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Self‑similar transport, spin 
polarization and thermoelectricity 
in complex silicene structures
R. Rodríguez‑González1, L. M. Gaggero‑Sager1 & i. Rodríguez‑Vargas2*

2D materials open the possibility to study Dirac electrons in complex self-similar geometries. The 
two‑dimensional nature of materials like graphene, silicene, phosphorene and transition‑metal 
dichalcogenides allow the nanostructuration of complex geometries through metallic electrodes, 
interacting substrates, strain, etc. So far, the only 2D material that presents physical properties 
that directly reflect the characteristics of the complex geometries is monolayer graphene. In the 
present work, we show that silicene nanostructured in complex fashion also displays self‑similar 
characteristics in physical properties. In particular, we find self-similar patterns in the conductance, 
spin polarization and thermoelectricity of cantor‑like silicene structures. these complex structures 
are generated by modulating electrostatically the silicene local bandgap in Cantor-like fashion along 
the structure. The charge carriers are described quantum relativistically by means of a Dirac-like 
Hamiltonian. the transfer matrix method, the Landauer–Büttiker formalism and the cutler–Mott 
formula are used to obtain the transmission, transport and thermoelectric properties. We numerically 
derive scaling rules that connect appropriately the self-similar conductance, spin polarization and 
Seebeck coefficient patterns. The scaling rules are related to the structural parameters that define 
the cantor‑like structure such as the generation and length of the system as well as the height of 
the potential barriers. As far as we know this is the first time that a 2D material beyond monolayer 
graphene shows self-similar quantum transport as well as that transport related properties like spin 
polarization and thermoelectricity manifest self‑similarity.

The discovery of 2D materials has attracted a great interest in the scientific community, giving rise to a new era 
in materials  science1. Despite the widespread family of 2D materials discovered so far, monolayer graphene is 
undoubtedly one of the most studied materials due to the multitude of exotic properties that sustains and the 
great technological potential that it possesses. With regard to exotic properties, these have been theoretically 
studied and experimentally observed. Among the most remarkable properties we can find the so-called Klein 
 tunneling2,3, atomic  collapse4 and the Hofstadter’s  butterfly5,6.

Recently, it has been reported that charge carriers manifest quantum fractal nature once they are confined in 
structures with fractal  geometries7–12. Fractals are objects with special properties such as fractal dimension and 
self-similarity13. Self-similar geometries self-repeat its whole shape at all scales. Typical self-similar geometries 
are based on the Sierpinski carpet, Sierpinski triangle, Vicsek fractal and Cantor  set14. Under this context, theo-
retical studies on quantum transport have been carried out in complex (self-similar) graphene  structures7,8. In 
particular, the quantum conductance has been studied in a complex geometry based on the Sierpinski  carpet7. 
The box-counting method has been implemented to calculate the fractal dimension of the conductance fluc-
tuations. The resulting dimension inherits the fractal dimension of the Sierpinski carpet in question, being 
this behavior an intrinsic property of the geometrical construction of each Sierpinski carpet iteration. In other 
words, the fractal dimension of the conductance fluctuations can be tuned by changing the geometry of the 
self-similar structure. From the experimental standpoint, self-similar geometries have also been explored. For 
instance, Kempkes et al.15 have applied atomic manipulation through scanning tunnelling microscopy to create 
an artificial version of different generations of the Sierpinski triangle. The fractal dimension of the electronic 
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wavefunctions has been measured, finding that it corresponds to the dimension of the Sierpinski triangle, show-
ing that electrons live in a non-integer dimensional space. Furthermore, it has been reported that the transport 
properties in graphene manifest self-similar characteristics when the graphene sheet is placed on substrates that 
are nanostructured according to a variation of the common Cantor  set8. In this case, the factor three typical of the 
Cantor set is crucial for scaling both the height and length of the barriers. In particular, self-similar patterns in the 
conductance that are well described by scaling rules are reported. Here, it is important to mention that substrates 
with different degrees of interaction with the graphene sheet (different barrier heights) are needed in order to 
obtain the self-similar graphene structures. It is also reported that simpler complex graphene structures present 
self-similar physical  properties16–19. In particular, self-similar graphene structures, in which only the length of 
the barriers is scaled according to the Cantor set rules, display self-similar characteristics in the transmission 
probability or transmittance. These self-similar structures can be generated by nanostructured  substrates16–18 
and inhomogeneous magnetic  fields19. As we have documented graphene is the only material that manifests a 
fractal complex behavior in the electron transport. So, the so-called self-similar transport can be considered as 
an additional exotic or peculiar phenomenon in graphene as the ones mentioned above.

Regarding  silicene20–23, a graphene analogue with silicon atoms, it is reported that owns plethora of exotic 
phenomena. The low-buckled crystal structure and the large spin-orbit coupling (SOC)24,25 of the material give 
rise to a valley-spin dependent band structure with a local bandgap modulable with an external electric  field26,27. 
This special band structure allows multiple topological phases in  silicene27–33. Electric, magnetic and optical fields 
as well as doping can induce phases like valley-polarized metal, quantum anomalous Hall effect, quantum spin 
Hall effect and chiral topological superconductivity. Furthermore, silicene exhibits a highly fragmented energy 
spectrum with fractal characteristics (Hofstadter butterfly) under strong perpendicular magnetic field and a 
periodic  potential34. The fractal patterns depend on the SOC as well as the external perpendicular electric field. 
Fractal butterflies are also presented in silicene with magnetic  order35. The topological phases are characterized 
by high spin-Chern numbers giving rise to the so-called high spin-Chern insulators. So, as we have presented 
the fractal energy spectra of silicene are well documented. However, as far as we know, there are no reports about 
the physical properties of silicene under complex geometries. In particular, studies that assess the impact of 
complex nanostructuration on the transport and transport-related properties. Taking into account the relevance 
of silicene from both the theoretical and experimental standpoint, we consider that further studies about the 
physical properties of complex silicene structures are required.

In this work, we try to fill this gap by studying the transport, spin-polarization and thermoelectric properties 
of complex silicene structures. We consider complex structures, self-similar potential profiles, generated through 
metallic electrodes arranged in Cantor-like fashion over silicene. We adopt a quantum relativistic description for 
the silicene charge carriers. The transfer matrix method, the Landauer–Büttiker formalism and the Cutler–Mott 
formula are used to obtain the transmission, transport and thermoelectric properties, respectively. Our results 
indicate that transport and transport-related quantities like the conductance, spin polarization and Seebeck coef-
ficient show self-similar characteristics. The main parameters of the complex structure such as the generation 
number, the height of the barriers and the length of the system are involved in the self-similar patterns. In addi-
tion, we quantify numerically the self-similar patterns with well-defined scaling rules. To our knowledge, this is 
the first time that self-similar transport is reported beyond graphene. More importantly, that relevant quantities 
like spin polarization and the Seebeck coefficient manifest self-similar characteristics.

Methodology
To illustrate in detail the system we are interested in, we will first address its fundamental characteristics as 
well as the theoretical approach used to obtain the transmission, transport and thermoelectric properties. The 
silicene Cantor structures are mainly conformed by a silicene sheet along with metallic electrodes. The silicene 
is placed on a non-interacting substrate like SiO2 . In order to have a complex structure the metallic electrodes 
are incorporated in a fractal geometric distribution like the triadic Cantor set as depicted in Fig. 1a. A perpen-
dicular electrostatic field Ez is applied through metallic electrodes giving rise to a complex barrier arrangement. 
Furthermore, hot and cold contacts have been added at the ends of the system to generate a temperature gradient 
with the aim to study thermoelectricity, see the bottom of Fig. 1a. A quantum relativistic description has been 
adopted for the charge carriers in silicene. Therefore, we need to solve a Dirac-like eigenvalue equation for the 
following low-energy effective  Hamiltonian25,36,37,

where vF is the Fermi velocity, kx and ky are the components of the wave vector in the xy plane, τx , τy and τz are 
the Pauli matrices in the sublattice pseudospin space, η = ±1 is the valley index and represents the K and K ′ 
valley, σ = ±1 indicates the electron spin components, ŴSO = 3.9 meV is the spin-orbit interaction in silicene, 
�z corresponds to the on-site potential difference between the two sublattices A and B of the silicene hexagonal 
structure. Here, Ez can modulate �z and consequently the silicene local bandgap.

Take into account the η valley and σ spin indexes as well as the specific jth region, the wave functions for this 
Hamiltonian can be written as,

where the subscript j stands for the wave functions in each region, either potential barrier or well. Here Aη,σ
j  , vη,σj,+ 

and Bη,σj  , vη,σj,− belong to the incident and reflected waves, respectively. Moreover, the bispinor coefficients come as,
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with the corresponding wave vectors given as,

As there is conservation of momentum in the transverse direction, thus ky,j = ky for all regions, with 
ky = k sin θ and k = (�vF)

−1
√

E2 − (ησŴSO)2 . From now on, we have used for the barrier region the notation 
�z,j = � , while for the well regions �z,j = 0 . In addition, we will introduce parameters as the characteristic 
length a0 = 20 nm and its corresponding energy E0 = �vF/a0 = 18.1 meV in order to express the length and 
energy quantities in dimensionless units.

Once that we have defined the eigenfunctions and eigenvalues of the above Hamiltonian and taking into 
account the wave function continuity along the x direction in each interface, ψj(xj , y) = ψj+1(xj , y) , of the 

(3)v
η,σ
j,± =

�vF(±kx,j − iηky,j)

E − ησŴSO +�z,j
,

(4)kx,j =
1

�vF

√

E2 − (ησŴSO −�z,j)2 − (�vF)2k
2
y,j .

Figure 1.  (a) Schematic representation for Cantor-like silicene structures, a top and side view are depicted. 
The silicene sheet is placed above of a dielectric substrate like SiO2 . To achieve a complex geometry the metallic 
electrodes or also named as top gates (TGs) are arranged in a Cantor-like fashion along the structure. In the 
TGs an external electrostatic potential is applied to modulate the local bandgap. In the side view, the possible 
thermoelectric device is depicted. A temperature gradient is established from left to right, with the arrow 
indicating the heat flux. (b) Band-edge profiles for the conduction band (CB) in the K valley. The black and blue 
lines stand for spin up and down orientation, respectively. dW and dB represent the width of well and barrier 
regions. (c) The same as (b) but now the K ′ valley is illustrated, where the spin orientation is reversed. This 
scheme corresponds to the third generation N3 according to the Cantor sequence.
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complex structure, we can compute the transmission probability or transmittance of each valley-spin channel 
through the so-called transfer  matrix38,39,

Here, we take advantage of the relationship between the coefficients of the initial medium Aη,σ
0  and Bη,σ0  and 

those of the final one Aη,σ
N+1 and Bη,σN+1 = 0,

with the transfer matrix

given in terms of the dynamic matrices

and the propagation ones

The difference xj − xj−1 represents the width of the jth region. Moreover, in the present case D0 , which rep-
resents the dynamic matrix of the semi-infinite left and right regions, is equivalent to the matrices of the well 
regions.

Now, it is possible to deduce for a specific channel ( η , σ ) the ballistic conductance through the complex 
multi-barrier structures via the Landauer–Bütikker  formula40, namely,

with EF the Fermi energy, G0 = e2LykF/π
2
� the fundamental unit of conductance, Ly the system transverse 

length (y direction), kF =

√

E2F − Ŵ2
SO  the Fermi wave vector and θ the incident angle of charge carriers with 

respect to the propagation direction (x direction).
Likewise, we can compute the conductance spin polarization PC for the K or K ′ valley,

Finally, as a temperature gradient along our system is generated it is possible to study the thermoelectric 
effects. To do so, we consider the Cluter–Mott  relation41, which allows us to compute the low-temperature See-
beck coefficient as

where kβ is the Boltzmann constant, T is the average temperature between the hot and cold contacts and e is the 
bare electron charge.

Results
In this section we present the main results about the transport properties, the spin polarization and the thermo-
electric effects in complex silicene structures. In particular, we show that these properties display a self-similar 
behavior for both spin orientation: spin up (SU) and down (SD). Moreover, we will characterize mathematically 
the self-similar patterns by deriving scaling expressions numerically in the case of the conductance and spin 
polarization and analytically for the Seebeck coefficient. We will also show, as in the case of graphene complex 
 structures8, that structural parameters such as the generation of the Cantor-like structure N, the height of the 
barriers � and the length of the system w are directly involved in the scaling expressions (self-similar patterns). It 
is important to remark that all our numerical results are computed for the K valley ( η = +1 ), since the results for 
the K ′ valley ( η = −1 ) can be obtained straightforwardly by simply reversing the spin orientation, see Fig. 1b,c. 
So, from now on, we will suppress the valley index η in the scaling expressions.
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transport properties. In first place, we address the self-similar patterns that arise in the linear-regime 
conductance once silicene is nanostructured in Cantor-like fashion. As we can see in Fig. 2 the conductance 
curves of different generations of the Cantor-like structure have similar envelopes. The similarity is presented for 
both spin components, SU and SD, Fig. 2a,b, respectively. The main difference between the conductance curves 
is an offset in the vertical axis, which tells us that we can go from one curve to the other with an appropriate 
scale factor. Determining the scale factors of the self-similar conductance patterns can be tricky. However, we 
can obtain them by following the protocol reported for graphene complex  structures8. In particular, we can use 
an auxiliary conductance-related quantity to unravel the precise scale factors. The guidelines of the protocol 
and specific results of the auxiliary quantity for complex silicene structures can be found in the Supplementary 
information. So, in the rest of this subsection we will focus on the conductance scaling rules without forgetting 
that there is a protocol to obtain them. In the case of the self-similar patterns between generations the scaling 
expression is given as

where the exponent ασ depends on the structural parameters and the spin component and N represents the gen-
eration number. The conductance in this expression and the coming ones is given in terms of the fundamental 
conductance factor, Gσ (EF) = Gσ (EF)/G0 . In the specific cases shown in Fig. 2 the exponents take values of 
α+1 = 1.83 and α−1 = 1.89 . The results of the scaling can be appreciated in Fig. 2c,d. As we can see the scaled 
curves N8 (dashed-blue lines) match quite well with the reference ones N7 (solid-black lines). Here, we would like 
emphasize that the exponents of the spin components are not equivalent because the corresponding conductance 
curves are dissimilar. This is related to the spin-dependent silicene band structure, which results in fundamental 
differences between the complex barrier structures for SU and SD.

Now, it is turn to explore the scaling associated to the height of the barriers. When we consider complex 
silicene structures with different heights in the barriers the conductance curves look quite similar. See for instance 
the results (Fig. 3) for complex structures with barriers of � = 2 and � = 1 . In these cases the generation and 

(13)G
σ
N (EF) ≈

[

G
σ
N+1(EF)

]ασ

(2)ασ−1
,

Figure 2.  Conductance scaling between generations for SU and SD. (a) and (b) represent the conductance 
curves for the seventh N7 (solid-black lines) and eighth N8 (solid-blue lines) generations. (c) and (d) are the 
same as in (a) and (b), but here N8 (dashed-blue lines) is scaled according to Eq. (13), with α+1 = 1.83 and 
α−1 = 1.89 . The other structural parameters are � = 2 and w = 30.
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the length of the system are N7 and w = 30 . As we can notice the conductance curves are practically the same 
except for the vertical offset between them, see Fig. 3a,b. By following our protocol and using the auxiliary 
conductance-related quantity we can derive a general expression that connects the conductance patterns of 
complex structures with different barrier heights, namely:

where βσ is a non-constant exponent that depends on the structural parameters as well as the spin component. 
For the cases presented in Fig. 3 the exponents take values β+1 = 2.87 and β−1 = 3.02 . As we can see in Fig. 3c,d 
the scaling is fairly good for both SU and SD. Here, the scaled curve corresponds to � = 1 , while the reference 
one to � = 2 . It is important to mention that the fundamental differences between the scaled and reference 
curves take place in the low-energy side, being more important for SD.

Regarding the length of the system, we can also obtain self-similar conductance patterns for complex struc-
tures with different lengths. In Fig. 4 we show the conductance versus de Fermi energy for systems with lengths 
w = 20 and w = 10 . The generation and height of the barriers are N7 and � = 2 . Figure 4a,b illustrate the 
corresponding conductance patterns for SU and SD, respectively. Our results, at first glance, indicate that these 
patterns cannot be directly connected. In fact, the curves envelopes are not at all similar. However, by contract-
ing the energy axis and choosing an appropriate exponent it is possible to connect the conductance patterns, see 
Fig. 4c,d. The general expression for this scaling is given as

with γσ the scaling exponent. For the cases of Fig. 4 the exponents are γ+1 = γ−1 = 3.2 . As we can see in Fig. 4c 
a good matching for SU is obtained, except for EF < 0.4E0 . For SD we obtain similar results. However, the 
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Figure 3.  Conductance scaling between barrier heights for SU and SD. (a) and (b) illustrate the conductance 
curves for � = 2 (solid-black lines) and � = 1 (solid-blue lines). (c) and (d) are the same as in (a) and (b), but 
now the spectrum of � = 1 (dashed-blue lines) is transformed with the help of Eq. (14), where β+1 = 2.87 and 
β−1 = 3.02 . The other structural parameters are N7 and w = 30.
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coincidence between the scaled and reference curve is substantially better for EF > 1.2E0 , see the dashed-blue 
curve in Fig. 4d. Here, it is important to remark that the exponents for both spin components are the same. 
However, in general, they depend on the structural parameters and the spin component.

We consider that the present results are remarkable because in principle conductance-related quantities such 
as the spin polarization and the Seebeck coefficient could display self-similar characteristics as well. Moreover, 
even though we know the scaling rules for the conductance patterns there is no guarantee that the scaling for 
the spin polarization and the Seebeck coefficient can be obtained following the conductance protocol and that 
the scale factors be directly related to the conductance ones.

Spin polarization. In second place, we analyze the results of the so-called conductance spin polarization 
PC . By using Eq. (11) it is possible to calculate PC as a function of the Fermi energy for different N, � and w. The 
corresponding spin polarization curves also present self-similar characteristics. However, in the present case, 
there is no an auxiliary quantity that helps us to unveil the scaling rules. So, we proceed numerically by testing 
different scale factors in order to connect the self-similar patterns. To illustrate our scaling results we use the 
same generations, heights of the barriers and lengths of the system as in the conductance case.

In Fig. 5a,b we show the conductance spin polarization patterns for generations N7 and N8, the other struc-
tural parameters are the same as in Fig. 2. As we can notice the spin polarization spectra look quite similar, to be 
specific, we can see similar curve envelopes for energies greater than E0 . A better perspective of the self-similar 
characteristics is presented in the subview. Here, it is important to remark that the spin polarization can take 
both positive and negative values, as a consequence, a dilatation transformation is implemented instead of an 
exponent as in the conductance rules. With these considerations, the general expression that connects the self-
similar spin polarization patterns between two generations is given as

resulting in a simpler relation than in the conductance case. A comparison between the reference and scaled 
pattern (dashed-blue lines) is illustrated in the subview of Fig. 5b. As we can notice a good matching is obtained.

(16)PC,N (EF) ≈ 2
[

PC,N+1(EF)
]

,

Figure 4.  Conductance scaling between lengths for SU and SD. (a) and (b) stand for the conductance curves 
for w = 20 (solid-black lines) and w = 10 (solid-blue lines). (c) and (d) are the same as in (a) and (b), but the 
curve of w = 10 (dashed-blue lines) is scaled applying Eq. (15), with γ+1 = γ−1 = 3.2 . The other structural 
parameters are N7 and � = 2.
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The spin polarization curves for different heights in the barriers also display self-similar characteristics. 
In Fig. 6a we show the spin polarization results for � = 2 and � = 1 . We have considered the same structural 
parameters as in Fig. 3. As we can see the curves are not at all similar at low energies. However, as the energy 
increases the resemblance between the spin polarization patterns improves, see the subview in Fig. 6a. By testing 
different scale factors, it is possible to go from one curve to the other with the following expression

In this case, the scale factor is twice the one found for the scaling between generations. In the subview of Fig. 6b 
we show the concrete results of applying Eq. (17). In some energy intervals the scaling works reasonable well, 
while in others, mainly at low energies, the coincidence between the scaled and reference curve is far from good.

Systems with different lengths also manifest self-similar spin polarization patterns. The results for w = 20 
and w = 10 are shown in Fig. 7a. The generation and the height of the barriers are the same as in Fig. 4. As in 
the conductance case, at first instance, there are no self-similar characteristics. So, in order to connect the spin 

(17)PC,�(EF) ≈ 4

[

PC, 1
2
�(EF)

]

.

Figure 5.  Conductance spin polarization scaling between generations. (a) Spin polarization curves for the 
seventh N7 (solid-black lines) and eighth N8 (solid-blue lines) generations. (b) The same as in (a), but here Eq. 
(16) is used to obtain the scaled generation N8 (dashed-blue lines). The subview in (b) illustrates more clearly 
the scalability. The rest of the structural parameters are the same as in Fig. 2.

Figure 6.  Conductance spin polarization scaling between barrier heights. (a) Spin polarization curves for 
� = 2 (solid-black lines) and � = 1 (solid-blue lines). (b) The same as in (a), but here the curve of � = 1 
(dashed-blue lines) is transformed according to Eq. (17). For more details see the subviews. The rest of the 
structural parameters are the same as in Fig. 3.
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polarization curves it is necessary to scale the Fermi energy as well as to choose appropriately the proportional 
factor between the curves. In specific, the scaling relation is given as

Here, the scale factor is twice the one for the scaling between heights. The results of the scaling according to Eq. 
(18) are shown in Fig. 7b. In the subview we can see more details about the matching between the scaled and 
reference curves. As in the other cases, the scaling improves as the Fermi energy increases.

These results are quite interesting because despite PC is an intricate average of the conductance spin compo-
nents the self-similar characteristics prevail for all the structural parameters. Furthermore, the three scaling rules 
proposed for the spin polarization work reasonably well as the Fermi energy increases. It is worth mentioning that 
we obtain similar results for the so-called tunneling spin polarization PT , which is equivalent to PC but defined 
in terms of the transmittance. The details can be found in the Supplementary information.

Thermoelectric effects. Finally, we study the thermoelectricity for the electron spin components due to 
the hot and cold contacts that generate a temperature gradient along the complex silicene structures. In particu-
lar, we have focused our attention in the well-known Seebeck coefficient. To compute it, we first have to redefine 
it as Sσ (EF) = Sσ (EF)/S0 , with S0 = π2k2βT/3e the fundamental thermopower unit. In order to be consistent, 
we used the same structural parameters than the ones for the conductance and the spin polarization.

Regarding generations, Fig. 8 shows the Seebeck coefficient results for N7 and N8. Fig. 8a,b correspond to SU 
and SD, respectively. As we can notice the Seebeck coefficient curves are remarkably similar, see the subviews. 
Even, the resemblance is superior to the one found for the spin polarization curves. So, once we are sure that 
this quantity reflects evidence of self-similarity, the matter now is limited to deal with the scalability. As we 
have corroborated with the spin polarization there is no a route or procedure to derive the scaling relations. In 
the present case, we take advantage of the direct relation between the Seebeck coefficient and the conductance 
in order to obtain the scaling expressions. In particular, we use the definition of the Seebeck coefficient for an 
arbitrary generation N

by substituting the scaling relation for Gσ
N (E) (Eq. 13)
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Figure 7.  Conductance spin polarization scaling between lengths. (a) Spin polarization curves for w = 20 
(solid-black lines) and w = 10 (solid-blue lines). (b) The same as in (a), but here the curve associated to w = 10 
(dashed-blue lines) is scaled according to Eq. (18). The subview in (b) depicts more details about the scaling. 
The rest of the structural parameters are the same as in Fig. 4.
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and using the properties of the logarithmic function we can obtain the expression that connects the Seebeck 
coefficient between generations

This expression is surprisingly simple, mathematically equivalent to the scaling relations found for the spin 
polarization. However, the scaling is much better for the Seebeck coefficient. In Fig. 8c,d we show how Eq. (21) 
works for SU and SD. As compare with the spin polarization scaling (see Fig. 5), the matching between the scaled 
and reference Seebeck curves is fairly good for both spin components, being superior for SU. It is also interesting 
to note that the scale factors are the same for both the conductance and the Seebeck coefficient, however for the 
latter the scale factors come in multiplicative fashion.

The Seebeck coefficient of complex structures with different barrier heights also display self-similar charac-
teristics. In Fig. 9, we show the Seebeck coefficient results for � = 2 (solid-black lines) and � = 1 (solid-blue 
lines). Figure 9a,b correspond to SU and SD, respectively. To obtain the scaling relations we follow the previous 
analytic procedure. In specific, the scaling relation of the Seebeck coefficient for complex structures with differ-
ent barrier heights is given as

where βσ is the same exponent that connects Gσ
� and Gσ

1
2
�

 . The results of the scaling for SU and SD are shown 
in Fig. 9c,d, respectively. As in the conductance case (Fig. 3) the factors adopt the values β+1 = 2.87 and 
β−1 = 3.02 . As we can see in the subviews of Fig. 9c,d, a good coincidence between the scaled and reference 
curves is obtained.

(21)S
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N (EF) ≈ ασ
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σ
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Figure 8.  Scaling between generations for the Seebeck coefficient. The scaled curve is obtained using Eq. (21). 
The average temperature considered is 50 K. The system parameters are the same as in Fig. 2.
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In the last place, we explore the Seebeck coefficient results of complex structures with different lengths. In 
Fig.  10 we show the corresponding results for w = 20 (solid-black lines) and w = 10 (solid-blue lines). Fig-
ure 10a,b correspond to SU and SD, respectively. The generation and the height of the barriers are the same as in 
Fig. 4. As in the previous cases, the self-similar Seebeck coefficient patterns can be connected with an appropriate 
scaling relation. By using the definition of the Seebeck coefficient (Eq. 12) and the scaling rule of the conductance 
between lengths (Eq. 15) we can obtain the corresponding scaling relation for the Seebeck coefficient

with γσ the same exponent that connects Gσ
w and Gσ

1
2
w

 . The results of the scaling for SU and SD are shown in 
Fig. 10c,d, respectively. The scale factors take values of γ+ = γ− = 3.2 , which are the same as in the conductance 
case, see Fig. 4. As we can appreciate in the subviews the scaling works quite well, being better for SU. In this 
case, initially, the curves are far from similar, but once the energy axis is contracted and the Seebeck coefficient 
multiply by the correct factor, we recover in high degree the reference curve.

We consider that the present results are quite interesting because as far as we know it is the first time that 
a conductance related quantity like the Seebeck coefficient presents self-similar characteristics. Moreover, that 
we can obtain the scaling rules straightforwardly through the analytic relation between the conductance and 
Seebeck coefficient.
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Figure 9.  Scaling between barrier heights for the Seebeck coefficient. The scaled curve is obtained using Eq. 
(22). The average temperature considered is 50 K. The system parameters are the same as in Fig. 3.
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Discussion
The first thing that we want to put on the table it is the scaling rules. As we have mentioned, scaling rules are 
tricky. In fact, despite we can see self-similar patterns in a particular physical property it is not straightforward 
to obtain the scaling relations. According to our experience it is better to deal with probabilistic quantities, which 
give us the possibility to test different scale factors to connect the self-similar patterns. For instance, a quantity 
that exemplify this it is the transmission probability or transmittance. In the Supplementary information we 
show the self-similar patterns and the scaling results for this quantity. Knowing the scaling rules for the transmit-
tance we can think that the conductance scaling is obtainable via the direct relation between the conductance 
and transmittance. However, it is not the case, by substituting the scaling expressions of the transmittance in 
Eq. (10) we cannot derive analytically the scaling relations for the conductance. Fortunately, we can define a 
probabilistic auxiliary quantity that help us to obtain the conductance scaling rules. By comparing the scaling 
expressions for the transmittance and conductance we can realize that they are similar, but in the conductance 
case we have additional intricate factors that make really challenging the derivation of the scaling rules without 
the assistance of the auxiliary quantity.

Other aspect that we want to address is the one related to the generation at which the self-similar character-
istics arise. Actually, the first generations of the complex structure are far to be self-similar and consequently it 
is not expected that the physical properties manifest self-similar characteristics. According to our calculations 
and the system parameters that we are considering the self-similar characteristics take place at the sixth genera-
tion. In Fig. 11 we show the results of the linear-regime conductance for generations N5 and N6. As we can see 
the conductance patterns look quite similar. However, by scaling N6 according to Eq. (13) we obtain that the 
matching between the scaled and reference curve is not as good as the corresponding one between N6 and N7, 
see Fig. 12. If we consider lower generations the scaling is even worst, results not shown. To know the generation 

Figure 10.  Scaling between lengths for the Seebeck coefficient. The scaled curve is obtained using Eq. (23). The 
average temperature considered is 50 K. The system parameters are the same as in Fig. 4.
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at which the self-similar characteristics are taking place is fundamental for experimentalists as well as for pos-
sible applications. In fact, it is the equivalent to know the minimum periods required to see the fundamental 
characteristics of semiconductor superlattices, which in general it is established as ten periods.

In relation to scaling, we repeatedly seen that it improves as the Fermi energy increases. Actually, there is no 
a fundamental explanation about it. However, it is plausible that the differences between the scaled and reference 
structure be less perceptible as we are far from the energy region in which the perturbation (self-similar potential) 
is preponderant, giving rise to a better scaling. We also testified that scaling improves as generation grows. This is 
expected because the complex structures will approach to true self-similar objects for larger generations. In fact, 
the scaling improvement covers a wider energy range, including the low-energy side, see the results for genera-
tions N8, N9 and N10 in Figs. 13 and 14. Furthermore, we can notice that the scaling exponents vary gradually 
as generation grows, tending (both spin components) to a value around 2. The specific exponents can be seen 
in Table 1. It is quite interesting that the exponents tend to the value found for the scaling of the transmittance. 
The details can be found in the Supplementary information.

Regarding the energy range at which the self-similar characteristics are taking place in principle it is acces-
sible from the experimental  standpoint42,43. However, if for a particular application the energy range required is 
higher, silicene is not necessarily an option. In addition, the spin-resolved transport is lost as the Fermi energy 
increases. To expand the energy range without compromising the spin-resolved properties we can opt for the 
silicene’s twin material  germanene44–46. In fact, the SOC in germanene is more than ten times larger than in 
 silicene24,25. In Fig. 15 the conductance scaling results for complex germanene structures are shown. As we can 
notice the self-similar conductance patterns are presented regardless of the energy range in question.

Finally, it is worth mentioning that in order to have spin polarization response in our system a valley-polarized 
filter is required. By considering the definition of conductance spin polarization

Figure 11.  The same as Fig. 2, but here the generations are N5 and N6, reference and scaled curve, respectively. 
In this case the scale factors take values α+1 = 1.98 and α−1 = 1.95.
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we can see that the spin polarization is zero due to the reversing of the spin components in the K ′ valley. For 
valley polarization we also need a spin-polarized filter, otherwise the same null result as in the conductance spin 
polarization is obtained. As an alternative we can use ferromagnetic electrodes to generate effective valley and 
spin polarization in  silicene47–49.

In the case of the total conductance

and the total Seebeck coefficient

the self-similar patterns prevail, see Figs. 16 and 17. We consider that these results are quite relevant because in 
principle we can see the self-similar phenomenon in the conductance and Seebeck coefficient without the need 
of a spin-polarized filter.
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Figure 12.  The same as Fig. 2, but here the generations are N6 and N7, reference and scaled curve, respectively. 
In this case the scale factors take values α+1 = 1.78 and α−1 = 1.83.
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conclusions
In summary, we study the transport, spin polarization and thermoelectric effects in Cantor-like silicene struc-
tures. The theoretical treatment is based on the transfer matrix approach, the Landauer–Büttiker formalism and 
the Cutler–Mott formula. We demonstrate that when silicene is nanostructured in complex fashion, it reflects 
self-similarity in the physical properties. In particular, we find self-similar patterns at different scales in the 
conductance, the spin polarization and the Seebeck coefficient for both electron spin components. Furthermore, 
the self-similar patterns of the mentioned physical quantities are well characterized by concrete scaling rules. 
The structural parameters of the system are directly involved in the scaling expressions: the generation of the 
structure, the height of the barriers and the length of the system. We consider that our findings are not only 
important to understand the behavior of charge carriers in complex structures, they could also be relevant (use-
ful) in spintronic and thermoelectric applications due to the scalability of the spin polarization and the Seebeck 
coefficient. To our knowledge, this is the first time that a 2D material beyond monolayer graphene presents self-
similar transport. Moreover, a material that manifests self-similar characteristics in relevant quantities such as 
the spin polarization and the Seebeck coefficient.

Figure 13.  The same as Fig. 2, but here the generations are N8 and N9, reference and scaled curve, respectively. 
In this case the scale factors take values α+1 = 1.87 and α−1 = 1.86 . Here the structural parameters are � = 2 
and w = 45.



16

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:14679  | https://doi.org/10.1038/s41598-020-71697-1

www.nature.com/scientificreports/

Figure 14.  The same as Fig. 13, but here the generations are N9 and N10, reference and scaled curve, 
respectively. In this case the scale factors take values α+1 = 2.01 and α−1 = 1.95.

Table 1.  Evolution of the scaling exponents for different generations. In general, the structural parameters 
( N ,�,w ) and the spin components determine the value of the scaling exponents. For N8–N9 and N9–N10 
we adjust the length of the system in order to have reasonable barrier widths and not approaching to the 
interatomic distance in silicene. In particular, we have used w = 45 , instead of w = 30 considered for N6–N7 
and N7–N8.

Scaling exponents

Generations SU ( α+) SD ( α−)

N6–N7 1.78 1.83

N7–N8 1.83 1.89

N8–N9 1.87 1.86

N9–N10 2.01 1.95
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Figure 15.  Self-similar conductance patterns in complex germanene structures. The SOC in germanene is of 
the order of 43 meV. The panel distribution is the same as in Fig. 2, but here the scale factors are α+1 = 1.60 and 
α−1 = 1.77.

Figure 16.  The same as Fig. 2, but now for the total conductance. In the present case the scale factor is α = 1.84

.
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