{vii} —Nd1—Nd1 ⁱ	58.32 (5)	O1—Si1—Nd1 ⁱⁱ	130.39 (10)
O3 ^{vi} —Nd1—Nd1 ⁱⁱ	94.99 (5)	O1—Si1—Ca1 ⁱⁱ	130.39 (10)
O3 ^{vi} —Nd1—Nd2 ⁱⁱⁱ	94.52 (6)	O1—Si1—Nd2 ^{xi}	136.87 (6)
O3 ⁱ —Nd1—Nd2 ⁱⁱⁱ	112.89 (5)	O1—Si1—Nd2 ^{viii}	136.87 (6)
O3 ^{vii} —Nd1—Nd2 ⁱⁱⁱ	146.38 (5)	O1—Si1—Ca2 ^{viii}	136.87 (6)
O3 ^v —Nd1—Nd2 ⁱⁱⁱ	42.90 (6)	O1—Si1—Ca2 ^{xi}	136.87 (6)
O3 ^v —Nd1—Si1	77.25 (5)	O1—Si1—O2	113.16 (14)
O3 ^{vi} —Nd1—Si1 ⁱ	106.70 (5)	O1—Si1—O3	111.34 (9)
O3 ⁱ —Nd1—Si1 ⁱ	30.67 (4)	O1—Si1—O3 ^{xii}	111.34 (9)
O3 ⁱ —Nd1—Si1	145.64 (5)	O2—Si1—Nd1 ⁱⁱ	116.45 (10)
O3 ^{vii} —Nd1—Si1 ⁱ	30.67 (4)	O2—Si1—Nd1	168.69 (10)
$O3^{v}$ —Nd1—Si1 ⁱ	106.70 (5)	O2—Si1—Ca1 ⁱⁱ	116.45 (10)
O3 ^{vii} —Nd1—Si1	145.64 (5)	Ω_{2} Si1 $-$ Nd2 ^{viii}	47.71 (6)
$O3^{vi}$ —Nd1—Si1	77.25 (5)	O2—Si1—Nd2 ^{xi}	47.70 (6)
$O3^{v}$ —Nd1—O1	70 49 (5)	Ω_{2} Sil $-Ca^{2xi}$	47 70 (6)
$O3^{i}$ Nd1 $O1$	146 95 (5)	Ω^2 —Si1—Ca2 ^{viii}	47 71 (6)
$O3^{vi}$ Nd1 $O1$	70 49 (5)	02 —Si1— 03^{xii}	10749(10)
03^{vii} Nd1 -01	146.95 (5)	02 - Si1 - 03	107.49(10) 107.49(10)
$O3^{vi}$ Nd1 $O2^{iv}$	84.96 (5)	02 - 511 - 03	52.89(7)
O_3^{v} Nd1 O_2^{v}	84.96 (5)	$O3^{xii}$ Sil Ndl	78.04 (0)
O_3^{vii} Nd1 O_3^{vii}	61.28(0)	$O_3 = S_1 = Nd1^{ii}$	52 80 (7)
O_3^{vi} Nd1 O_3^{vii}	01.20(9)	$O_2 = S_1 = Nd_1$	32.89(7)
$O_3 - Nd_1 - O_3$	136 63 (7)	$O_3 = S_{11} = C_{01}$	78.94(9)
$O_{2^{1}}$ Nd1 $O_{2^{1}}$	130.03(7) 126.62(7)	$O_{2xii} = S_{1} = C_{2} I_{ii}$	52.09(7)
O_{2}^{N} N_{1}^{N} O_{2}^{N}	130.03(7)	O_{2} S_{1} C_{2} S_{1} C_{2} S_{1} C_{2} S_{1}	32.89(7)
O_3^{-} Nd1 O_3^{-}	//.15 (4)	$O_3 = S_1 = N_1 Z_2$	00.40(9)
03 $-Nd1$ -03 -03	137.40 (11)	$03 - 511 - Nd2^{-1}$	111.52 (8)
O4 Null Null	30.0	O_3^{AII} S_11 N_12_{AIII}	111.52(8)
04 Null Null	30.0		60.46 (9)
04—Nd1—Nd2 ^m	130.005 (6)	O_3^{AII} S_1I C_2^{AIII}	60.46 (9)
04—Ndl—Sil	81.249 (17)	03^{AII} $S11$ $Ca2^{\text{VIII}}$	111.52 (8)
04—Ndl—Sil ¹	83.888 (17)	O_3 — S_11 — $Ca2^{A_1}$	111.52 (8)
04—Ndl—Ol	110.66 (5)	03 — $S11$ — $Ca2^{vm}$	60.46 (9)
$O4$ — $Nd1$ — $O2^{iv}$	150.15 (6)	$O3^{xn}$ —S11—O3	105.63 (15)
$O4$ — $Nd1$ — $O3^{v_1}$	104.58 (5)	Nd2 ^m —O1—Nd1	104.33 (7)
O4—Nd1—O3 ^{vn}	83.45 (5)	Nd2—O1—Nd1	104.33 (7)
04—Nd1—O3 ¹	83.45 (5)	Nd2 ¹¹¹ —O1—Nd2	93.89 (9)
O4—Nd1—O3 ^v	104.58 (5)	Ca2 ^m —O1—Nd1	104.33 (7)
Si1 ^{vi} —Nd2—Si1 ^{viii}	93.628 (14)	Ca2 ⁱⁱⁱ —O1—Nd2	93.89 (9)
Si1 ^{ix} —Nd2—Si1 ^{viii}	93.628 (14)	Ca2 ⁱⁱⁱ —O1—Nd2 ⁱⁱⁱ	0.000 (11)
Si1 ^{ix} —Nd2—Si1 ^{vi}	93.628 (14)	Si1—O1—Nd1	95.06 (11)
O1 ^{iv} —Nd2—Si1 ^{ix}	98.07 (6)	Si1—O1—Nd2	127.73 (7)
O1 ⁱⁱⁱ —Nd2—Si1 ^{vi}	165.42 (5)	Si1—O1—Nd2 ⁱⁱⁱ	127.73 (7)
$O1^{iv}$ —Nd2—Si 1^{vi}	94.28 (5)	Si1—O1—Ca2 ⁱⁱⁱ	127.73 (7)
O1—Nd2—Si1 ^{vi}	98.07 (6)	Nd1 ⁱⁱⁱ —O2—Nd2 ^{viii}	115.89 (7)
O1 ⁱⁱⁱ —Nd2—Si1 ^{viii}	98.07 (6)	Nd1 ⁱⁱⁱ —O2—Nd2 ^{xi}	115.89 (7)
O1 ^{iv} —Nd2—Si1 ^{viii}	165.42 (5)	Nd1 ⁱⁱⁱ —O2—Ca2 ^{viii}	115.89 (7)
O1 ⁱⁱⁱ —Nd2—Si1 ^{ix}	94.28 (5)	Nd1 ⁱⁱⁱ —O2—Ca2 ^{xi}	115.89 (7)
O1—Nd2—Si1 ^{ix}	165.42 (5)	Ca1 ⁱⁱⁱ —O2—Nd1 ⁱⁱⁱ	0.000 (9)

O1—Nd2—Si1 ^{viii}	94.28 (5)	Ca1 ⁱⁱⁱ —O2—Nd2 ^{xi}	115.89 (7)
O1 ⁱⁱⁱ —Nd2—O1	72.49 (7)	Ca1 ⁱⁱⁱ —O2—Nd2 ^{viii}	115.89 (7)
$O1^{iv}$ —Nd2— $O1^{iii}$	72.49 (7)	Ca1 ⁱⁱⁱ —O2—Ca2 ^{xi}	115.89 (7)
O1 ^{iv} —Nd2—O1	72.49 (7)	Ca1 ⁱⁱⁱ —O2—Ca2 ^{viii}	115.89 (7)
$O1$ — $Nd2$ — $O2^{vi}$	125.79 (8)	Nd2 ^{xi} —O2—Nd2 ^{viii}	90.49 (8)
$O1^{iv}$ —Nd2— $O2^{vi}$	94.22 (6)	Nd2 ^{xi} —O2—Ca2 ^{viii}	90.49 (8)
O1—Nd2—O2 ^{ix}	153.93 (8)	Nd2 ^{viii} —O2—Ca2 ^{viii}	0.0
O1 ^{iv} —Nd2—O2 ^{viii}	153.93 (8)	Ca2 ^{xi} —O2—Nd2 ^{viii}	90.49 (8)
O1 ⁱⁱⁱ —Nd2—O2 ^{ix}	94.22 (6)	Ca2 ^{xi} —O2—Nd2 ^{xi}	0.0
O1 ⁱⁱⁱ —Nd2—O2 ^{vi}	153.93 (8)	Ca2 ^{xi} —O2—Ca2 ^{viii}	90.49 (8)
$O1^{iv}$ —Nd2— $O2^{ix}$	125.79 (8)	Si1—O2—Nd1 ⁱⁱⁱ	122.72 (13)
O1—Nd2—O2 ^{viii}	94.22 (6)	Si1—O2—Ca1 ⁱⁱⁱ	122.72 (13)
O1 ⁱⁱⁱ —Nd2—O2 ^{viii}	125.79 (8)	Si1—O2—Nd2 ^{xi}	103.23 (9)
O1 ⁱⁱⁱ —Nd2—O3 ^{vi}	139.76 (6)	Si1—O2—Nd2 ^{viii}	103.23 (9)
O1—Nd2—O3 ^{viii}	87.87 (7)	Si1—O2—Ca2 ^{xi}	103.23 (9)
$O1^{iv}$ —Nd2— $O3^{x}$	68.15 (7)	Si1—O2—Ca2viii	103.23 (9)
O1—Nd2—O3 ^{vi}	68.15 (7)	Nd1 ^{xiii} —O3—Nd1 ⁱⁱ	116.16 (8)
O1 ⁱⁱⁱ —Nd2—O3 ^x	87.87 (7)	Nd1 ^{xiii} —O3—Ca1 ⁱⁱ	116.16 (8)
O1 ^{iv} —Nd2—O3 ^{viii}	139.76 (6)	Nd1 ⁱⁱ —O3—Nd2 ^{viiii}	101.98 (7)
O1 ^{iv} —Nd2—O3 ^{vi}	87.87 (7)	Nd1 ^{xiii} —O3—Nd2 ^{viii}	101.99 (8)
O1 ⁱⁱⁱ —Nd2—O3 ^{viii}	68.15 (7)	Nd1 ⁱⁱ —O3—Ca2 ^{viii}	101.98 (7)
$O1$ —Nd2— $O3^x$	139.76 (6)	Nd1 ^{xiii} —O3—Ca2 ^{viii}	101.99 (8)
O2 ^{vi} —Nd2—Si1 ^{ix}	64.81 (6)	Ca1 ⁱⁱ —O3—Nd1 ⁱⁱ	0.000 (14)
O2 ^{ix} —Nd2—Si1 ^{viii}	64.81 (6)	Ca1 ^{xiii} —O3—Nd1 ^{xiii}	0.0
O2 ^{ix} —Nd2—Si1 ^{vi}	98.63 (5)	Ca1 ^{xiii} —O3—Nd1 ⁱⁱ	116.16 (8)
O2 ^{ix} —Nd2—Si1 ^{ix}	29.07 (6)	Ca1 ^{xiii} —O3—Ca1 ⁱⁱ	116.16 (8)
O2 ^{viii} —Nd2—Si1 ^{viii}	29.07 (6)	Ca1 ⁱⁱ —O3—Nd2 ^{viii}	101.98 (7)
O2 ^{viii} —Nd2—Si1 ^{ix}	98.63 (5)	Ca1 ^{xiii} —O3—Nd2 ^{viii}	101.99 (8)
O2 ^{viii} —Nd2—Si1 ^{vi}	64.81 (6)	Ca1 ⁱⁱ —O3—Ca2 ^{viii}	101.98 (7)
O2 ^{vi} —Nd2—Si1 ^{vi}	29.07 (6)	Ca1 ^{xiii} —O3—Ca2 ^{viii}	101.99 (8)
O2 ^{vi} —Nd2—Si1 ^{viii}	98.63 (5)	Ca2viii—O3—Nd2viii	0.000 (14)
O2 ^{vi} —Nd2—O2 ^{viii}	75.14 (6)	Si1—O3—Nd1 ^{xiii}	141.68 (11)
O2 ^{vi} —Nd2—O2 ^{ix}	75.14 (6)	Si1—O3—Nd1 ⁱⁱ	96.43 (9)
O2 ^{ix} —Nd2—O2 ^{viii}	75.14 (6)	Si1—O3—Ca1 ^{xiii}	141.68 (11)
$O2^{vi}$ $Nd2$ $O3^{viii}$	125.24 (6)	Si1—O3—Ca1 ⁱⁱ	96.43 (9)
$O2^{vi}$ —Nd2— $O3^{x}$	66.19 (7)	Si1—O3—Nd2 ^{viii}	89.48 (10)
O2 ^{viii} —Nd2—O3 ^{viii}	58.84 (7)	Si1—O3—Ca2 ^{viii}	89.48 (10)
$O2^{ix}$ —Nd2— $O3^{x}$	58.84 (7)	Nd1 ⁱ —O4—Nd1 ⁱⁱ	120.0
$O2^{vi}$ $Nd2$ $O3^{vi}$	58.85 (7)	Nd1—O4—Nd1 ⁱⁱ	120.0
$O2^{viii}$ —Nd2— $O3^{x}$	125.24 (6)	Nd1—O4—Nd1 ⁱ	120.0
Ω^{2ix} Nd2 Ω^{viii}	66.19 (7)	$Nd1-O4-Ca1^{ii}$	120.0
Ω^{2ix} Nd2 Ω^{vi}	125.24 (6)	$Nd1^{i}$ O4 Ca1 ⁱⁱ	120.0
$O2^{\text{viii}}$ $Md2$ $O3^{\text{vi}}$	66.19(7)	$Nd1 - O4 - Ca1^{i}$	120.0
$O3^{vi}$ —Nd2—Si1 ^{ix}	123.63 (4)	$Ca1^{i}$ O4 Nd1 ⁱ	0.000 (16)
$O3^{\text{viii}}$ $Md2$ $Si1^{\text{viii}}$	30.06 (4)	$Ca1^{ii}$ $O4$ $Nd1^{ii}$	0.000 (9)
$O3^{x}$ Nd2 Sil ^{ix}	30.06 (4)	$Ca1^{i}$ O4 Nd1 ⁱⁱ	120.0
00 1102 011	50.00(1)		120.0

supporting information

O3 ^x —Nd2—Si1 ^{vi}	92.88 (4)	Cal ⁱ —O4—Cal ⁱⁱ	120.0
O3 ^{viii} —Nd2—Si1 ^{vi}	123.63 (4)		

Symmetry codes: (i) -x+y, -x, -z+1/2; (ii) -y, x-y, z; (iii) -x+y+1, -x+1, -z+1/2; (iv) -y+1, x-y, z; (v) y, -x+y, z+1/2; (vi) y, -x+y, -z; (vii) -x+y, -x, z; (viii) -x+1, -y+1, -z; (ix) x-y+1, x, z-1/2; (ix) x-y+1, x, -z; (ix) x-y, x, z+1/2; (iii) x, y, -z+1/2; (iii) x-y, x, z-1/2.