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During HIV-1 assembly, precursor Gag (PrGag) proteins are delivered to plasma membrane
(PM) assembly sites, where they are triggered to oligomerize and bud from cells as
immature virus particles. The delivery and triggering processes are coordinated by the
PrGag matrix (MA) and nucleocapsid (NC) domains. Targeting of PrGag proteins to
membranes enriched in cholesterol and phosphatidylinositol-4,5-bisphosphate (PI[4,5]P2)
is mediated by the MA domain, which also has been shown to bind both RNA and DNA.
Evidence suggests that the nucleic-acid-binding function of MA serves to inhibit PrGag
binding to inappropriate intracellular membranes, prior to delivery to the PM. At the PM,
MA domains putatively trade RNA ligands for PI(4,5)P2 ligands, fostering high-affinity
membrane binding.Triggering of oligomerization, budding, and virus particle release results
when NC domains on adjacent PrGag proteins bind to viral RNA, leading to capsid (CA)
domain oligomerization. This process leads to the assembly of immature virus shells in
which hexamers of membrane-bound MA trimers appear to organize above interlinked CA
hexamers. Here, we review the functions of retroviral MA proteins, with an emphasis on
the nucleic-acid-binding capability of the HIV-1 MA protein, and its effects on membrane
binding.
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INTRODUCTION
FUNCTIONS OF RETROVIRAL MA PROTEINS
Retroviruses such as the human immunodeficiency virus (HIV)
are membrane-enveloped viruses that bud from the plasma mem-
branes of infected host cells (Coffin et al., 1997; Swanstrom and
Wills, 1997; Freed, 1998; Goff, 2001). Retroviral genomes encode
PrGag polyproteins that are necessary and sufficient for assembly
and release of virus-like particles (VLP) from cells (Campbell and
Vogt, 1995; Coffin et al., 1997; Swanstrom and Wills, 1997; Camp-
bell and Rein, 1999; Gross et al., 2000; Campbell et al., 2001). The
HIV-1 precursor Gag protein (PrGag) initially is synthesized on
cytosolic ribosomes and becomes cotranslationally modified by
the N-terminal attachment of a myristoyl group by N-myristoyl-
transferase (Mervis et al., 1988; Bryant and Ratner, 1990; Ono
and Freed, 1999, 2001; Morikawa et al., 2000; Ono et al., 2000;
Tritel and Resh, 2000; Resh, 2004), although myristoylation is
not universal among retroviral PrGag proteins (Erdie and Wills,
1990; Provitera et al., 2000; Dalton et al., 2005). PrGag proteins
associate with the inner layer of the plasma membrane (PM),
where they oligomerize, assemble, and bud off from cells as
immature virions. The assembly process of retroviruses appears
to be triggered by the association of PrGag proteins with viral
RNA (vRNA) at the plasma membrane (Rein, 1994; Spearman
et al., 1994; Muriaux et al., 2001; Jouvenet et al., 2006, 2008; Ott
et al., 2009). However, several retroviruses, such as mouse mam-
mary tumor virus (MMTV) and the Mason-Pfizer monkey virus
(MPMV), assemble within the cytoplasm before being transported
to cell membrane (Choi et al., 1999; Stansell et al., 2007). Dur-
ing the maturation process, cleavage of HIV-1 PrGag by the viral
protease (PR) generates the mature myristoylated matrix (MA)
protein as well as capsid (CA), nucleocapsid (NC), p6 and two

spacer peptides, Sp1 and Sp2 (Swanstrom and Wills, 1997; Freed,
1998).

The MA domain plays multiple roles in the viral replication
cycle. One of these roles involves the incorporation of the viral
envelope (Env) proteins into virus particles. Evidence indicates
that HIV-1 MA interacts with the cytoplasmic tail (CT) of gp41,
the transmembrane (TM) portion of the HIV-1 Env protein, to
facilitate the incorporation of Env proteins into assembling viri-
ons (Yu et al., 1992; Dorfman et al., 1994; Freed and Martin, 1995,
1996; Wyma et al., 2000; Davis et al., 2006; Checkley et al., 2011).
Several models have been proposed to explain the incorpora-
tion of retroviral Env protein into virus particles (reviewed by
Checkley et al., 2011). One of these models is the passive model,
in which membrane proteins at assembly sites are incorporated
into virions as innocent bystanders. This model was based on the
observation that retroviruses could incorporate foreign membrane
proteins into their envelopes. When glycoproteins from heterolo-
gous viruses are assembled into a retrovirus envelope, the process
is termed pseudotyping (Zavada, 1982; Lusso et al., 1990; Arthur
et al., 1992; Ott, 2008; Checkley et al., 2011). For example, infec-
tious HIV-1 particles can be produced with foreign glycoproteins
such as the vesicular stomatitis virus G protein (VSV-G; Cronin
et al., 2005; Checkley et al., 2011) or amphotropic murine leukemia
virus (MLV) Env (Lusso et al., 1990; Wang et al., 1993). In these
cases, HIV-1 cores and genomes are delivered to target cells car-
rying the VSV or MLV receptors (Jorgenson et al., 2009). The
passive model also is supported by the finding that removal of
most of HIV-1 gp41 CT has a moderate effect on Env glycopro-
tein incorporation into HIV-1 particles (Wilk et al., 1992; Freed
and Martin, 1995, 1996; Akari et al., 2000; Murakami and Freed,
2000).
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Although the passive model is consistent with observations
for a number of retroviruses (Landau et al., 1991; Reiser et al.,
1996; Lewis et al., 2001; Liu et al., 2004; Jorgenson et al., 2009),
several lines of evidence suggest an interaction between MA and
Env. For HIV-1, it has been reported that mutations in MA may
decrease levels of HIV-1 Env incorporation into virions (Wang
et al., 1993; Freed and Martin, 1995, 1996; Reil et al., 1998). More-
over, some mutations in MA (Freed and Martin, 1995, 1996; Reil
et al., 1998) have been shown to mitigate the effects of certain
Env mutations. Interestingly, for some but not all cell types, MA
mutations can be compensated via full deletions of the HIV-1
Env protein cytoplasmic tail (CT; Freed and Martin, 1995, 1996;
Checkley et al., 2011). These results suggest that while truncated
HIV-1 Env can be incorporated passively into virions in some
cell types, full-length Env requires an interaction with MA for
assembly into virions (Freed and Martin, 1995, 1996; Check-
ley et al., 2011). Data from other experiments indicate that MA
domains in immature PrGag lattices lock Env proteins into a
non-fusogenic state, and that PrGag processing serves as a switch
to regulate envelope protein function (Murakami et al., 2004;
Wyma et al., 2004; Jiang and Aiken, 2007). In vitro studies have
shown direct binding between MA and the CT Env in several
biochemical experiments for both HIV-1 and Simian immunod-
eficiency virus (SIV; Cosson, 1996; Wyma et al., 2000; Manrique
et al., 2008). Consistent with these observations, structural stud-
ies have shown that HIV-1 MA proteins assemble lattices on
phosphatidylinositol-(4,5)-bisphosphate (PI[4,5]P2) membranes
in which residues implicated in CT binding point toward lattice
holes (Yu et al., 1992; Dorfman et al., 1994; Freed and Mar-
tin, 1996; Ono et al., 1997; Murakami and Freed, 2000; Davis
et al., 2006; Bhatia et al., 2007; Alfadhli et al., 2009a; Checkley
et al., 2011; Tedbury et al., 2013). Given this membrane organi-
zation of MA, it seems likely that membrane proteins with short
cytoplasmic domains may enter Gag lattices passively, whereas
proteins such as HIV-1 Env, with long cytoplasmic tails require
MA interactions.

Implicit in the data described above is the assumption that
MA binds to membranes, and another essential function of MA
is to target PrGag proteins to their lipid raft assembly sites at the
PMs of infected cells (Ehrlich et al., 1996; Spearman et al., 1997;
Scarlata et al., 1998; Bouamr et al., 2003; Murray et al., 2005; Jou-
venet et al., 2006; Bhatia et al., 2007; Dalton et al., 2007; Scholz
et al., 2008; Hamard-Peron and Muriaux, 2011). In most mam-
malian retroviruses, membrane targeting is dependent on two
structural features present on MA: the N-terminal myristyl group
and a group of basic residues. For such viruses, the N-terminal
myristyl group functions in concert with a group of conserved
basic residues to promote membrane binding (Zhou et al., 1994;
Tang et al., 2004; Saad et al., 2008). However, Gag proteins of some
retroviruses, such as Rous sarcoma virus (RSV) and equine infec-
tious anemia virus (EIAV), lack the myristate anchor, and Gag
targeting and binding to the PM is mainly mediated by elec-
trostatic interactions (Erdie and Wills, 1990; Parent et al., 1996;
Callahan and Wills, 2000; Provitera et al., 2000; Dalton et al., 2005).
Compelling evidence favors the idea that HIV assembly does not
occur just anywhere at the PM, but at lipid rafts and at PI(4,5)P2-
enriched areas (Ono et al., 2004; Chukkapalli et al., 2008, 2010;

Chukkapalli and Ono, 2011). MA–PI(4,5)P2 interactions also have
been observed for MLV, MPMV, and EIAV (Stansell et al., 2007;
Chan et al., 2008; Chen et al., 2008; Hamard-Peron et al., 2010). In
cell culture, decreasing the levels of cellular PI(4,5)P2 by overex-
pression of polyphosphoinositide 5-phosphatase IV was shown to
reduce HIV-1 and MLV assembly efficiency, resulting in the deliv-
ery of viral proteins to intracellular compartments (Ono et al.,
2004; Chan et al., 2008; Chukkapalli et al., 2008; Hamard-Peron
et al., 2010; Inlora et al., 2011). In contrast, recent studies have
shown that human T-lymphotropic virus type 1 (HTLV-1) Gag
is markedly less dependent on PI(4,5)P2 for membrane binding
and particle release than HIV-1 Gag (Inlora et al., 2011). For RSV,
Chan et al. (2011) reported that RSV Gag bound effectively to a
variety of phosphorylated phosphatidylinositols, and that reduc-
tion of cellular PI(4,5)P2 and PI(3,4,5)P3 levels did not reduce
Gag PM binding or virus particle release. However, more recently,
Nadaraia-Hoke et al. (2013) reported that depletion of cellular
PI(4,5)P2 and PI(3,4,5)P3 yielded reductions of both RSV Gag
PM binding and virus particle release. Interestingly, RSV Gag
mutants that are impaired in nuclear trafficking were less sensitive
to these effects, suggesting a link between RSV Gag PM targeting
and nuclear trafficking (Nadaraia-Hoke et al., 2013).

In addition to Env protein and membrane binding, several
reports have implicated nucleic acid binding properties to retro-
viral MAs. These viruses are HIV-1 (Luban and Goff, 1991;
Bukrinsky et al., 1993; Von Schwedler et al., 1994;; Lochrie et al.,
1997; Miller et al., 1997; Reil et al., 1998; Haffar et al., 2000; Puro-
hit et al., 2001; Ott et al., 2005; Hearps et al., 2008; Alfadhli et al.,
2009b, 2011; Cai et al., 2010; Chukkapalli et al., 2010, 2013; Monde
et al., 2011), RSV (Leis et al., 1978, 1980; Steeg and Vogt, 1990), and
BLV (Mansky et al., 1995; Mansky and Wisniewski, 1998; Man-
sky and Gajary, 2002; Wang et al., 2003). While the NC domains
of retroviral PrGag proteins are essential for viral RNA (vRNA)
encapsidation, experiments have shown that MA proteins may
also possess binding functions and can substitute for the HIV-1
NC protein assembly function (Ott et al., 2005). [However, dele-
tion of the NC domain dramatically reduces the assembly of MLV
particles (Muriaux et al., 2004)]. It has been conjectured that such
MA–nucleic acid binding might facilitate PrGag delivery to the
PM, virus assembly, and/or nuclear import of viral preintegration
complexes (PICs) (Bukrinsky et al., 1993; Von Schwedler et al.,
1994; Miller et al., 1997; Reil et al., 1998; Haffar et al., 2000; Hearps
et al., 2008; Cai et al., 2010). In this review, we focus on the role
of MA binding to RNA and summarize the importance of Gag
MA interactions with RNA for HIV and other retroviruses, with
the hope that this comparative approach can shed more light on
our understanding of the importance of this function and ways of
inhibiting that role.

STRUCTURAL ASPECTS OF RETROVIRAL MATRIX PROTEINS
Matrix structures for the following retroviruses have been deter-
mined: HIV- 1 (Massiah et al., 1994; Hill et al., 1996; Tang et al.,
2004; Saad et al., 2006, 2007), HIV-2 (Saad et al., 2008), SIV (Rao
et al., 1995), human T-lymphotropic virus 2 (HTLV-2; Chris-
tensen et al., 1996), BLV (Matthews et al., 1996), M-PMV (Conte
et al., 1997), Rous sarcoma virus (RSV; N-terminal fragment;
McDonnell et al., 1998), EIAV (Hatanaka et al., 2002), and MLV
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(Riffel et al., 2002). In contrast to their low sequence homol-
ogy, structures of retroviral MA proteins are remarkably similar
(Figure 1; Murray et al., 2005). They all share a globular core
composed of α helices. The N-termini of the MA proteins tend
to contain basic residues that appear to foster interactions of
MA with acidic phospholipid head groups. Another essential ele-
ment that contributes to membrane binding is the myristyl group
found in most retroviral MAs, including HIV-1 (Gottlinger et al.,
1989; Bryant and Ratner, 1990; Spearman et al., 1994), HIV-
2 (Saad et al., 2008), MLV (Henderson et al., 1983), M-PMV
(Schultz and Oroszlan, 1983), and HTLV (Ootsuyama et al., 1985).
However, there are exceptions, such as RSV and EIAV viruses
(Schultz and Oroszlan, 1983), which do not have myristoylated
MA proteins.

A number of structural studies have been conducted on HIV-
1 MA (Massiah et al., 1994; Hill et al., 1996; Tang et al., 2004;
Saad et al., 2006, 2007; Alfadhli et al., 2009a). In addition to its
N-terminal myristate, which is essential for efficient membrane
binding (Gottlinger et al., 1989; Bryant and Ratner, 1990; Freed
et al., 1994; Spearman et al., 1994; Tang et al., 2004; Saad et al.,
2006, 2007), the HIV-1 MA protein is composed of six α helices
and three β sheet strands (Massiah et al., 1994; Hill et al., 1996;
Tang et al., 2004; Saad et al., 2006, 2007). Sedimentation equi-
librium data have shown that while myristoylated HIV-1 MA
exists in a monomeric–trimeric state at equilibrium, unmyris-
toylated MA occurs as a monomer even at high concentrations
(Tang et al., 2004). NMR studies suggest that upon Gag mul-
timerization the myristoyl group is exposed, and this fosters
Gag binding to membranes (Tang et al., 2004; Saad et al., 2006,
2007).

The membrane binding face of HIV-1 MA is basic, promoting
interactions with negatively charged phospholipid head groups
at the inner leaflets of PMs (Massiah et al., 1994; Zhou et al.,
1994; Hill et al., 1996; Tang et al., 2004; Saad et al., 2006, 2007).
NMR investigations have indicated that HIV-1 MA preferentially
binds to soluble PI(4,5)P2 mimics through contacts with the lipid
head group and its 2′ acyl chain, and that binding promotes both

FIGURE 1 | Retrovirus matrix protein membrane binding regions.

Ribbon diagrams of the membrane binding regions of four lentivirus matrix
proteins (top row) and an alpharetrovirus (RSV), betaretrovirus (MPMV),
gammaretrovirus (MLV), and deltaretrovirus (HTLV-2) are depicted. In each
case, matrix helix one is on the right-hand side of the figure, and basic
residues are indicated in blue. The PDB files for each matrix protein are as
follows: HIV-1 (1UPH), HIV-2 (2K4H), SIV (1ECW), EIAV (1HEK), RSV (1A6S),
MPMV (1BAX), MLV (1MN8), HTLV-2 (1JVR).

exposure of the MA myristate group and protein oligomeriza-
tion (Tang et al., 2004; Saad et al., 2006, 2007). Consistent with
the above observations, it has been shown that HIV-1 MA and
MACA proteins tend to organize as hexamers of trimers on lipid
membranes containing PI(4,5)P2 (Figure 2; Alfadhli et al., 2009a),
and that the binding specificity of MA is enhanced by cholesterol
(Alfadhli et al., 2009a,b). These results suggest a model in which
each MA trimer contributes to three separate hexamer rings, and
MA proteins are positioned roughly above CA N-terminal domain
(NTD) hexamers, which also are linked via CA C-terminal domain
(CTD) contacts. This model implies that the shells of immature
HIV-1 virions are stabilized by multiple Gag domain contacts,
and has implications for how Env proteins assemble and fit into
virus particles. Significantly, MA residues shown to be critical for
incorporation of HIV-1 Env proteins orient toward the hexameric
holes in the lattices (Yu et al., 1992; Dorfman et al., 1994; Freed and
Martin, 1996; Ono et al., 1997; Murakami and Freed, 2000; Davis
et al., 2006; Bhatia et al., 2007; Alfadhli et al., 2009a; Checkley et al.,
2011; Tedbury et al., 2013).

RETROVIRAL MA BINDING TO NUCLEIC ACIDS
For a number of years, researchers have reported that retrovi-
ral MA proteins possess nucleic-acid-binding properties (Sen and
Todaro, 1977; Leis et al., 1978, 1980; Steeg and Vogt, 1990; Katoh
et al., 1991, 1993; Luban and Goff, 1991; Bukrinsky et al., 1993;
Von Schwedler et al., 1994; Mansky et al., 1995; Lochrie et al., 1997;

FIGURE 2 | Membrane organization of HIV-1 matrix proteins. Trimers of
HIV-1 matrix proteins (PDB 1HIW) were fitted onto the electron densities of
HIV-1 MA proteins assembled onto a lipid monolayer containing PI(4,5)P2
(Alfadhli et al., 2009a). As shown, trimers organize in hexameric rings
around protein-free holes. MA residues that have been shown to affect
HIV-1 Env protein assembly into virions locate toward the centers of the
hexameric holes, implying that the cytoplasmic tails of HIV-1 Env proteins
occupy these spaces.
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Miller et al., 1997; Swanstrom and Wills, 1997; Mansky and Wis-
niewski, 1998; Reil et al., 1998; Haffar et al., 2000; Garbitt et al.,
2001; Purohit et al., 2001; Mansky and Gajary, 2002; Wang et al.,
2003; Hearps et al., 2008; Alfadhli et al., 2009b, 2011; Cai et al.,
2010; Chukkapalli et al., 2010, 2013; Chukkapalli and Ono, 2011;
Monde et al., 2011). In early studies on retroviruses such as avian
sarcoma and leukemia viruses (ASLV) and RSV, which is closely
related to ASLV, MA was reported to be associated with vRNA
in virus particles (Sen and Todaro, 1977; Leis et al., 1978, 1980),
although subsequent work attributed this activity to NC (Meric
et al., 1984). In any event, the binding of RSV MA to RNA is not
of high specificity (Steeg and Vogt, 1990), and studies have shown
that RSV MA binds to vRNA, ribosomal RNA, and DNA with
similar affinities (Meric and Spahr, 1986; Parent and Gudleski,
2011).

Early studies using RNA gel mobility shift assays, and radioac-
tive cDNA hybridization and mapping studies implicated the MA
domain of BLV Gag in specific binding of vRNA (Katoh et al.,
1991, 1993). Although the BLV Gag NC domain contains two
zinc finger domains and basic amino acids that are important for
vRNA packaging (Wang et al., 2003), the mature BLV NC proteins
lack selectivity for vRNA sequences containing the encapsidation
signal (Katoh et al., 1991, 1993). Surprisingly, the BLV precur-
sor MA(p15) protein binds specifically to two distinct regions of
viral RNA (Mansky and Wisniewski, 1998). This observation is
discussed in more detail below.

For HIV-1, in vitro selection experiments identified RNA
aptamers that showed high-affinity binding to HIV-1 MA (Lochrie
et al., 1997; Purohit et al., 2001; Ramalingam et al., 2011). Lochrie
et al. (1997) identified RNA ligands that bind to two different
regions within Gag, either to MA or to NC. These RNAs were 50-
mer aptamers and had dissociation constants between 3 and30 nM
(Lochrie et al., 1997). However, the RNA sequences identified by
this screen were not related to any region on the HIV-1 vRNA
(Lochrie et al., 1997). Subsequently, Purohit et al. (2001) identi-
fied high-affinity RNA ligands to HIV-1 MA that were selected
by screening of random 76-mer and 31-mer RNA libraries. These
investigators showed that MA binds directly to an RNA sequence
that is homologous to a fragment of the pol sequence with an affin-
ity of about 500 nM (Purohit et al., 2001; Alfadhli et al., 2011).
The region of MA that binds to this RNA was restricted to the
N-terminal basic domain, and substitution in the basic residues
led to weak binding to RNA in vitro. Viral mutants that interfered
with the MA–RNA interaction yielded a 4–5 day replication delay
in vivo (Purohit et al., 2001). However, it is possible that mutations
that affected RNA binding also affected other viral functions. In
the third study (Ramalingam et al., 2011), MA-binding aptamers
were found with Kds in the range of 100–250 nM, but expres-
sion of these aptamers in cells had only minimal effects on HIV-1
functions.

Recent studies with HIV-1 MA provide corroboration of its
RNA-binding capacity. In particular, bead binding experiments
have indicated that fluorescently tagged RNAs and DNAs bind well
to HIV-1 MA but not to control proteins (Alfadhli et al., 2009b).
Interestingly, it has been shown that RNA binding enhances the
binding specificity of MA to PI(4,5)P2-containing membranes.
This was indicated by the fact that PI(4,5)P2-containing liposomes

successfully competed with nucleic acids for MA binding, whereas
other liposomes did not (Figure 3; Alfadhli et al., 2009b). In
agreement with these results, other studies have shown that the
highly basic region (HBR) on the N-terminal portion of MA
not only contributes to binding of PI(4,5)P2, but also is capable
of binding to RNA (Chukkapalli et al., 2008, 2010, 2013). Fur-
thermore, RNAse treatment of in vitro translated Gag protein
preparations decreased the binding specificity to membranes con-
taining PI(4,5)P2, suggesting that RNA influences the membrane
binding specificity of MA (Chukkapalli et al., 2008, 2010, 2013, see
below).

In support of these studies, it has been shown by Burniston et al.
(1999) that the basic residues of the HIV-1 MA domain contribute
to Gag–Gag interactions in the presence of RNA and the absence
of the NC domain, indicating that the basic residues on MA play
a role in RNA binding (Burniston et al., 1999). NMR studies also
have confirmed interactions of HIV-1 MA with RNA and DNA,
and have implicated the nucleic-binding surfaces on MA (Cai et al.,
2010; Alfadhli et al., 2011). As discussed above, over a decade ago
in vitro selection experiments identified a 25-mer aptamer that
showed high-affinity binding to HIV-1 MA (Purohit et al., 2001).
More recently, MA binding to this aptamer has been characterized.
MA–RNA binding was verified via gel shift assays, fluorescence
anisotropy (FA) assays, analytical ultracentrifugation, and NMR
methods (Alfadhli et al., 2011).

In summary, numerous studies have shown that the MA
domains from different retroviruses possess nucleic-acid-binding
properties. The significance of these interactions and their
plausible roles are described below.

FIGURE 3 | Competition of PI(4,5)P2 liposomes for matrix protein RNA

binding sites. Experiments performed by Alfadhli et al. (2011) have shown
that nickel-nitrilotriacetic acid (Ni-NTA) beads coated with the myristoylated
HIV-1 matrix protein (MyrMA) bind fluorescently tagged Sel25 RNA
(MyrMA + RNA). Addition of liposomes composed of 80%
dioleoylphosphatidyl choline + 20% cholesterol (plus PC) during binding
reactions did not diminish MA–RNA binding, whereas addition of an equal
amount of liposomes composed of 70% PC, 10% PI(4,5)P2, 20%
cholesterol (plus PIP2) significantly reduced MA–RNA binding. These and
other experiments indicate that the affinity of HIV-1 MA for RNA is less
than that for membranes containing PI(4,5)P2 but greater than that for
membranes without PI(4,5)P2.
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THE ROLE OF MA–NUCLEIC ACID BINDING
THE ROLE OF MA IN RNA ENCAPSIDATION
The RNA encapsidation process for retroviruses involves recog-
nition of the vRNA by the viral Gag polyprotein, and it is
essential for the assembly of infectious virions. Biochemical and
genetic studies have revealed that encapsidation involves the
association between a stable RNA structure near the 5′ ends
of viral genome called the encapsidation (�, packaging) sig-
nal and, in most cases, amino acid residues in the NC domain
of the Gag protein (Mansky et al., 1995; Berkowitz et al., 1996;
Swanstrom and Wills, 1997; Parent and Gudleski, 2011). It has
been shown that RSV NC is essential for efficient vRNA encap-
sidation (Dupraz and Spahr, 1992; Aronoff et al., 1993; Lee et al.,
2003; Lee and Linial, 2004; Zhou et al., 2005). However, stud-
ies have shown that other regions of RSV PrGag contribute to
RNA packaging (Sakalian et al., 1994; Parent and Gudleski, 2011).
In particular, mutations of the N-terminal region of RSV MA
have resulted in defects in RNA dimerization and encapsida-
tion (Sakalian et al., 1994; Garbitt-Hirst et al., 2009). The RSV
Gag proteins are synthesized in the cytosol, and were believed
that to be targeted directly to the plasma membrane. However,
genetic and biochemical studies have indicated that RSV MA
and NC domains contain nuclear localization signals (NLS) for
nuclear targeting (Butterfield-Gerson et al., 2006; Garbitt-Hirst
et al., 2009; Gudleski et al., 2010; Baluyot et al., 2012). Studies by
Parent and co-workers have indicated that RSV MA influences
vRNA encapsidation indirectly, and have proposed a working
model for RSV MA role in vRNA packaging (Scheifele et al.,
2002; Butterfield-Gerson et al., 2006; Garbitt-Hirst et al., 2009;
Gudleski et al., 2010). According to this model, the NLS on MA
binds directly to importin-11 and/or the NC NLS binds to the
importin-alpha/importin-beta complex, and Gag nuclear import
is directed by the importins. Once in the nucleus, Gag is released
from import factors and binds to vRNA, primarily through an
interaction of the NC domain with the packaging signal. RSV
Gag–RNA binding may induce conformational changes in RSV
Gag that expose a nuclear export signal (NES) in the Gag p10
domain (Garbitt-Hirst et al., 2009; Gudleski et al., 2010). This
proposed conformational change appears to promote binding of
the Gag p10 NES directly to CRM-1/RanGTP, a major exporter
of RNA-binding proteins from the nucleus (Scheifele et al., 2002;
Garbitt-Hirst et al., 2009; Gudleski et al., 2010). The Gag–RNA
complex is then exported through the nuclear pore and travels
to the plasma membrane where Gag undergoes multimerization
and budding. However, it should be noted that a chimeric pro-
tein with the HIV-1 MA domain fused to the remainder of RSV
Gag was able to replicate in a single round infectivity assay even
though nuclear trafficking of the HIV/RSV chimeric protein was
not readily detected by fluorescence microscopy (Baluyot et al.,
2012).

In contrast to RSV, the BLV MA appears to play a direct role
in vRNA encapsidation. While the NC domain of BLV plays a
major role in genome recognition and RNA encapsidation, evi-
dence in the literature implicates the MA protein of BLV in these
events (Katoh et al., 1991, 1993; Mansky and Wisniewski, 1998).
In particular, the MA domain of BLV PrGag is involved in the
specific selection and packaging of vRNAs (Katoh et al., 1991,

1993; Parent and Gudleski, 2011). As one line of evidence, RNA
gel mobility shift assays have shown that BLV MA binds specifi-
cally to RNAs representing the 5′ region of the BLV vRNA (Katoh
et al., 1991, 1993). Furthermore, cDNA hybridization and map-
ping studies demonstrated that the BLV MA specifically binds to
two different segments of the vRNA (Katoh et al., 1991, 1993).
The first RNA region contains the vRNA dimerization domain,
while the second RNA region is at the 5′ end of the gag gene,
which is the location of the encapsidation signal for BLV (Mansky
and Wisniewski, 1998). Interestingly, it is the BLV precursor MA
(p15) protein and not the mature MA (p10) that binds specif-
ically to the vRNA dimerization element and the encapsidation
signal (Mansky and Wisniewski, 1998). Moreover, studies con-
ducted by Katoh et al. (1991) showed that the BLV NC protein
possesses only a non-specific RNA-binding activity, with little
selectivity for the vRNA encapsidation signal. However, studies
conducted by Mansky and co-workers provide genetic evidence
that both the MA and NC domains of BLV PrGag are needed
for efficient RNA packaging (Mansky et al., 1995; Mansky and
Wisniewski, 1998; Mansky and Gajary, 2002; Wang et al., 2003).
Mutational analysis of MA and NC showed that charged residues
within both of these regions of Gag are needed for optimal genome
packaging (Wang et al., 2003). In particular, mutation of residues
K41 and H45 in MA, and of basic and zinc finger residues on
NC resulted in BLV vRNA encapsidation defects (Wang et al.,
2003). Thus, BLV provides one example in which the MA–RNA
binding function is directly employed in the viral replication
strategy.

THE ROLE OF HIV-1 MA IN NUCLEAR IMPORT
Historically, HIV-1 MA was the first protein implicated in direct-
ing the nuclear import of pre-integration complexes (PICs) early
in infection (Bukrinsky et al., 1993; Von Schwedler et al., 1994).
Reports indicated that HIV-1 MA contains an NLS that maps to
the basic residues 25–33 (Bukrinsky et al., 1993; Von Schwedler
et al., 1994; Depienne et al., 2000), and that mature MA enters
infected cells along with vRNA and other viral proteins. Moreover,
some MA molecules were found to be localized to PICs (Bukrinsky
et al., 1993; Von Schwedler et al., 1994), and it thus was originally
proposed that the MA NLS facilitates nuclear translocation of PICs
prior to proviral integration (Bukrinsky et al., 1993; Von Schwedler
et al., 1994; Miller et al., 1997; Reil et al., 1998; Haffar et al., 2000).

However, a number of reports challenged the role of HIV-1
MA in directing the nuclear import of PICs (Freed et al., 1994;
Fouchier et al., 1997; Reil et al., 1998; Hearps et al., 2008). Notably,
Gottlinger and co-workers showed that viruses lacking most of
MA were capable of infecting non-dividing cells, suggesting that
the putative MA NLS is not essential for HIV-1 replication (Reil
et al., 1998; Depienne et al., 2000). Hearps et al. (2008) assessed the
nuclear import properties of GFP-tagged MA, and concluded that
MA is excluded from the nuclei of transfected cells. MA also failed
to enter the nuclei of cells in in vitro transport assays using cells
with perforated PMs but intact nuclear membranes (Hearps et al.,
2008). Nevertheless, MA mutants have been shown to affect provi-
ral DNA circularization and integration (Mannioui et al., 2005),
and MA binding to DNA was demonstrated using in vitro DNA gel
shift analysis (Hearps et al., 2008). Instead of a nuclear localization
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role for HIV-1 MA, these observations suggest that MA associates
with PICs and augments integration. Recent NMR studies showing
that MA residues R22, K27, Q28, K30, and K32 mediate binding
to dsDNA (Cai et al., 2010) are consistent with this notion.

THE ROLE OF HIV-1 MA BINDING TO RNA: REGULATION OF MEMBRANE
BINDING
Studies by Alfadhli et al. (2009b, 2011) demonstrated that MA
binds to nucleic acids, and that PI(4,5)P2-containing liposomes
successfully compete with nucleic acids for MA binding, whereas
other liposomes do not (Alfadhli et al., 2009b, 2011; Figure 3).
Complementary studies by Ono and co-workers indicated that
RNase treatment of Gag in vitro translation extracts reduced the
selectivity of Gag binding for PI(4,5)P2 (Chukkapalli et al., 2010,
2013; Chukkapalli and Ono, 2011). These studies imply that MA
and NC domains of HIV-1 PrGag bind to RNA in the cytoplasm
of infected cells until PrGag reaches PI(4,5)P2-rich domains at the
plasma membrane. By this scenario, MA–RNA binding increases
the specificity of PrGag for PI(4,5)P2. This could be plausible if the
MA affinity for RNA were between its affinity for PI(4,5)P2 and
that for other phospholipids, so that RNA binding could protect
MA from binding to inappropriate membranes (Alfadhli et al.,
2009b, 2011; Chukkapalli et al., 2010, 2013; Chukkapalli and Ono,
2011). Consistent observations by Jones et al. (2011), showed that
both MA and NC PrGag domains can bind nucleic acids, and
that binding of MA to inositol phosphate (IP) derivatives, which
resemble the PI(4,5)P2 head group, alters the association of PrGag
to nucleic acids. Notably, experiments demonstrated that in vitro
tRNA annealing to vRNA catalyzed by PrGag is enhanced over
10-fold by the addition of IPs to the reaction (Jones et al., 2011).
In contrast, the IPs had no effect on the annealing induced by
NC alone or CA–NC proteins. These results show that MA and
NC can bind to nucleic acids, and that MA–RNA binding reduces
tRNA annealing. By this model, IPs compete with vRNAs for MA
binding, allowing NC to perform its encapsidation and annealing
functions (Rein, 2010; Jones et al., 2011).

Another line of investigation based on biochemical and struc-
tural studies using hydrodynamic and small angle neutron scat-
tering (SANS) methods showed that the Gag protein adopts a
compact bent shaped conformation in solution. When only RNA
is added, the Gag proteins assemble very small VLPs, suggesting
that both MA and NC domains bind to RNA. However, in the
presence of both RNA and IP membrane mimics, Gag under-
goes a conformational switch to an extended rod-shaped form
(Datta et al., 2007, 2011). Overall, the data above suggest that
RNA provides a chaperone function in preventing HIV-1 Gag pro-
teins from binding to membranes until they reach PI(4,5)P2-rich
plasma membranes. Such a model is depicted in Figure 4, which
illustrates the binding of PrGag MA and NC domains to vRNA,
followed by an MA switch to membrane binding at PM assembly
sites.

To test the MA–RNA chaperone model, Ono and co-workers
measured cellular RNA levels and found that they are sufficient for
blocking PrGag binding to phosphatidylserine (PS; Chukkapalli
et al., 2013). These results provide cell-based evidence supporting
the notion that RNA regulates membrane binding, and prevents
PrGag from binding promiscuously to PS-containing membranes

FIGURE 4 | Chaperone model for MA–RNA binding. The chaperone
model for MA-RNA binding posits that both the MA and NC domains of
PrGag proteins bind to RNA in the cytoplasm of infected cells, and that the
MA–RNA binding protects MA from binding to inappropriate intracellular
membranes, lacking PI(4,5)P2. Once at PI(4,5)P2-rich sites at the plasma
membrane, MA binding switches from RNA to PI(4,5)P2, facilitating the
trafficking and assembly of PrGag proteins.

(Chukkapalli et al., 2013). However, recent studies conducted by
Dick et alindicate that RNA regulation of PrGag membrane bind-
ing is not universal among retroviruses (Dick et al., 2013). In
contrast to HIV-1 Gag, RNAse treatment of reticulocyte lysates
containing in vitro-translated RSV Gag did not alter the protein’s
membrane-binding characteristics. Potentially, this is because the
interactions of RSV MA with RNA are weaker than those of HIV
MA (Dick et al., 2013).

Given the implicated chaperone role for HIV-1 MA-nucleic
acid binding (Chukkapalli et al., 2008, 2010, 2013; Alfadhli et al.,
2009b, 2011), some aspects of HIV-1 MA–RNA binding have been
examined further. One basic question relating to these observa-
tions concerns the nature of MA–RNA interactions. Previously,
in vitro selection experiments identified a 25-mer RNA aptamer
called Sel25 (GGACA GGAAU UAAUA GUAGC UGUCC) which
demonstrated high-affinity binding to HIV-1 MA (Lochrie et al.,
1997; Purohit et al., 2001). The central fifteen nucleotides (Sel15)
also showed high-affinity binding to the protein. As a step toward
characterization of MA–RNA interactions, MA binding to Sel25,
Sel15, and their random sequence counterparts (Ran25, Ran15)
was tracked via gel shift assays, fluorescence anisotropy (FA) assays,
and analytical ultracentrifugation methods (Alfadhli et al., 2011).
These investigations confirmed the specificity of MA binding to
Sel15 and Sel25 RNAs. In addition, these studies identified RNA
as a competitor for membrane binding, and assays indicated that
PI(4,5)P2-containing liposomes significantly reduced RNA bind-
ing to MA. In vitro competition binding experiments also showed
that a soluble PI(4,5)P2 mimic (PIPC8) reduced Sel25 binding
to MA, whereas a soluble PS mimic did not; while FA competi-
tion data indicated that PIPC8 reduced MA–RNA binding levels
to a greater extent than did the PS mimic (Alfadhli et al., 2011).
These results are consistent with the notion that RNA increases
the ability of MA to distinguish between phospholipid head
groups.

What MA surfaces are sensitive to RNA binding? In an attempt
to address this question, NMR binding studies were performed.
Using this approach, MA residues at the putative RNA binding
site were identified by their chemical shift perturbations upon
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titration. In particular, significant NMR shifts were observed for
residues located to the matrix protein β-II-V cleft corresponding
to residues Gln-28, His-33, Glu-40, Glu-42, Ile-60, Leu-68, Thr-
70, Glu-73, Arg-76, Ser-77, Tyr-79, and Asn-80 (Figure 5; Alfadhli
et al., 2011). Some of these residues (residues 33, 73, 76, and 79)
previously were shown to contribute to the PI(4,5)P2 binding site
(Figure 5; Saad et al., 2006). This observed overlap of PI(4,5)P2-
MA and RNA–MA binding sites reinforces a chaperone function
hypothesis. These results also are in agreement with other NMR
studies which implied that MA residues 28–33 and, to a lesser
extent, residues 70–79 contribute to MA–DNA binding in prein-
tegration complexes (Cai et al., 2010). It also is pertinent to note
that NMR titrations indicated residues 94, 97, 103, and 104 were
affected by RNA titrations (Alfadhli et al., 2011). These residues
are located on MA helix VI and may involve a conformational
change of MA upon RNA binding that also could affect binding
specificity. While the sum of the above results support a hypoth-
esis in which MA–RNA binding is utilized by HIV-1 to regulate
virus assembly, the identity of the RNA(s) that bind to MA in vivo
remains to be determined. In this regard, it is noteworthy that a
nearly exact match of the Sel15 RNA sequence is located in the
pol coding region of HIV-1, but while mutations of consensus

FIGURE 5 | Overlap of matrix RNA and PI(4,5)P2 binding sites. The
membrane-binding surface of the HIV-1 matrix protein (PDB 1UPH) is
illustrated as a space-filling model. Residues that have been implicated in
PI(4,5)P2 binding are indicated in blue, residues that have been implicated
in RNA binding (Alfadhli et al., 2011) are indicated in red, and residues that
have been implicated in both PI(4,5)P2 and RNA binding are indicated in
purple.

nucleotides involved in MA–Sel RNA binding reduced binding in
vitro, they only modestly reduced viral infectivity in vivo (Purohit
et al., 2001). Thus, it is likely that MA can bind to other sequences
on viral or cellular RNAs to effect its chaperone functions.

INHIBITION OF HIV-1 MA/RNA BINDING
Despite the effectiveness of the current highly active antiretrovi-
ral therapy (HAART) in the treatment of AIDS, development of
novel anti-viral strategies is dictated by the medical significance
of the AIDS epidemic, side effects of current drugs, and the possi-
ble development of drug-resistant HIV strains (Larder and Kemp,
1989; Richman et al., 1991; Moreno et al., 2010). The process of
virus assembly, controlled by the HIV-1 Gag proteins, represents
an attractive target for such therapies. Findings on the interplay
between MA and RNA lay a foundation for determining how HIV-
1 MA matrix binds RNA, and the role of MA–RNA interactions
in HIV replication. Furthermore, these findings pave the way for
efforts to use the MA–RNA interaction as a potential target for
a new class of HIV assembly inhibitors. These interactions can
be monitored with in vitro techniques, making them suitable for
screening purposes. Consequently, assays that facilitate the identi-
fication of potential inhibitors of MA–RNA interactions have been
developed. The reasoning here is that molecules that interfere with
the binding of RNAs to MA may impair either an essential MA–
RNA binding function, the overlapping MA-PI(4,5)P2 binding
function, or both. Based on this, we have designed novel high
throughput screens (HTS) in which small-molecule competitors
to MA–RNA binding may be identified. The basic assay involves
binding of C-terminally His-tagged MyrMA to 96-well nickel-
NTA plates, incubation of the plates with biotin-Sel15 RNA in
the presence or absence of potential competitors, and colorimet-
ric determination of bound biotin-Sel15 (Alfadhli et al., 2013).
Using the MA–RNA binding assay, a library of 14,000 compounds
was screened for inhibition of MyrMA–Sel15 RNA binding, look-
ing for candidates that significantly reduced Sel15 RNA binding
to MyrMA. The robustness of the assay was indicated by the con-
sistently large difference between samples containing no inhibitor
versus those using untagged Sel15 RNA as an inhibitor control,
and a favorable Z screening window coefficient (Zhang et al.,
1999) of 0.69 for the screen. Using this assay, a small group of
compounds that compete with RNA for MA binding was iden-
tified. Interestingly, three of the four best inhibitor candidates
were thiadiazolanes. These potential inhibitors were characterized
with respect to MA binding by NMR, FA, and electrophoretic
mobility shift assays (EMSA). Importantly, results showed that
MA–thiadiazolanes binding sites do overlap the MA–RNA bind-
ing site, validating the concept of such a screening effort. The
thiadiazolanes also were shown to inhibit HIV-1 replication in
cell culture, but unfortunately also demonstrated cytotoxicity in
the 10–20 mM range (Alfadhli et al., 2013). Despite this, such
efforts should open the door to the development of new classes
of HIV antivirals that target MA and its nucleic-acid-binding
pocket.
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