
Data in Brief 40 (2022) 107780

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

High frequency accuracy and loss data of

random neural networks trained on image

datasets

Ariel Keller Rorabaugh

a , Silvina Caíno-Lores a , Travis Johnston

b ,
Michela Taufer a , ∗

a University of Tennessee, Knoxville, TN 37996, USA
b Striveworks, Austin, TX, USA

a r t i c l e i n f o

Article history:

Received 17 September 2021

Revised 15 December 2021

Accepted 29 December 2021

Available online 5 January 2022

Keywords:

Loss curve

Accuracy curve

Classification

Performance prediction

Early stopping

Neural architecture search

Machine learning

Artificial intelligence

a b s t r a c t

Neural Networks (NNs) are increasingly used across scientific

domains to extract knowledge from experimental or compu-

tational data. An NN is composed of natural or artificial neu-

rons that serve as simple processing units and are intercon-

nected into a model architecture; it acquires knowledge from

the environment through a learning process and stores this

knowledge in its connections. The learning process is con-

ducted by training. During NN training, the learning process

can be tracked by periodically validating the NN and cal-

culating its fitness. The resulting sequence of fitness values

(i.e., validation accuracy or validation loss) is called the NN

learning curve. The development of tools for NN design re-

quires knowledge of diverse NNs and their complete learning

curves.

Generally, only final fully-trained fitness values for highly ac-

curate NNs are made available to the community, hamper-

ing effort s to develop tools for NN design and leaving un-

addressed aspects such as explaining the generation of an

NN and reproducing its learning process. Our dataset fills this

gap by fully recording the structure, metadata, and complete

learning curves for a wide variety of random NNs through-

out their training. Our dataset captures the lifespan of 60 0 0

∗ Corresponding author.

E-mail address: taufer@acm.org (M. Taufer).

Social media: , (M. Taufer)

https://doi.org/10.1016/j.dib.2021.107780

2352-3409/© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.dib.2021.107780
http://www.ScienceDirect.com
http://www.elsevier.com/locate/dib
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dib.2021.107780&domain=pdf
mailto:taufer@acm.org
https://twitter.com/MichelaTaufer
https://twitter.com/TauferLab
https://doi.org/10.1016/j.dib.2021.107780
http://creativecommons.org/licenses/by/4.0/

2 A.K. Rorabaugh, S. Caíno-Lores and T. Johnston et al. / Data in Brief 40 (2022) 107780

NNs throughout generation, training, and validation stages.

It consists of a suite of 60 0 0 tables, each table representing

the lifespan of one NN. We generate each NN with random-

ized parameter values and train it for 40 epochs on one of

three diverse image datasets (i.e., CIFAR-100, FashionMNIST,

SVHN). We calculate and record each NN’s fitness with high

frequency—every half epoch—to capture the evolution of the

training and validation process. As a result, for each NN, we

record the generated parameter values describing the struc-

ture of that NN, the image dataset on which the NN trained,

and all loss and accuracy values for the NN every half epoch.

We put our dataset to the service of researchers studying NN

performance and its evolution throughout training and vali-

dation. Statistical methods can be applied to our dataset to

analyze the shape of learning curves in diverse NNs, and the

relationship between an NN’s structure and its fitness. Addi-

tionally, the structural data and metadata that we record en-

able the reconstruction and reproducibility of the associated

NN.

© 2022 The Author(s). Published by Elsevier Inc.

This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/)

S

V

pecifications Table

Subject Applied Machine Learning

Specific subject area Neural network metadata and learning curve data

Type of data Tabular data in TXT files.

How the data were acquired The neural networks were generated, trained, and validated on the POWER9

Summit supercomputer 1 using the PyTorch library (v. 1.3.1) and Python

language (v. 3.6.10).

Data format Raw

Description of data collection The data consist of tables describing NNs and their learning curves. We

generate each NN with random parameters and train it on an image dataset

for 40 epochs, using stochastic gradient descent and cross entropy loss. For

each NN, we record the randomized parameter values and image dataset used

for training. Every half epoch throughout raining, we validate the NN and

record its fitness.

Data source location Summit Supercomputer at Oak Ridge National Laboratory Oak Ridge, TN,

United States

Data accessibility Repository name: Harvard Dataverse

Data identification number: doi: 10.7910/DVN/ZXTCGF

Direct URL to data: https://doi.org/10.7910/DVN/ZXTCGF

Related research article A. Keller Rorabaugh, S. Caíno-Lores, T. Johnston, M. Taufer, Building

high-throughput neural architecture search workflows via a decoupled fitness

prediction engine. IEEE Transactions on Parallel and Distributed Systems, 2022,

In Press. DOI 10.1109/TPDS.2022.3140681 [12]

alue of the Data

• The ubiquity of NNs has lead to significant investment in tools for NN design [1,2] . Devel-

opment of such tools requires knowledge about diverse NNs and their learning curves (i.e.,

fitness throughout training) [3] . Existing NN repositories store only highly accurate NNs, to-

gether with their final fitness values, and do not include the full NN learning curves [4,5] .
1 https://docs.olcf.ornl.gov/systems/summit _ user _ guide.html#system-overview

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7910/DVN/ZXTCGF
https://doi.org/10.7910/DVN/ZXTCGF
https://doi.org/10.1109/TPDS.2022.3140681
https://docs.olcf.ornl.gov/systems/summit_user_guide.html#system-overview

A.K. Rorabaugh, S. Caíno-Lores and T. Johnston et al. / Data in Brief 40 (2022) 107780 3

Our dataset fills this gap by recording complete learning curves for a wide variety of random

NNs.

• Our data is relevant for researchers developing tools for NN design. Such tools include neu-

ral architecture search [6–8] and methods for NN fitness prediction and training termination

[9–11] . Learning curve data is essential to the development of methods for NN fitness mod-

eling and prediction [3,12] .

• Researchers can use our dataset to study evolution of NN fitness during training and iden-

tify relationships between an NN’s structure and its fitness on a given image dataset. For

example, a researcher can analyze specific columns from each NN table in order to study the

relationship between particular design elements of the NNs (e.g. learning rate; batch size;

number, order, and type of layers) and the learning curves.

• Parametric modeling of learning curves is increasingly used to model and predict fitness in

machine learning applications [3] . Statistical methods can be applied to our dataset to ana-

lyze the shape of the learning curves. This enables researchers to identify families of func-

tions that well model such curves and make informed choices about which modeling func-

tions to employ in parametric modeling methods [12] .

• Our data can advance effective searches for accurate NNs, which have a far-reaching impact

on many fields. Accurate NNs can be used to extract structural information from raw mi-

croscopy data [13] , detect IO interference in batch jobs [14] , predict performance of business

processes [15] , predict soil moisture or maize yield [16] , detect rare transitions in molecular

dynamics simulations [17,18] , analyze cancer pathology data [19] , and map protein sequences

to folds [20] .

1. Data Description

We define a taxonomy of the random NNs that we generated and trained to build our dataset.

Fig. 1 depicts the structure of our NNs. Each NN is composed of two sections, Feature Extraction

and Classification . The Feature Extraction section of the NN consists of convolutional and non-

linear layers; we alternate convolutional layers and non-linear layers such that each convolu-

tional layer is followed by at least one and at most three non-linear layers before any other
Fig. 1. Structure of Generated NNs.

4 A.K. Rorabaugh, S. Caíno-Lores and T. Johnston et al. / Data in Brief 40 (2022) 107780

c

l

s

a

c

i

o

h

.

t

r

a

t

t

c

o

t

a

1

1

1

1

1

1

1

1

T

B

onvolutional layer is applied. The Classification section of the NN consists of fully connected

ayers, with possible dropout layers in between.

Our data depict the lifespan of 60 0 0 NNs throughout generation, training, and validation

tages, across 40 epochs of training, with fitness values captured every half epoch. The NNs

re randomly generated using our taxonomy. The dataset consists of 60 0 0 tables, each with 28

olumns and 81 rows, together with a Python script that demonstrates how to load the data

nto a Pandas DataFrame and how to calculate and save metrics of interest like mean accuracy

r the NN’s learning rate. The dataset is publicly available in the Harvard Dataverse repository:

ttps://doi.org/10.7910/DVN/ZXTCGF . The data format is tabular: the information is organized in

txt files. Each.txt file contains a single table capturing the lifespan of one NN. Each table con-

ains 81 rows and 28 columns. The first row stores the column names, and the remaining 80

ows correspond to every half epoch throughout the lifespan of the NN, beginning at epoch 0.5,

nd ending at epoch 40. The columns correspond to the fitness data and the metadata that we

rack throughout the lifespan of the NNs. The first four columns contain training and valida-

ion data of the NN; these values change throughout the lifespan of the NN, and hence these

olumns populate all rows. The remaining columns contain metadata describing the generation

f the NN and its structure; these values do not change throughout the lifespan of the NN and

hus are only recorded in the second row. From left to right the columns of each NN table are

s follows:

1. epochs : Elapsed epochs of training.

2. trainLoss : Training loss at the given epoch.

3. valLoss : Validation loss at the given epoch.

4. valAcc : Validation accuracy percentage at the given epoch. Values range between 0 and 100.

5. ID : Unique identifier of the NN described in the table.

6. random_seed : The random seed used for NN generation.

7. train_GPU : A boolean value indicating whether the NN is trained using the GPU.

8. torch_set_deterministic : A boolean indicating whether pytorch’s “set_deterministic” flag is

activated during training.

9. dataset : The name of the image dataset on which the NN is trained.

0. batch_size : Batch size used for NN training.

1. loss_fn : The loss criterion used to calculate loss during training.

2. optimizer : The optimizer used during training.

3. learning_rate : The learning rate used for training the NN.

4. momentum : The momentum value used for training the NN; if momentum is not used, the

value is 0.

5. dampening : The dampening value used for training the NN; if dampening is not used, the

value is 0.

6. weight_decay : The weight decay value used for training the NN; if weight decay is not used,

the value is 0.

7. layer_types : The type of non-linear layers following each convolution, reported in a hyphen

separated list of integers. Each integer corresponds to one convolutional layer, and its value

encodes the block of non-linear layers following that convolutional layer. The integers are

recorded consecutively, beginning with the integer corresponding to the first convolutional

layer. Table 1 depicts the block of non-linear layers encoded by each integer value. For ex-

ample, layer_types = 1-5-2, would mean the first convolution is followed by a ReLU layer,

the second convolution is followed by a ReLU layer and then a dropout layer, and the third

convolution is followed by a pooling layer.

able 1

lock of non-linear layers encoded by each integer value.

integer 1 2 3 4 5 6 7

encoded layers ReLu pooling ReLu, pooling dropout ReLU, dropout dropout, pooling ReLU, dropout, pooling

https://doi.org/10.7910/DVN/ZXTCGF

A.K. Rorabaugh, S. Caíno-Lores and T. Johnston et al. / Data in Brief 40 (2022) 107780 5

1

1

2

2

2

2

2

2

2

2

2

8. dropout_rate : The dropout rate to use for all dropout layers specified in “layer_types”. If no

dropout layers are specified, the value is 0.

9. convKernels : The kernels used for each convolutional layer, reported in a hyphen separated

list of integers. Each integer is the kernel for one convolutional layer. Kernels are recorded

consecutively, beginning with the first convolutional layer.

0. convStrides : The strides used for each convolutional layer, reported in a hyphen separated

list of integers. Each integer is the stride for one convolutional layer. Strides are recorded

consecutively, beginning with the first convolutional layer.

1. convPaddings : The padding values used for each convolutional layer, reported in a hyphen

separated list of integers. Each integer is the padding value for one convolutional layer.

Padding values are recorded consecutively, beginning with the first convolutional layer.

2. poolKernels : The kernels used for each pooling layer, reported in a hyphen separated list of

integers. Each integer is the kernel for one pooling layer. Kernels are recorded consecutively,

beginning with the first pooling layer. If there are no pooling layers in the NN, then this

entry is empty.

3. poolStrides : The strides used for each pooling layer, reported in a hyphen separated list of

integers. Each integer is the stride for one pooling layer. Strides are recorded consecutively,

beginning with the first pooling layer. If there are no pooling layers in the NN, then this

entry is empty.

4. poolPaddings : The padding values used for each pooling layer, reported in a hyphen sep-

arated list of integers. Each integer is the padding value for one pooling layer. The padding

values are recorded consecutively, beginning with the first pooling layer. If there are no pool-

ing layers in the NN, then this entry is empty.

5. convFilters : The number of filters of each convolutional layer, reported in a hyphen separated

list of integers. Each integer is the number of filters for one convolutional layer. The number

of filters are recorded consecutively, beginning with the first convolutional layer.

6. FC_dropout_rate : The dropout rate for dropout layers in the Classification section of the NN;

if no dropout layers are added in Classification section, the value is 0.

7. FC_dropout_layers : A hyphen separated list of integers denoting which fully connected lay-

ers are followed by dropout layers. The integers represent boolean values–0 for False, 1 for

True. The integers correspond to consecutive fully connected layers, beginning with the first

one, where a value of 0 means the current fully connected layer is not followed by a dropout

layer, and a value of 1 means the current fully connected layer is followed by a dropout layer.

8. FCFilters : A list of the number of filters of each fully connected layer. The number of filters

are reported in a hyphen separated list of integers. Each integer is the number of filters for

one fully connected layer. The number of filters are recorded consecutively, beginning with

the first fully connected layer.

Our dataset amounts to 109.4MB of data distributed in 60 0 0 tabular files. Because of the sig-

nificant size of the dataset, we do not include the full dataset in the text of this paper. The full

dataset can be downloaded from our public Harvard Dataverse repository; a link is included in

the Specifications Table under “Data Accessibility.” Table 2 gives an example of the first 3 rows

of one of these 60 0 0 NN tabular.txt files: the first row contains the column names; the second

row contains the training and validation data at epoch 0.5 as well as the metadata describ-

ing generation of the NN and its structure; the third row contains the training and validation

data at epoch 1.0. The remaining 78 rows contain training and validation data for each consec-

utive half epoch up through 40 epochs; we do not include these rows in the paper because of

space constraints. The full table can be found in our dataset. The NN represented in this ta-

ble has unique ID “2021_02_15_12_18_09_100387” (row 2, column 5 of Table 2) and is trained

on CIFAR-100 (row 2, column 9 of Table 2). The path to this table in our dataset is “CIFAR-

100_models/2021_02_15_12_18_09_100387.txt”.

Our dataset includes the python script DataLoader.py . This script shows how to load the tab-

ular .txt files into a Pandas DataFrame, isolate columns of interest, perform computations (e.g.

calculating max, min, or mean values of the accuracy or loss of an NN over its lifespan), aggre-

6

A
.K

.
 R

o
ra

b
a

u
g

h
,
 S.

 C
a

ín
o

-Lo
res

 a
n

d
 T.

 Jo
h

n
sto

n
 et

 a
l.
 /
 D

a
ta
 in

 B
rief

 4
0
 (2

0
2

2
)
 10

7
7

8
0

Table 2

First three rows of an NN table.

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 Column 7

Row 1 epochs trainLoss valLoss valAcc ID random_seed train_GPU ...

Row 2 0.5 4.604796782661887 4.582063616775885 1.010404161664666 2021_02_15_12_18_09_100387 3,153,530,971 True

Row 3 1.0 4.604823879167145 4.582446265802151 1.0304121648659463

Column 8 Column 9 Column 10 Column 11 Column 12 Column 13

... torch_set_deterministic dataset batch_size loss_fn optimizer learning_rate ...

False CIFAR100 49 CrossEntropyLoss SGD 0.01005814462371971

Column 14 Column 15 Column 16 Column 17 Column 18 Column 19

... momentum dampening weight_decay layer_types dropout_rate convKernels ...

0 0 0.05815562399917578 1-2-2 0 32-1-1

Column 20 Column 21 Column 22 Column 23 Column 24 Column 25

... convStrides convPaddings poolKernels poolStrides poolPaddings convFilters ...

9-1-1 0-4-0 9-1 5-1 0-0 304-38-257

Column 26 Column 27 Column 28

... FC_dropout_rate FC_dropout_layers FCFilters

0.23811313201015194 0 343-100

A.K. Rorabaugh, S. Caíno-Lores and T. Johnston et al. / Data in Brief 40 (2022) 107780 7

gate computations for all NNs into a single DataFrame, and save the aggregate calculated metrics

in a .csv file.

2. Experimental Design, Materials and Methods

2.1. Neural Network Generation

For each of our three image datasets (i.e., CIFAR-100, FashionMNIST, and SVHN) we gener-

ate 20 0 0 NNs with random parameter values and train them on that image dataset, for a to-

tal of 60 0 0 NNs described in our dataset. We generate each NN according to the structure in

Fig. 1 with uniformly randomized parameter values from the intervals defined in Table 3 .

Zooming into Table 3 , we generate three different sets of parameters (i.e., Feature Extraction

Parameters, Classification Parameters, and Training Parameters).

• Feature Extraction Parameters

On each of our three image datasets, we generate 20 0 0 NNs, 20 0 each with x number of

layers, for 1 ≤ x ≤ 10 . This ensures that the number of convolutional layers of the NNs is

uniformly distributed between 1 and 10. For each convolutional layer, we randomize kernel,

stride, and padding values, as well as the number of filters.

Often, NNs are structured so that the number of filters for the convolutional layers increases

with each layer. We generate some NNs whose convolutional filters increase sequentially, but

we do not restrict our data to only NNs with this property. We achieve this by generating a

random boolean for each NN that determines whether or not to increase the number of fil-

ters in each sequential convolutional layer. Fig. 2 shows the process to randomize the number

of filters for the convolutional layers of each NN, depending on the value of the boolean and

the position of the layer in the NN. If the number of filters is not required to increase, then

the number of filters for the last convolution C c is chosen uniformly in the range [number of

classes , 400], and the number filters for each convolution C i , i < c, is always chosen uniformly
Table 3

Parameters for NN generation. Values are uniformly randomized in the specified intervals.

Parameter Values

Feature Extraction Parameters

Number of convolutional layers [1 , 10]

Kernel [1 , dimension of input]

Stride [1 , kernel]

Padding [0, 5]

Number of filters [μa , 400]

Number and type of non-linear layers in blocks N i [1, 30]; ReLU, dropout, pooling

Dropout rate for dropout layers [0.1, 0.7]

Pool kernel for pooling layers [1 , dimension of input]

Stride for pooling layers [1 , pool kernel]

Padding for pooling layers [0 , f loor(pool kernel/ 2)]

Classification Parameters

Number of fully connected layers [1, 5]

Number of filters [0, 400]

Dropout rate for dropout layers b [0.1, 0.7]

Training Parameters

Learning rate 10 p , p ∈ [−6 . 0 , 0 . 0]

Momentum

b 10 p , p ∈ [−6 . 0 , 0 . 0]

Dampening b 10 p , p ∈ [−6 . 0 , 0 . 0]

Weight decay b 10 p , p ∈ [−6 . 0 , 0 . 0]

Batch size [25, 250]

a Either μ = number of channels or μ = number of filters of C i −1 , depending on whether increasing number of filters

is enforced.
b These parameters are only taken into account if they are randomized to be true.

8 A.K. Rorabaugh, S. Caíno-Lores and T. Johnston et al. / Data in Brief 40 (2022) 107780

Fig. 2. Randomizing number of filters of each convolutional layer.

Fig. 3. Randomizing training parameters.

in the range [number of image channels , 400]. Otherwise, if the number of filters is required

to increase, then there are three possible cases:

• The number of filters for the first convolution, C 1 , is always chosen uniformly in the range

[number of image channels , 400].

• The number of filters for the last convolution, C c , must be at least the number of classes

in the image dataset. In addition, the number of filters must also be at least the number

of filters of the previous convolution.

• For the other intermediate layers, the number of filters for C i is chosen uniformly in [num-

ber of filters of C i −1 , 400].

As depicted in Fig. 1 , each convolutional layer is followed by non-linear layers random-

ized from the following types: ReLU, dropout, or pooling. We randomize kernel, stride, and

padding values for each pooling layer, and we choose a dropout rate to use for all dropout

layers in the Feature Extraction section.

• Classification Parameters

We randomize the number of fully connected layers, and we generate a random boolean

that determines whether or not to allow any dropout layers between pairs of fully connected

layers. If the boolean is T rue , we randomize the dropout rate to use for all dropout layers

in the Classification section. Then, for each fully connected layer except the final one, we

generate a random boolean to decide whether or not to add a dropout layer after this fully

connected layer. If the boolean is F alse , the dropout rate is 0, and we do not add any dropout

layers in the Classification section.

• Training Parameters

We randomize the learning rate, momentum, dampening, and weight decay to use for train-

ing the NN. As depicted in Fig. 3 a, for the training parameters momentum, dampening, and

weight decay, we generate a random boolean to determine whether or not to activate that

parameter. If the parameter is not activated, we set the parameter’s value to 0.

Finally, we randomize the batch size to use for training. The procedure is given in Fig. 3 b. We

randomize batch size uniformly between 25 and 250 and truncate the training image dataset

to be divisible by batch size. Because we validate every half epoch, we also need the number

A.K. Rorabaugh, S. Caíno-Lores and T. Johnston et al. / Data in Brief 40 (2022) 107780 9

of samples in the truncated dataset to be divisible by twice the batch size. If this divisibility

condition is not met, we re-randomize batch size until it is.

2.2. Neural Network Training and Validation

As noted earlier, each of our generated NNs is trained on one of three image datasets: CIFAR-

100, F-MNIST, and SVHN. Each of these image datasets comes partitioned into training and test-

ing sets; we use the training set for training the NNs and the testing sets for validating the NNs.

The CIFAR-100 dataset contains 50,0 0 0 images for training and 10,0 0 0 images for testing. The

F-MNIST dataset contains 60,0 0 0 images for training and 10,0 0 0 images for testing. The SVHN

dataset contains 373,257 images for training and 26,032 images for testing.

Each generated NN trains on the training set of one of these three datasets for a total of 40

epochs. Every half epoch throughout training, the training loss is recorded and training is paused

in order to validate the network on the testing set and record the NN’s validation accuracy and

validation loss. After validation, training resumes for the next half epoch. All neural networks

are trained using stochastic gradient descent. The loss criterion used is cross entropy loss.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal rela-

tionships that could have appeared to influence the work reported in this paper.

CRediT Author Statement

Ariel Keller Rorabaugh: Methodology, Software, Validation, Investigation, Data curation,

Writing – original draft, Writing – review & editing; Silvina Caíno-Lores: Conceptualization,

Methodology, Writing – original draft, Writing – review & editing; Travis Johnston: Concep-

tualization, Methodology; Michela Taufer: Conceptualization, Methodology, Supervision, Writing

– review & editing, Funding acquisition.

Acknowledgments

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge

National Laboratory, which is supported by the Office of Science of the U.S. Department of En-

ergy under Contract No. DE-AC05-00OR22725.

The authors acknowledge the support of Science Alliance at the University of Tennessee

Knoxville, the National Science Foundation through the awards #1741057 and #1841758, and

IBM through a Shared University Research Award.

The funding sources were not involved in the study design; collection, analysis and interpre-

tation of data; writing of the report; or the decision to submit this article.

References

[1] C. Liu , B. Zoph , M. Neumann , J. Shlens , W. Hua , L.-J. Li , L. Fei-Fei , A. Yuille , J. Huang , K. Murphy , Progressive Neural

Architecture Search, in: Proceedings of European Conference on Computer Vision, ECCV, 2018 .
[2] K. Kandasamy , W. Neiswanger , J. Schneider , B. Póczos , E.P. Xing , Neural Architecture Search with Bayesian Optimisa-

tion and Optimal Transport, in: Proceedings of the 32nd International Conference on Neural Information Processing

Systems, NeurIPS, 2018, pp. 2020–2029 .
[3] T. Viering , M. Loog , The shape of learning curves: a review, arXiv preprint arXiv:2103.10948 (2021) .

[4] R. Chard , Z. Li , K. Chard , L. Ward , Y. Babuji , A. Woodard , S. Tuecke , B. Blaiszik , M. Franklin , I. Foster , DLHub: Model
and data serving for science, in: IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2019,

pp. 283–292 .

http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0001
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0001
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0001
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0001
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0001
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0001
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0001
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0001
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0001
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0001
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0001
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0002
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0002
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0002
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0002
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0002
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0002
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0003
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0003
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0003
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0004
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0004
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0004
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0004
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0004
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0004
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0004
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0004
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0004
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0004
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0004

10 A.K. Rorabaugh, S. Caíno-Lores and T. Johnston et al. / Data in Brief 40 (2022) 107780

[
[5] Model Zoo, Model Zoo, Accessed: 2021-09-23, (https://modelzoo.co/).

[6] Y. Sun , B. Xue , M. Zhang , G.G. Yen , Evolving Deep Convolutional Neural Networks for Image Classification, IEEE
Transactions on Evolutionary Computation, IEEE, 2020 . https://github.com/yn-sun/evocnn

[7] S.R. Young , D.C. Rose , T. Johnston , W.T. Heller , T.P. Karnowski , T.E. Potok , R.M. Patton , G. Perdue , J. Miller , Evolving

Deep Networks Using HPC, in: Proceedings of the Machine Learning on HPC Environments, Association for Com-
puting Machinery, New York, NY, United States, 2017, pp. 1–7 .

[8] Z. Lu , I. Whalen , V. Boddeti , Y. Dhebar , K. Deb , E. Goodman , W. Banzhaf , NSGA-Net: Neural Architecture Search
Using Multi-Objective Genetic Algorithm, in: Proceedings of the Genetic and Evolutionary Computation Conference,

Association for Computing Machinery, New York, NY, USA, 2019, pp. 419–427 . https://github.com/ianwhale/nsga-net
[9] T. Domhan , J.T. Springenberg , F. Hutter , Speeding up automatic hyperparameter optimization of deep neural net-

works by extrapolation of learning curves, in: Proceedings of the 24th International Joint Conference on Artificial

Intelligence, IJCAI, 2015 .
[10] A. Klein , S. Falkner , J. Springenberg , F. Hutter , Learning curve prediction with Bayesian neural networks, in: Pro-

ceedings of the 5th International Conference on Learning Representations, ICLR, 2017 .
[11] B. Baker , O. Gupta , R. Raskar , N. Naik , Accelerating neural architecture search using performance prediction, NIPS

Workshop on Meta-Learning, NIPS, 2017 .
[12] A. Keller Rorabaugh, S. Caíno-Lores, T. Johnston, M. Taufer, Building high-throughput neural architecture search

workflows via a decoupled fitness prediction engine, IEEE Transactions on Parallel and Distributed Systems (2022)
In press, doi: 10.1109/TPDS.2022.3140681 .

[13] R. Patton , J. Johnston , S. Young , et al. , 167-PFlops deep learning for electron microscopy: From learning physics

to atomic manipulation, in: SC’18: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, 2018 .

[14] M.R. Wyatt II, S. Herbein, T. Gamblin, A. Moody, D.H. Ahn, M. Taufer, PRIONN: Predicting Runtime and IO using
Neural Networks, in: Proceedings of the 47th International Conference on Parallel Processing, (ICPP), ACM, Eugene,

OR, USA, 2018, pp. 46:1–46:12, doi: 10.1145/3225058.3225091 .
[15] G. Park , M. Song , Predicting performances in business processes using deep neural networks, Decis. Support. Syst.

129 (113191) (2020) .

[16] A. Kamilaris , F. Prenafeta-Boldú, A review of the use of convolutional neural networks in agriculture, J Agric Sci
156:3 (2018) 312–322 .

[17] M. Taufer, T. Estrada, T. Johnston, A survey of algorithms for transforming molecular dynamics data into metadata
for in situ analytics based on machine learning methods, Philosophical Transactions of the Royal Society A: Mathe-

matical, Physical and Engineering Sciences 378 (2020) 20190063, doi: 10.1098/rsta.2019.0063 .
[18] H. Carrillo-Cabada, J. Benson, A. Razavi, B. Mulligan, M.A. Cuendet, H. Weinstein, M. Taufer, T. Estrada, A graphic

encoding method for quantitative classification of protein structure and representation of conformational changes,

IEEE/ACM Trans. Comput. Biol. Bioinf. 18 (4) (2021) 1336–1349, doi: 10.1109/tcbb.2019.2945291 .
[19] A. Gertych, Z. Swiderska-Chadaj, Z. Ma, et al., Convolutional neural networks can accurately distinguish four

histologic growth patterns of lung adenocarcinoma in digital slides, Sci Rep 9 (1483) (2019), doi: 10.1038/
s41598- 018- 37638- 9 .

20] J. Hou, B. Adhikari, C. Jianlin, Deepsf: deep convolutional neural network for mapping protein sequences to folds,
Bioinformatics 34:8 (2018) 1295–1303, doi: 10.1093/bioinformatics/btx780 .

https://modelzoo.co/
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0006
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0006
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0006
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0006
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0006
https://github.com/yn-sun/evocnn
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0007
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0007
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0007
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0007
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0007
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0007
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0007
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0007
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0007
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0007
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0008
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0008
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0008
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0008
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0008
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0008
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0008
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0008
https://github.com/ianwhale/nsga-net
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0009
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0009
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0009
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0009
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0010
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0010
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0010
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0010
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0010
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0011
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0011
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0011
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0011
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0011
https://doi.org/10.1109/TPDS.2022.3140681
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0013
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0013
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0013
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0013
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0013
https://doi.org/10.1145/3225058.3225091
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0015
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0015
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0015
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0016
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0016
http://refhub.elsevier.com/S2352-3409(21)01054-4/sbref0016
https://doi.org/10.1098/rsta.2019.0063
https://doi.org/10.1109/tcbb.2019.2945291
https://doi.org/10.1038/s41598-018-37638-9
https://doi.org/10.1093/bioinformatics/btx780

	High frequency accuracy and loss data of random neural networks trained on image datasets
	Specifications Table
	1 Data Description
	2 Experimental Design, Materials and Methods
	2.1 Neural Network Generation
	2.2 Neural Network Training and Validation

	Declaration of Competing Interest
	CRediT Author Statement
	Acknowledgments
	References

