
Citation: Wang, Q.; Wang, Z.

Quantitative Analysis of Drag Force

for Task-Specific Micromachine at

Low Reynolds Numbers.

Micromachines 2022, 13, 1134.

https://doi.org/10.3390/

mi13071134

Academic Editors: Jin-yuan Qian,

Zan Wu, Junhui Zhang and

Bengt Sunden

Received: 22 June 2022

Accepted: 16 July 2022

Published: 18 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

Quantitative Analysis of Drag Force for Task-Specific
Micromachine at Low Reynolds Numbers
Qiang Wang 1 and Zhen Wang 2,*

1 Infrastructure Management Department, Wuhan University of Technology, Wuhan 430070, China;
qiang_wang@whut.edu.cn

2 Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics,
Department of Mechanics and Engineering Structure, Wuhan University of Technology,
Wuhan 430070, China

* Correspondence: wangzhen@whut.edu.cn; Tel.: +86-27-8765-1129

Abstract: Micromotors have spread widely in order to meet the needs of new applications, including
cell operation, drug delivery, biosensing, precise surgery and environmental decontamination, due to
their small size, low energy consumption and large propelling power, especially the newly designed
multifunctional micromotors that combine many extra shape features in one device. Features such
as rod-like receptors, dendritic biosensors and ball-like catalyzing enzymes are added to the outer
surface of the tubular micromotor during fabrication to perform their special mission. However,
the structural optimization of motion performance is still unclear. The main factor restricting the
motion performance of the micromotors is the drag forces. The complex geometry of a micromotor
makes its dynamic behavior more complicated in a fluid environment. This study aimed to design
the optimum structure of tubular micromotors with minimum drag forces and obtain the magnitude
of drag forces considering both the internal and external fluids of the micromotors. By using the
computational fluid dynamics software Fluent 18.0 (ANSYS), the drag force and the drag coefficient
of different conical micromotors were calculated. Moreover, the influence of the Reynolds numbers
Re, the semi-cone angle δ and the ratios ξ and η on the drag coefficient was analyzed. The results
show the drag force monotonically increased with Reynolds numbers Re and the ratio η. The extreme
point of the drag curve is reached when the semi-cone angle δ is 8◦ and the ratio ξ is 3.846. This
work provides theoretical support and guidance for optimizing the design and development of
conical micromotors.

Keywords: conical micromotor; hydromechanics; Navier–Stokes equation; drag force

1. Introduction

Over the past 20 years, the field of micromachines has developed rapidly with many
teams from around the globe. Efficient and fast micromotors, based on various propulsion
mechanisms and geometries and materials, have been applied to a wide range of biomedi-
cal applications. Traditional synthetic micromachines have been shown to perform well in
biological media [1–3], large cargo delivery [4–8], precise microsurgery [9–11], cell biosens-
ing [12–15] and environmental decontamination [16–20]. In order to meet the demands of
different specific applications, various geometries of micromotors with their propulsion
mechanisms have been proposed. Bubble-propelled catalytic microjets, which convert
chemical energy into kinetic energy, display high speed and efficiency [21–23]. Based on
Li’s experiments [24], conical micromotors have higher propulsion efficiency than other
motors, including Janus microspheres [25,26], rod micromotors [27,28], nanowires [29],
nanoshell micromotors [30] and 3D print heterotypic structures [31,32].

Up to now, bubble-driven tubular micromotors have generated a higher propulsion
force than other geometries. The tubular micromotors can move faster than others since
there are two kinds of forces influencing the motion of micromotors. One is the driving

Micromachines 2022, 13, 1134. https://doi.org/10.3390/mi13071134 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi13071134
https://doi.org/10.3390/mi13071134
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://doi.org/10.3390/mi13071134
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi13071134?type=check_update&version=1


Micromachines 2022, 13, 1134 2 of 11

force, and the other one is the drag force caused by viscosity and pressure of the flow
field [33,34]. The driving force comes from the bubbles nucleating from the decomposition
of fuel fluid into gas due to the catalyst Pt layer. According to Klausner [35], the driving
force depends on the fluid viscosity of solution, the gas productivity speed and the radius of
the bubble. These parameters usually can be gained from experiments. However, the drag
force is difficult to measure from experiments since the size of the micromotor is too small.
A simplified method of calculating the drag force was proposed by Cox [36]. This method
was first proposed to describe the drag force of an ellipsoid, and then researchers used it to
calculate the drag force on a circular cylinder of finite length and a long spheroid [22,33].
After that, a modified drag force formula was proposed by Li [24]. Complex modified
parameters are introduced to describe the drag force of conical micromotors based on the
original equations mentioned above [37]. All the modified formulas are used to determine
the drag force on the tubular micromotors. All the researchers neglect one main problem:
This formula is used to calculate the ellipsoid, which only has outer surfaces. However, the
tubular micromotor has an inner face, and the drag force caused by the inner face cannot
be ignored compared to other faces.

Considering the major challenges of specific applications in the future, more advanced
micromotors, combining multiple functions, will be created to meet the needs of complex
biomedical tasks. As shown in Figure 1, researchers have turned their attention from single-
task micromotors (A) to multifunctional micromotors (B) [38]. Various new functionalities
and capabilities have been added to the tubular micromotors, such as enzyme, antigen
and antidote. These sensing devices made the outer surface of the tubular micromotors
not smooth anymore. Hence, the drag force becomes more complicated, especially when
the Reynolds number is low, and the viscous force, caused by the shearing motion of the
fluid, plays a major part in drag force [39]. Fluid resistance is dependent upon the physical
properties of fluids, the geometric parameters of micromotors [40] and the motion of fluids.
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Figure 1. Schematic of the micromotors [38]: (A) special-purpose micromotor; (B) general-purpose
micromotor.

In this paper, the hydrodynamics theory is applied to the calculation in order to
simulate the drag force of the general-purpose micromotor. Navier–Stokes equations and
the continuity equation are established for the surrounding flow field [41]. The ANSYS
Fluent solver is used to execute computational fluid dynamics (CFD) simulations and
calculate the drag force [42]. An unstructured mesh was used for all simulations, and mesh
independence studies were carried out to ensure that the final CFD solution was free of
mesh resolution errors [43]. This paper aims to investigate the drag force of unsmooth
conical micromotors. By using the normalization method, we try to investigate the motion
of the general-purpose micromotor.

2. Theory and Method

We use a simplified model to simulate the various sensing structures and the tubular
micromotor immersed in the fluid field as shown in Figure 2a. The geometries of the
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sensors varied from each other; in this paper, we assume the sensors are all hemispheres
on the outer surface (Figure 2b). The convex hemispheres are randomly distributed on the
outer surface of the micromotor, in order to simulate the influence of drag force caused
by sensors.
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Figure 2. Schematic of the micromotor: (a) micromotor immersed in the fluid; (b) geometry of
the micromotor.

In this paper, the micromotor moves at a very low Reynolds number since the size
of the micromotor is so small. The Reynolds number (Re) is the ratio of inertial forces to
viscous forces, which can be used to predict flow patterns in different flow situations. It
can be defined as Re = ρvL/µ. Here, ρ is the density of the fluid, v indicates the average
velocity of a micromotor, L = 2Rmax is the larger diameter of the micromotor and µ is the
dynamic viscosity of the fluid. Thus, the viscous resistance is remarkable, which causes a
drag force to be applied to the micromotor as it moves in the fluid.

To calculate the drag force of a conical micromotor, a cylindrical coordinate system
(r, θ, x) is established as follows: The X-axis is along the length of the micromotor. The
parameters L, Rmax and V∞ denote the length, the larger radius of the micromotor and the
fluid velocity distance from the micromotor. According to the Navier–Stokes and general
continuum equations, the relationship between the pressure and velocity of fluid around
the micromotor can be described as follows:

Vr
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where Vr is the speed of the flow field in the r direction, Vx is the speed of the flow field in
the x direction, µ is the dynamic viscosity of fluid and P is the pressure of the fluid. As the
Reynolds number is relatively low, the inertial force and gravity of fluid can be neglected.

Even though the boundary conditions are added to Equation (1), the pressure distribu-
tion of the micromotor can be gained from the velocity of fluid:

Prr = −P + 2µ ∂Vr
∂r

Pxx = −P + 2µ ∂Vx
∂x

Pxr = µ
(

∂Vr
∂r + ∂Vx

∂x

) (2)

The drag force Fdrag can be obtained by integrating pressure distributions at all the
surfaces of the micromotor theoretically. However, for the micromotor with a convex
surface shown in Figure 1, there is no analytical solution for Equation (2); that is to say, we
cannot get the drag force from Equation (3).

Fdrag =
∫

Ω
(Pxx + Pxr)dΩ (3)

where Ω is the surface of the micromotor. The thickness of the micromotor is ignored since
it is much smaller than the characteristic diameter.
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In this paper, we choose the CFD method to simulate the drag force since the theoretical
and experimental methods all failed. The Π-theorem is a commonly used theorem in
dimensional analysis [44], especially in solving the drag force of a solid in a fluid. Usually,
ρ, v and D are selected as the basic physical parameters. According to the Π-theorem, five
independent Π numbers are obtained, namely drag coefficient Cd, the Reynolds number Re,
the semi-cone angle δ, the ratio of length to opening diameter ξ and the ratio of convexities
on the outer surface η. η is the ratio of the total surface area of the convex part to the
smooth outer surface (Figure 2 shows η = 50% as an example). If the number of convex
hemispheres is m, then the ratio η is given by Equation (4).

η =
m·2πr2

π
(

R2
max − R2

min
)
/tan δ

=
2mr2tan δ

R2
max − R2

min
(4)

where r is the radius of the convex hemisphere on the outer surface, Rmax and Rmin are the
radiuses of the openings at both ends for a tubular micromotor.

Based upon the dimensional analysis, the relationship is given by Equation (5).

Cd =
Fdrag

1
2 ρAv2

= f (Re, δ, ξ, η) (5)

The reference area A is the frontal area of a micromotor on a plane, perpendicular to
the flow direction, which is expressed as follows:

A = π
(

R2
max − (Rmax − L tan δ)2

)
(6)

The radius of the bigger opening is 20.0 µm, whereas the length of the micromotor is
100.0 µm. Moreover, the thickness of the tubular micromotor is 1.0 µm. The fluid medium
was water with a density of 998.2 kg/m3 and a viscosity of 1.003 mPa·s. This paper aimed
to simulate the relationship between the drag force and the influence factors. According to
its definition, the Reynolds number mainly depends on the velocity when the properties of
the fluid are fixed. Therefore, the speed was within the range of 0.02–10 mm/s.

The computational domain and boundary conditions used in Fluent are shown in
Figure 3. The micromotor seems to be very small compared to the fluid surroundings. That
is to say, fluid is infinite in comparison to the objects moving in it. Thus, the left side is the
velocity inlet boundary, the right side is the pressure outlet boundary, and the other sides
are the outflow boundaries, in order to simulate the micromotors moving in an infinite
fluid. The micromotor was immersed in a fluid. The density of the fluid is 998.2 kg/m3, and
the dynamic viscosity is 1.003 mPa·s. The laminar flow model was chosen as the Reynolds
number is within a small range.
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3. Results and Discussion

The drag force of the micromotor is calculated by integrating the pressure on the
micromotor surfaces in the flow direction (Figure 4a). Figure 4b shows how the fluid flows
over the surfaces of the micromotor. The velocity of the fluid slows down when the tube is
on the way there. According to the dimensional analysis method, the simulation models
are divided into four groups; each group calculates the influencing factor separately.
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Figure 4. Results calculated by Fluent numerical calculation software. (a) The pressure distribution
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3.1. Reynolds Number (Re)

According to the numerical simulation results, the relationship between the drag forces
and drag coefficient under different Reynolds numbers is shown in Figure 5. The Reynolds
numbers ranging from 4 × 10−3 to 0.2 are presented below. As shown in Figure 5a, the
drag force of a conical micromotor increases with the increase in the Reynolds number.
According to the definition of the Reynolds number Re = ρvL/µ, when the fluid is chosen,
the density and viscosity of the fluid are fixed. So, the Reynolds number is only related
to the fluid velocity. It has been previously found that for a smooth tubular micromotor,
the drag forces of the micromotor increased linearly with the increase in the Reynolds
number [39]. However, here, for the tubular micromotor with convex shapes on the outer
surface, the drag force increases monotonically but no longer linearly. On the contrary, as
pointed out in Figure 5b, the drag coefficient decreases as the Reynolds number increases.
The results highlight the different dependencies on the Reynolds number between the drag
force and the drag coefficient.
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3.2. The Semi-Cone Angle (δ)

Considering different semi-cone angles of conical micromotors ranging from 1◦ to
11◦, different models are calculated. We assume that the small opening of the tubular
micromotor Rmin and the length L are fixed, so the big opening Rmax varies while the
semi-cone angle changes from 1◦ to 11◦. There is a local minimum drag force when the
semi-cone angle increases, as shown in Figure 6a, when the semi-cone angle is 8◦. The drag
coefficient for the conical micromotor also decreases with the increase in a semi-cone angle.
The same conclusion has been given in light of Li’s experimental results [24]. However, as
shown in Figure 6b, the slope indicating the relationship between the drag coefficient and
the semi-cone angle becomes smaller and smaller, indicating that the semi-cone angle has a
greater impact on the drag coefficient when it is small.
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In fluid dynamics, Equation (3) is a formula used to calculate the force of drag ex-
perienced by an object due to movement through a fully enclosing fluid. The drag force
usually consists of both a skin friction component and a form drag component (also known
as pressure drag force). The normal stress on the surface of the tubular micromotor con-
tributes to the form drag, which is why it is also called the pressure drag. The shear stress
on the surface of the tubular micromotor contributed to the skin friction drag. For smooth
bodies, such as a cylinder, the skin friction force may become significant when Reynolds
numbers are small. For sharp-cornered bluff bodies, such as square cylinders and plates
held transverse to the flow direction, the form drag force plays an important role in the
whole drag force when the Reynolds number is large. That is to say, when the Reynolds
number is very small, the skin friction force plays the major role; otherwise, the form drag
force plays the dominant role.

In this paper, the Reynolds number is smaller than 1, so in order to analyze the skin
friction force among the micromotor, we simulate the force on each surface of the motor. As
shown in Figure 7, motor_1 is the circular ring area that first faces the fluid flow, motor_2 is
the circular ring area at the big opening end of the micromotor, motor_3 is the inner surface
of the tube and motor_4 is the outer surface that contains numerous convex shapes.

The results show that the motor_1 and motor_2 surfaces have almost no influence
on both skin friction force and form drag force. The inner (motor_3) and outer (motor_4)
surfaces play the main role in skin friction force in Figure 8a. In particular, the outer surface
accounts for the majority of the skin friction force. As the fluid flows over the micromotor,
the surface shear stress occurs on the inner and outer surfaces of the micromotor, and then
it applies frictional forces to the surface of the motor which works to impede the forward
movement of the motor. The total skin friction force in Figure 8a increases while the total
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form drag force in Figure 8a decreases; that is the reason why the total drag force has a
threshold value in Figure 6a.
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3.3. The ratio of Length to Opening Diameter (ξ)

Similarly, Figure 9a shows the relationship between the drag forces and the parameter
ξ. The relationship between the drag forces and ratio ξ was found not to be monotonous.
The drag force was minimal when the value of ξ lay within the range of 3.5–4.0. Both the
drag force and drag coefficient for conical micromotor decrease with the ratio increase.
When the ratio ξ increases from 1.25 to 5.0, the length increases while the larger radius
remains unchanged. At the same time, the radius of the small opening decreases as the
length increases. The drag force decreases with the decrease in the smaller radius and the
increase in length. There is also a local minimum drag force when the ratio of length to
opening diameter ξ increases as shown in Figure 9a, when the ratio ξ is 3.846. So, the drag
force is very sensitive to geometry when the fluid flows in a low velocity range. Thus,
more attention should be paid to the geometry design in order to obtain more efficient
micromotors in this velocity range.
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3.4. The Ratio of Convexities on the Outer Surface (η)

We use parameter η to describe the quantity of convexities on the outer surface of the
micromotor by Equation (4). Thus, the drag force increases while the number of convexities
increases on the outer surface. The surface area of the outer surface increases while the
parameter η increases, but the projected area of the micromotor remains unchanged when
it flows over the fluid. So it is found that the trend of graphs in Figure 10a,b is consistent.
When the parameter η is less than 50%, the drag force is relatively stable. However, when η
exceeds 50%, the drag force increases rapidly. So, few sensors installed on the outer surface
of the motor have little effect on its motion.
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According to the results, the drag coefficient of a micromotor decreases nonlinearly,
along with the increase in the Reynolds number, semi-cone angle and ratio of length to
larger radius. However, the drag coefficient increases along with the increase in the ratio of
convexities on the outer surface. These figures demonstrate how geometry and flow field
influence the drag force acting on the micromotors. Obviously, the drag coefficient and
geometric parameters are nonlinear relationships, and the analyzed parameters above are
coupled with each other. Through a data-fitting method and analysis, a certain relationship
among dimensionless quantities will be obtained in the future.
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4. Conclusions

Considering the advanced fabrication and functionalization technologies, multifunc-
tional micromotors are capable of performing diverse tasks. However, despite these
tremendous technological advances, it is extremely challenging to investigate the motion of
micromotors with abnormal shapes. Typical analytical methods for the drag force cannot
be adapted to an abnormally shaped motor since the Navier–Stokes equations have no
analytic solution based on hydrodynamic theory. In this paper, a numerical simulation was
introduced to solve the inhomogeneous partial differential equations. A numerical model
used to describe the relationship between dimensionless quantities, including Cd, Re, δ, ξ
and η, has been built. The results showed that the drag force increases nonlinearly with the
increase in the Reynolds number Re. However, the drag coefficient decreases nonlinearly as
the Reynolds number increases. Meanwhile, the drag force has a threshold value when the
semi-cone angle δ increases, while the drag coefficient decreases nonlinearly. Furthermore,
both the drag force and the drag coefficient decrease nonlinearly with the increase in the
ratio ξ while both the drag force and the drag coefficient increase nonlinearly with the
increase in the ratio η. Compared with the two local minimum drag forces from Figures 6a
and 9a, when the ratio ξ is 3.846, the drag force reaches a smaller value. So, the optimal
geometry with minimum fluid drag force is as follows: the radius of the bigger opening is
20.0 µm, the semi-cone angle is 5◦ and the length of the micromotor is 153.84 µm.

However, some key problems still remain for the motion of micromotors, such as the
bubbles, and it is suggested that the behavior of bubbles will need to be considered in the
calculation of the drag force of the micromotor. For example, when a bubble nucleates and
grows on the inner surface of the tubular micromotor, the fluid field changes rapidly when
the bubble blows off the liquid around it. Moreover, there may be mountains of bubbles
that exist at the same time since the fuel solution reacts vigorously with catalysts in it.
Furthermore, as the chemical reactions carry on, a concentration difference develops along
the surface of the motor, which generates a pressure gradient. The pressure gradient also
influences the fluid field around the bubbles, which is normally called self-diffusiophoresis.
Since the repulsive interaction is weak, self-diffusiophoresis was shown to diminish when
the critical size of the motor is not very small. However, at present, these factors are
not often considered. This shows that putting too many variables into a model ends up
degrading the results. Perhaps we will take the bubbles and self-diffusiophoresis into
consideration in our future research.

It is clear that realizing the vision of intelligent micromotors and expanding their
scope require the close collaboration of researchers in diverse fields; we hope our research
can help to assess and address the most pertinent challenges.

Author Contributions: Conceptualization, Z.W.; data curation, Q.W.; formal analysis, Z.W.; funding
acquisition, Z.W.; investigation, Q.W.; methodology, Q.W.; software, Q.W.; writing—original draft,
Q.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by grants from the National Natural Science Foundation of
China (11602181) and the open foundation of Hubei Key Laboratory of Theory and Application of
Advanced Materials Mechanics (No. TAM201813).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Campuzano, S.; Orozco, J.; Kagan, D.; Guix, M.; Gao, W.; Sattayasamitsathit, S.; Claussen, J.C.; Merkoçi, A.; Wang, J. Bacterial

Isolation by Lectin-Modified Microengines. Nano Lett. 2012, 12, 396–401. [CrossRef] [PubMed]
2. Miguel, G.; Jahir, O.; Maria, G.; Gao, W.; Sattayasamitsathit, S.; Escarpa, A.; Merkoçi, A.; Wang, J. Micromotor-based lab-on-chip

immunoassays. Nanoscale 2013, 5, 1325–1331.
3. Murat, U.; Singh, V.V.; Kevin, K.; Uygun, D.A.; de Oliveira, S.D.S.; Wang, J. Micromotor-based biomimetic carbon dioxide

sequestration: Towards mobile microscrubbers. Angew. Chem. Int. Ed. 2015, 127, 12900–12904.

http://doi.org/10.1021/nl203717q
http://www.ncbi.nlm.nih.gov/pubmed/22136558


Micromachines 2022, 13, 1134 10 of 11

4. Lu, A.X.; Liu, Y.; Oh, H.; Gargava, A.; Kendall, E.; Nie, Z.; DeVoe, D.L.; Raghavan, S.R. Catalytic propulsion and magnetic steering
of soft, patchy microcapsules: Ability to pick-up and drop-off microscale cargo. ACS Appl. Mater. Interfaces 2016, 8, 15676–15683.
[CrossRef] [PubMed]

5. Ávila EF, D.; Angsantikul, P.; Li, J.; Angel Lopez-Ramirez, M.; Ramírez-Herrera, D.E.; Thamphiwatana, S.; Chen, C.; Delezuk,
J.; Samakapiruk, R.; Ramez, V.; et al. Micromotor-enabled active drug delivery for in vivo treatment of stomach infection. Nat.
Commun. 2017, 8, 272. [CrossRef] [PubMed]

6. Li, J.X.; Angsantikul, P.; Liu, W.J.; de Ávila, B.E.; Thamphiwatana, S.; Xu, M.; Sandraz, E.; Wang, X.; Delezuk, J.; Gao, W.; et al.
Micromotors spontaneously neutralize gastric acid for pH-responsive payload release. Angew. Chem. Int. Ed. 2017, 56, 2156–2161.
[CrossRef] [PubMed]

7. Joseph, W.; Gao, W. Nano/microscale motors: Biomedical opportunities and challenges. ACS Nano 2012, 6, 5745–5751.
8. Gao, W.; Wang, J. Synthetic micro/nanomotors in drug delivery. Nanoscale 2014, 6, 10486–10494. [CrossRef]
9. Balasubramanian, S.; Kagan, D.; Jack Hu, C.; Campuzano, S.; Lobo-Castañon, M.J.; Lim, N.; Kang, D.Y.; Zimmerman, M.; Zhang,

L.; Wang, J. Micromachine-enabled capture and isolation of cancer cells in complex media. Angew. Chem. Int. Ed. 2011, 50, 4161.
[CrossRef]

10. Xi, W.; Solovev, A.A.; Ananth, A.N.; Gracias, D.H.; Sanchez, S.; Schmidt, O.G. Rolled-up magnetic microdrillers: Towards
remotely controlled minimally invasive surgery. Nanoscale 2013, 5, 1294. [CrossRef]

11. Flynn, A.M.; Udayakumar, K.R.; Barrett, D.S. Tomorrow’s Surgery: Micromotors and Microrobots. MIT Artif. Intell. Lab. 1992.
12. Wu, Z.G.; Li, T.L.; Gao, W.; Xv, T. Cell-membrane-coated synthetic nanomotors for effective biodetoxification. Adv. Funct. Mater.

2015, 25, 3881–3887. [CrossRef]
13. Rojas, D.; Nchez, B.J.; Escarpa, A. ‘Shoot and Sense’ Janus micromotors-based strategy for the simultaneous degradation and

detection of persistent organic pollutants in food and biological samples. Anal. Chem. 2016, 88, 4153–4160. [CrossRef] [PubMed]
14. Yu, X.P.; Li, Y.N.; Wu, J.; Ju, X. Motor-based autonomous microsensor for motion and counting immunoassay of cancer biomarker.

Anal. Chem. 2014, 86, 4501. [CrossRef]
15. Fischer, T.A. Agarwal and H. Hess, A smart dust biosensor powered by kinesin motors. Nat. Nanotechnol. 2009, 4, 162–166.

[CrossRef]
16. Srivastava, S.K.; Guix, M.; Schmidt, O.G. Wastewater mediated activation of micromotors for efficient water cleaning. Nano Lett.

2015, 16, 817–821. [CrossRef]
17. Beatriz, J.S.; Sirilak, S.; Wei, G.; Santos, L.; Fedorak, Y.; Singh, V.V.; Orozco, J.; Galarnyk, M.; Wang, J. Self-propelled activated

carbon janus micromotors for efficient water purification. Small 2015, 11, 499–506.
18. Lluís, S.; Veronika, M.; Vladimir, M.F.; Sanchez, S.; Schmidt, O.G. Self-propelled micromotors for cleaning polluted water. ACS

Nano 2013, 7, 9611–9620.
19. Chen, A.Q.; Ge, X.H.; Chen, J.; Zhang, L.; Xu, J. Multi-functional micromotor: Microfluidic fabrication and water treatment

application. Lab Chip 2017, 17, 4220–4224. [CrossRef]
20. Delezuk JA, M.; Ramírez-Herrera, D.E.; Esteban-Fernández De Ávila, B.; Wang, G. Chitosan-based water-propelled micromotors

with strong antibacterial activity. Nanoscale 2017, 9, 2195–2200. [CrossRef]
21. Wang, L.; Li, T.; Li, L.; Wang, J.; Song, W.; Zhang, G. Microrocket based viscometer. ECS J. Solid State Sci. Technol. 2015, 4,

S3020–S3023. [CrossRef]
22. Wei, G.; Sirilak, S.; Jahir, O.; Joseph, W. Highly efficient catalytic microengines: Template electrosynthesis of polyaniline/platinum

microtubes. J. Am. Chem. Soc. 2011, 133, 11862–11864.
23. Gao, W.; Sattayasamitsathit, S.; Wang, J. Catalytically propelled micro-/nanomotors: How fast can they move? Chem. Rec. 2012,

12, 224–231. [CrossRef] [PubMed]
24. Li, L.Q.; Wang, J.Y.; Li, T.L.; Song, W.P.; Zhang, G.Y. A unified model of drag force for bubble-propelled catalytic micro/nano-

motors with different geometries in low Reynolds number flows. J. Appl. Phys. 2015, 117, 104301–104308. [CrossRef]
25. Araki, T.; Fukai, S. Controlled motion of Janus particles in periodically phase-separating binary fluids. Soft Matter 2015, 11,

3470–3479. [CrossRef]
26. Zhang, J.; Zheng, X.; Cui, H.; Silber-Li, Z. The self-propulsion of the spherical Pt-SiO2 janus micro-motor. Micromachines 2017,

8, 123. [CrossRef]
27. Wei, W.; Li, S.; Lamar, M.; Suzanne, A.; Huang, T.J.; Mallouk, T.E. Acoustic propulsion of nanorod motors inside living cells.

Angew. Chem. 2014, 53, 3201–3204.
28. Kovtyukhova, N.I. Toward understanding of the propulsion mechanism of rod-shaped nanoparticles that catalyze gas-generating

reactions. J. Phys. Chem. C 2008, 112, 6049–6056. [CrossRef]
29. Fournier-Bidoz, S.; Arsenault, A.C.; Manners, I.; Ozin, G.A. Synthetic self-propelled nanorotors. Chem. Commun. 2005, 4, 441–443.

[CrossRef]
30. Huang, W.; Manjare, M.; Zhao, Y. Catalytic nanoshell micromotors. J. Phys. Chem. C 2013, 117, 21590–21596. [CrossRef]
31. Zhu, W.; Li, J.; Leong, Y.J.; Rozen, I.; Qu, X.; Dong, R.; Wu, Z.; Gao, W.; Chung, P.H.; Wang, J.; et al. 3D-printed artificial microfish.

Adv. Mater. 2015, 27, 4411–4417. [CrossRef] [PubMed]
32. Kao, J.; Wang, X.; Warren, J.; Xu, J.; Attinger, D. A bubble-powered micro-rotor: Conception, manufacturing, assembly, and

characterization. J. Micromech. Microeng. 2009, 17, 2454–2460. [CrossRef]

http://doi.org/10.1021/acsami.6b01245
http://www.ncbi.nlm.nih.gov/pubmed/27295420
http://doi.org/10.1038/s41467-017-00309-w
http://www.ncbi.nlm.nih.gov/pubmed/28814725
http://doi.org/10.1002/anie.201611774
http://www.ncbi.nlm.nih.gov/pubmed/28105785
http://doi.org/10.1039/C4NR03124E
http://doi.org/10.1002/anie.201100115
http://doi.org/10.1039/C2NR32798H
http://doi.org/10.1002/adfm.201501050
http://doi.org/10.1021/acs.analchem.6b00574
http://www.ncbi.nlm.nih.gov/pubmed/26938969
http://doi.org/10.1021/ac500912c
http://doi.org/10.1038/nnano.2008.393
http://doi.org/10.1021/acs.nanolett.5b05032
http://doi.org/10.1039/C7LC00950J
http://doi.org/10.1039/C6NR09799E
http://doi.org/10.1149/2.0051510jss
http://doi.org/10.1002/tcr.201100031
http://www.ncbi.nlm.nih.gov/pubmed/22162283
http://doi.org/10.1063/1.4915114
http://doi.org/10.1039/C4SM02357A
http://doi.org/10.3390/mi8040123
http://doi.org/10.1021/jp710594w
http://doi.org/10.1039/b414896g
http://doi.org/10.1021/jp4080288
http://doi.org/10.1002/adma.201501372
http://www.ncbi.nlm.nih.gov/pubmed/26121113
http://doi.org/10.1088/0960-1317/17/12/010


Micromachines 2022, 13, 1134 11 of 11

33. Fomin, V.M.; Hippler, M.; Magdanz, V.; Soler, L.; Sanchez, S.; Schmidt, O.G. Propulsion mechanism of catalytic microjet engines.
IEEE Trans. Robot. 2014, 30, 40–48. [CrossRef] [PubMed]

34. Mei, Y.; Solovev, A.A.; Samuel, S.; Schmidt, O.G. Rolled-up nanotech on polymers: From basic perception to self-propelled
catalytic microengines. Chem. Soc. Rev. 2011, 40, 2109–2119. [CrossRef] [PubMed]

35. Klausner, J.F.; Mei, R.; Bernhard, D.M.; Zeng, L.Z. Vapor bubble departure in forced convection boiling. Int. J. Heat Mass Transf.
1993, 36, 651–662. [CrossRef]

36. Cox, R.G. The motion of long slender bodies in a viscous fluid part 1. Gen. Theory J. Fluid Mech. 1970, 44, 791–810. [CrossRef]
37. Li, L.; Wang, J.; Li, T.; Song, W.; Zhang, G. Hydrodynamics and propulsion mechanism of self-propelled catalytic micromotors:

Model and experiment. Soft Matter 2014, 10, 7511–7518. [CrossRef]
38. Wang, J. Will future microbots be task-specific customized machines or multi-purpose “all in one” vehicles? Nat. Commun. 2021,

12, 7125. [CrossRef]
39. Wang, Z.; Chi, Q.; Liu, L.; Liu, Q.; Bai, T.; Wang, Q. A viscosity-based model for bubble-propelled catalytic micromotors.

Micromachines 2017, 8, 198. [CrossRef]
40. Hong, W.; Moo, J.G.S.; Pumera, M. From nanomotors to micromotors: The Influence of the size of an autonomous bubble-propelled

device upon its motion. ACS Nano 2016, 10, 5041–5050.
41. Sarkis, B.; Folio, D.; Ferreira, A.E.F. Catalytic Tubular Microjet Propulsion Model for Endovascular Navigation. In Proceedings of

the IEEE International Conference on Robotics and Automation, Seattle, WA, USA, 26–30 May 2015; pp. 3537–3542.
42. Ansys Fluent 12.0 Theory Guide 2009. Available online: http://www.afs.enea.it/project/neptunius/docs/fluent/html/th/

main_pre.htm (accessed on 11 September 2018).
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