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A B S T R A C T

Eastern equine encephalitis (EEE) is a rare but lethal mosquito-borne zoonotic disease. Recent years have seen
incursion into new areas of the USA, and in 2019 the highest number of human cases in decades. Due to the low
detection rate of EEE, previous studies were unable to quantify large-scale and recent EEE ecological dynamics.
We used Bayesian spatial generalized-linear mixed model to quantify the spatiotemporal dynamics of human EEE
incidence in the northeastern USA. In addition, we assessed whether equine EEE incidence has predictive power
for human cases, independently from other environmental variables. The predictors of the model were selected
based on variable importance. Human incidence increased with temperature seasonality, but decreased with
summer temperature, summer, fall, and winter precipitation. We also found EEE transmission in equines strongly
associated with human infection (OR: 1.57; 95% CI: 1.52–1.60) and latitudes above 41.9�N after 2018. The study
designed for sparse dataset described new and known relationships between human and animal EEE and envi-
ronmental factors, including geographical directionality. Future models must include equine cases as a risk factor
when predicting human EEE risks. Future work is still necessary to ascertain the establishment of EEE in northern
latitudes and the robustness of the available data.
1. Introduction

Eastern equine encephalitis (EEE) is a rare but lethal mosquito-borne
zoonotic disease of equines and humans. It is endemic to parts of North
and South America and the Caribbean. In the USA, EEE is maintained in a
bird-mosquito cycle primarily by the black-tailed mosquito, Culiseta
melanura (Coquillett, 1902), a species associated with freshwater hard-
wood swamps (Calisher, 1994). It is bridged to humans and horses by
other vectors, primarily species of Aedes, Coquillettidia and Culex (Arm-
strong & Andreadis, 2010). In humans, the mortality is near 30%, with
most survivors experiencing long-term neurologic issues (Villari et al.,
1995). In equines the mortality is 75–90%, though it is preventable
through a yearly vaccine or twice yearly in endemic areas with
year-round mosquito seasons (Rood & Evans, 2008). Poultry such as
turkey and quail, although being dead ends, are also susceptible to severe
EEE, which can be financially damaging for poultry farmers (CDC, 1983,
2009; Lubelczyk et al., 2013).

Recently, Armstrong & Andreadis (2013) identified a shift in EEE
epidemiology with increasing annual human cases andwith an expansion
further north in the USA. Circumstantial evidence to support this
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northward expansion was the 2008 incursion of EEE into Canada (Che-
nier et al., 2010). In 2019, the largest number of cases reported in de-
cades was in North America (n ¼ 38), well over the annual average
(n ¼ 8) (Lindsey et al., 2018, 2020). Long summer, mild winter, and
extreme rain events have been suggested as favorable conditions for
increased mosquito abundance and therefore increased EEE transmission
(Komar et al., 1999; Skaff et al., 2017; Reinhold et al., 2018). For
example, in trying to understand the 12 human EEE cases in Massachu-
setts in 2019, Mermel (2020) found that in the same year the standard
precipitation index, a drought index based on long-term local precipita-
tion history, exceeded 2 across most of the state for the first time in 20
years. But Armstrong & Andreadis (2013) suggested a connection be-
tween increasing temperature in the Northeast and the virus spreading
into new areas. However, given the scarcity and sparsity of available data
for EEE and the absence of regional instead of within-state spatial ana-
lyses of human infection, the drivers for the spatial and temporal trends
in EEE remain understudied.

Here, we aim to quantify the distributional pattern of human EEE
incidence (HEI) in the northeastern USA using up-to-date EEE human
and animal data, raw and transformed weather variables, variable
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importance selection and explicit spatial models in order to infer EEE
human dynamics. Specifically, this study tested whether there is a
geographical trend in HEI and if this trend has a latitudinal component
while assessing if equine EEE incidence (EEI) has predictive power for
HEI when controlling for weather factors (i.e. temperature and
precipitation).

2. Materials and methods

2.1. Data

The study area was restricted to counties in Connecticut, Delaware,
the District of Columbia, Maine, Maryland, Massachusetts, New Hamp-
shire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont
for which at least one case of animal EEE was recorded over the years.
The study area is characterized by a mixture of presence and absence of
human and animal EEE within the study period.

The numbers of EEE cases in humans and equines between 2006 and
2019 were manually extracted from ArboNET and the United States
Department of Agriculture (USDA), respectively (CDC, 2020b; USDA,
2020b). The county populations of humans and equines were assumed
stable across years and collected from the 2010 US Population Census
and the 2012 Census of Agriculture data respectively (United States
Census Bureau, 2011; USDA, 2020a). From the data, human EEE and
equine EEE annual incidence were estimated.

The weather variables and their derivatives (by transformation of the
raw weather variables) were selected based on literature (Komar et al.,
1999; Armstrong & Andreadis, 2013; Mermel, 2020). Specifically, daily
mean temperature and precipitation between 2005 and 2019 extracted
from the Parameter-elevation Regressions on Independent Slopes Model
(PRISM) weather datasets at a 4 km grid resolution, were spatially
aggregated to the county level (PRISM Climate Group, 2014). The spatial
aggregation for each county consisted in the estimation of annual mini-
mum, maximum, mean, median, and standard deviation (SD) for tem-
perature and precipitation in: (i) the case reporting year; (ii) summer
(June–August) in the case reporting year; (iii) autumn (September–No-
vember) in the previous case reporting year; (iv) winter (previous
December–previous February); and (v) spring (March to May) preceding
the transmission season in the same case reporting year.

In addition to the weather variables described above, we included the
log-transformed EEI, longitude of the county centroid, dichotomized
latitude of the county centroid (latitude � 41.9�N as 0 and lat-
itude> 41.9�N as 1), dichotomized year of case reporting (pre-2019 as 0,
post-2019 as 1). In total, 56 candidate predictors were assessed (Sup-
plementary Table S1). The cut-off point of latitude and case reporting
year were selected to reach similar sample size in each group. Because
finer zones could elucidate subtle spatiotemporal patterns, we explored
using latitude quartiles, terciles, and median (41.9�N) as cut-off points.
Due to the small number of human cases and sparse distribution, the
models converged only when using median. Additionally, latitude was
not found significant when employed as continuous variable in Bayesian
generalized-linear mixed-effects model (BGLMM). For completeness we
also tested the model with non-dichotomized latitude (Supplementary
Table S2).

2.2. Statistical analyses

This study intended to evaluate the relationships between HEI,
weather, EEI and location (latitude and longitude) while accounting for
spatial autocorrelation. In order to account for fixed (predictors) effects,
spatial (autocorrelation) and non-spatial (noise) random effects we
employed a spatial Bayesian generalized-linear mixed-effects model
(BGLMM), under a lognormal assumption of human and animal inci-
dence distributions (Anderson & Ward, 2019).

The selection of the HEI predictors constituting the fixed effect was
obtained by backward and forward stepwise selection method within a
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general linear regression model (GLM). Stepwise selection was based on
Akaike information criteria (AIC) (Ripley et al., 2013), starting from a
candidate model of 56 predictors. Because human cases are limited, we
set a significance threshold at 0.1 and required minimum absolute effect
sizes of the retained predictors above 0.1 to exclude insignificant or weak
candidates. The total number of selected important variables was 26
(Supplementary Table S3). Moranʼs I test indicated spatial correlation in
the residuals (Moranʼs I ¼ 0.2, P < 0.001) confirming the validity of
employing an explicit spatial model.

The BGLMM semi-informative and non-informative priors were left
with wide distributions to reduce priors-driven model effects (Anderson
& Ward, 2019). Predictor selection was repeated to further refine the
model because the estimated effects from the GLM may change after
accounting for spatial effects. The local polynomials (LP) smoothed
inference likelihood was used to quantify how well each model fits the
data and for model comparison (Algeri & Zhang, 2020). Additionally,
variance inflation factor (VIF) was used to assess multicollinearity (Naimi
et al., 2014). As results of this further variable selection, eight predictors
were retained, namely, latitude, year, EEI, annual summer temperature,
SD of temperature, and annual precipitation in autumn, winter, and
summer. The VIFs for these eight predictors were under five, so no
multicollinearity was detected (Akinwande et al., 2015). Optimization
and predictions were based on a 20 � 20 grid spanning all study area.

Finally, we also tested for the interaction between latitude and time
by testing each of the four combinations of the two dichotomized pre-
dictors (pre/post 2018 and above/below 41.9 degrees latitude) in turn
within the optimized BGLMM.

3. Results

From 2006 to 2019, 62 human cases were reported by 28 of 234
counties in the study area. A spike in 2019 (n ¼ 22) was observed while
the number of cases in previous years was less than 10. Among equines,
210 cases were reported from 62 counties with two peaks, in 2009 and
in 2019. The counties in the upper region of the study area
(latitude > 41.9�N) were significantly different from the counties that fell
below the latitudinal cut-off. Specifically, the upper area reported more
human cases (56.5%) and animal cases (57.6%), had cooler summers, and
slightly more rainfall but drier winters than lower area (Fig. 1; Table 1).

Eight predictors including latitude and EEI were selected for the
BGLMM. The model was further improved by including the best inter-
action term between dichotomized latitude and time which was latitude
> 41.9�N and case reporting year in 2006–2018 (Table 2). This final
model fitted the small human case data well. The average error was 0.69
and no patterns in the errors/residuals were observed. We found a lower
risk for HEI in the upper area from 2006 to 2018 (OR: 0.67; 95% CI:
0.62–0.74); while the presence of infected horses increases the risk for
HEI by almost 60% (OR: 1.57; 95% CI: 1.52–1.61). Moreover, average
summer temperature increasing by one degree was associated with a
23% reduction in HEI (95% CI: 0.75–0.79) at average values of the other
predictors. The other weather factors only showed weak significant as-
sociations (Table 2).

4. Discussion

We found significant (although borderline) association between
increased human cases and greater temperature fluctuation, cooler,
drier summers, and drier winters, which are not consistent with other
studies possibly due to the lack of modelling accounting for spatial
autocorrelation and uncertainty (which are components of the
employed Bayesian framework). The year 2019 was clearly an excep-
tional year, with the majority of the weather predictors for 2019
significantly different from the period before (2006–2018) in both re-
gions (above and below 41.9�N) (Table 1). This is reflected in the
exceptional number of EEE recorded in 2019. Prior to 2019, higher
latitude was protective against human cases.



Fig. 1 Number of human cases of eastern equine encephalomyelitis in the northeastern USA, from 2006 to 2019.

Table 1
Summary statistics of selected variables for the final model

Variable Latitude � 41.9�N Latitude > 41.9�N

Case reporting year 2006–2018 2019 2006–2018 2019
Animal cases, count 66 23 105 16
Human cases, count 13 14 27 8
Annual temperature SD [mean (SD)] 9.8 (0.66) 10.4 (0.41)*** 10.6 (0.74) 11.1 (0.42)***
Summer average temperature, degrees Celsius [mean (SD)] 21.9 (1.84) 22.1 (1.86) 19.3 (1.22) 19.3 (1.11)
Last autumn average precipitation, mm [mean (SD)] 3.4 (1.19) 2.8 (0.52)*** 3.5 (0.86) 3.6 (0.62)
Last winter average precipitation, mm [mean (SD)] 2.9 (0.72) 3.7 (0.40)*** 2.9 (0.71) 3.2 (0.63)***
Summer average precipitation, mm [mean (SD)] 3.9 (1.12) 4.0 (0.64)*** 3.8 (0.98) 3.6 (0.45)***

*** Significant difference (P-value < 0.001) between the variablesʼ values in 2019 and 2006–2018 based on a t-test.
Abbreviation: SD, standard deviation.
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In other studies, hot, wet, early summers were identified as a
contributor to the 1959 EEE outbreak in New Jersey (Goldfield et al.,
1969). Przelomski et al. (1988) suggested that EEE outbreaks in Massa-
chusetts followed excessive rainfall in two consecutive years, while one
year of high precipitation was not associated with the outbreaks. As with
Mermelʼs (2020) hypothesis on the 2019 outbreak, excessive July rainfall
was suggested by Feemster (1957) as an explanation for the unusually
highmosquito abundance during a 1938 outbreak inMassachusetts which
killed at least 200 horses and 25 humans. However, these studies focused
on explaining the exceptional outbreaks rather than understanding the
trends underlying them and the EEE geographical heterogeneities.

To our knowledge this is the first analysis using horse cases to predict
human cases, reinforcing that equine surveillance is a key aspect in pro-
tecting the public from EEE. In studies explaining horse EEE alone, Burch
et al. (2020) showed elevation and temperature seasonality as strong
contributors to annual fatalities among equines. Studies using different
3

weather indicators, in differing locations and at differing spatial resolu-
tions may have resulted in the contrasting findings existing in EEE liter-
ature. For example, extremely wet conditions have been suggested to
lower EEE transmission in animals by reducing populations of the virusʼ
reservoirs, mainly birds (Robinson et al., 2007; Oberg et al., 2015). Others
have shown that extreme precipitation may adversely impact larval sur-
vival in container-breeding mosquitoes (Koenraadt & Harrington, 2008).
On the other hand, excessive precipitation has been suggested as a driver
of human EEE (Komar et al., 1999; Armstrong & Andreadis, 2013; Skaff
et al., 2017; Reinhold et al., 2018; Mermel, 2020). We found agreement
with former studies (higher precipitation associated with lower risk)
although with limited significance. This may be due to the complex
non-linear association between precipitation and human EEE, or simply
the ‘averaging effect’ that could not distinguish between precipitation
experienced as light rains over long periods or extreme precipitation
events over short periods. Future studies may extract environmental



Table 2
Final model for assessing the risk of human EEE incidence

Predictor Odds ratio (95% CI)a

EEI 1.57 (1.52–1.61)*
Latitude > 41.9�N and Case reporting year 2006–2018 0.67 (0.62–0.74)*
Annual temperature SD 1.04 (1.01–1.08)*
Summer average temperature 0.77 (0.75–0.79)*
Last autumn average precipitation 1.01 (0.99–1.03)
Last winter average precipitation 0.95 (0.91–0.99)*
Summer average precipitation 0.97 (0.95–0.99)*

*P < 0.05.
Abbreviations. CI, confidence interval; EEE, eastern equine encephalitis; EEI,
equine EEE incidence; SD, standard deviation.

a Model included a binary predictor, with 1 indicating latitude > 41.9�N and
case reporting between 2006 and 2018, and 0 otherwise.
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factors more relevant to vectorsʼ life-cycle and at finer scales. The effect of
weather factors on behaviors of EEEV vectors and reservoirs may vary
across regions, such as survival rates of migrant and resident birds (Komar
et al., 1999). This reinforces our findings where the estimates of relevant
environmental predictors change with latitude, in other words, they are
region-specific (Brown et al., 2017). Another strength of our study is the
use of PRISM Climate Data for predictor generation. PRISM interpolates
weather data using sophisticated algorithms to create a continuous sur-
face that captures complex terrain at high spatial resolution allowing for
comparability of our results with many other ecological studies.

Besides weather factors, other factors not included in this analysis
may have contributed to increased human infections. Land cover, for
which detailed year by year changes were not available for this analysis,
is usually reported as an important factor for EEEV transmission. For
example, tree plantations in Florida were found to be a strong risk factor
for EEE virus transmission in sentinel chickens while vegetated non-
forest wetlands had a protective effect (Vander Kelen et al., 2012). In
addition, urbanization may increase interaction between mosquitoes and
humans (Rochlin et al., 2011). Although studies have linked land cover
with mosquito abundance, evidence on mosquito infection rate or HEI is
rare (Hachiya et al., 2007).

Because of the paucity of human EEE cases, creating robust models to
explain the changing epidemiology of EEE is challenging (Chenier et al.,
2010). In addition to the data limitation, EEE incidence may be affected
by case misclassification. While EEE is a reportable disease, ArboNET is a
passive surveillance system so infected animal cases with mild symptoms
are unlikely to be detected. According to the CDC, clinically diagnosed
EEE cases diagnosed in the USA represent 4–5% of human EEE infections
that have occurred (CDC, 2020a). The study is susceptible to residual
confounders, particularly interaction between human and environment.
Human behavior may change with weather conditions (i.e. temperature),
with regional differences in time spent outdoors (Graff Zivin & Neidell,
2014). Studies designed to quantify these factors at different spatial
scales are needed.

5. Conclusions

While epidemiological studies indicate that the EEE patterns are
changing with a northward shift, the rarity of this severe disease can
impede a definitive answer on these dynamics. However, we find a strong
association between human and equine cases, which can be harnessed to
understand the changing dynamics of EEE in North America. Moreover,
the association between human cases and the environmental predictors
we used are different from what others have shown indicating that more
research needs to be done on the drivers of human and animal EEE at
regional scale. Finally, we found a northward effect that will need to be
confirmed in the coming years to remove any potential risk of outlier
effect in this finding.
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