
molecules

Communication

Flavylium-Based Hypoxia-Responsive Probe for Cancer
Cell Imaging

Thitima Pewklang 1, Sirawit Wet-osot 1 , Sirilak Wangngae 1, Utumporn Ngivprom 1, Kantapat Chansaenpak 2,
Chuthamat Duangkamol 1, Rung-Yi Lai 1,*, Parinya Noisa 3 , Mongkol Sukwattanasinitt 4

and Anyanee Kamkaew 1,*

����������
�������

Citation: Pewklang, T.; Wet-osot, S.;

Wangngae, S.; Ngivprom, U.;

Chansaenpak, K.; Duangkamol, C.;

Lai, R.-Y.; Noisa, P.; Sukwattanasinitt,

M.; Kamkaew, A. Flavylium-Based

Hypoxia-Responsive Probe for

Cancer Cell Imaging. Molecules 2021,

26, 4938. https://doi.org/10.3390/

molecules26164938

Academic Editor: Peter Verwilst

Received: 1 July 2021

Accepted: 11 August 2021

Published: 15 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Chemistry, Institute of Science, Suranaree University of Technology,
Nakhon Ratchasima 30000, Thailand; thitima.27.1996@gmail.com (T.P.);
sirawitwetosot@gmail.com (S.W.-o.); swsirilak00@gmail.com (S.W.); utumporn_n@kkumail.com (U.N.);
chuthamat_duangkamol@hotmail.com (C.D.)

2 National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science
Park, Pathum Thani 12120, Thailand; kantapat.cha@nanotec.or.th

3 Laboratory of Cell-Based Assays and Innovations, Institute of Agricultural Technology, School of
Biotechnology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; p.noisa@sut.ac.th

4 Thailand Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry,
Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; mongkol.s@chula.ac.th

* Correspondence: rylai@sut.ac.th (R.-Y.L.); anyanee@sut.ac.th (A.K.)

Abstract: A hypoxia-responsive probe based on a flavylium dye containing an azo group (AZO-Flav)
was synthesized to detect hypoxic conditions via a reductase-catalyzed reaction in cancer cells. In
in vitro enzymatic investigation, the azo group of AZO-Flav was reduced by a reductase in the
presence of reduced nicotinamide adenine dinucleotide phosphate (NADPH) followed by fragmen-
tation to generate a fluorescent molecule, Flav-NH2. The response of AZO-Flav to the reductase
was as fast as 2 min with a limit of detection (LOD) of 0.4 µM. Moreover, AZO-Flav displayed high
enzyme specificity even in the presence of high concentrations of biological interferences, such as
reducing agents and biothiols. Therefore, AZO-Flav was tested to detect hypoxic and normoxic
environments in cancer cells (HepG2). Compared to the normal condition, the fluorescence intensity
in hypoxic conditions increased about 10-fold after 15 min. Prolonged incubation showed a 26-fold
higher fluorescent intensity after 60 min. In addition, the fluorescence signal under hypoxia can
be suppressed by an electron transport process inhibitor, diphenyliodonium chloride (DPIC), sug-
gesting that reductases take part in the azo group reduction of AZO-Flav in a hypoxic environment.
Therefore, this probe showed great potential application toward in vivo hypoxia detection.

Keywords: flavylium; azo dye; hypoxia detection; turn-on fluorescent sensor; activity-based sensing

1. Introduction

Solid tumor growth is restricted by vascularization, which requires oxygen and nu-
trient supply. It has been reported that the median oxygen concentration is around 4% in
some solid tumors and can be decreased to as low as 0% in a certain area [1,2]. Such low
oxygen conditions in tumors are known as hypoxia, which is primarily due to variations
in microcirculation and temporary disturbance in oxygen perfusion [3]. Tumor hypoxia
usually occurs at a distance of 100–200 µm from blood vessels and seems to be strongly
associated with tumor propagation, malignant progression and resistance to chemo- and
radiotherapy [4,5]. Hypoxia could regulate the expression of several genes by the stabiliza-
tion of hypoxia-inducible factor 1α (HIF-1α), leading to various biological phenomena [6].
Thus, the detection of hypoxia is an important approach to investigate its biological effects.

In the past decade, several activity-based fluorescent probes for hypoxia sensing
have been developed and tested in living cells [7–10]. Various functional groups, such as
aromatic nitro, azo, and quinone groups, were reported as hypoxia-sensitive moieties; their
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signaling mechanisms rely on a photoinduced electron transfer (PeT) [11]. However, most
of these probes are photo-unstable, have low selectivity, and are susceptible to the pH or
polarity of the media [1,12,13]. Hence, a better chemical- and photo-stable probe with high
selectivity and sensitivity is still required to be developed for hypoxia detection.

Compared to the normal environment, many endogenous cytochrome P450 enzymes
are highly expressed in hypoxic locations [12]. Therefore, many prodrugs were designed to
be activated by oxidation and catalyzed by cytochrome P450 enzymes [13–16]. Moreover,
due to the activation of cytochrome P450 enzymes requiring reductases to transfer electrons
to reduce their iron centers, cytochrome P450 reductases are also more present in cancer
cells than normal cells [17]. Hence, cytochrome P450 reductases are alternative targets
in cancer research [18,19]. Since cytochrome P450 reductases catalyze electron transfer to
activate cytochrome P450 enzymes, few functional groups susceptible to reduction have
been applied in probe design [20,21]. Notably, the azo aromatic compounds were reported
to be good substrates for cytochrome P450 reductases and some azo-containing fluorescent
probes displayed effective results in hypoxia detection [7,22–24].

In this study, we designed an azo-flavylium probe to detect cancer cells, because
flavylium structures could be derivatized to possess interesting photophysical proper-
ties [25,26]. For example, a flavylium structure was modified to contain a nitroaromatic
ring for the detection of nitroreductase activity in living cells by observing its ratiometric
fluorescence changes [27]. A similar strategy was applied on the flavylium design to probe
hydrogen polysulfide (H2Sn), which reduced the nitroaromatic group of the probe to the
corresponding amino group showing 87-fold fluorescence enhancement [28]. However,
there has been no attempt to incorporate an azo moiety in a flavylium dye for controllable
fluorescent off/on switching for hypoxia detection. Therefore, we designed and synthe-
sized a flavylium dye containing an azo group (AZO-Flav) as a fluorescent turn-on probe
for hypoxia response in cancer cells. The characterization of AZO-Flav showed negligible
fluorescence due to the azo entity, a photoisomerizable quenching unit. However, after the
reductase-catalyzed reaction the fluorescence was distinctively enhanced. This is because
the azo group was reduced followed by the elimination of 4-dimethylaminoaniline to
generate the fluorescent molecule, Flav-NH2 (Scheme 1). Furthermore, the probe displayed
favorable photophysical properties, excellent stability, and high selectivity toward hy-
poxia detection. Lastly, AZO-Flav was applied to detect cancer cells (HepG2) in hypoxic
conditions compared with normoxic conditions.
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Scheme 1. Proposed activation mechanism of AZO-Flav reduced by a reductase under hypoxia
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2.1. Probe Synthesis and Characterization

To develop an activity-based fluorescent probe for hypoxia detection, the key is to
incorporate a specific reactive unit. In our design, we integrated an azo group into the
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flavylium skeleton as a reactive unit for reductase-catalyzed reduction. Furthermore, the
incorporation of an azo group was aimed to block the dye’s fluorescence. In general, the
spectroscopic properties of azobenzene have been reported to be a non-fluorogenic com-
pound due to ultrafast isomerization of the azo bond (-N=N-) after photoexcitation [29,30].
Therefore, we hypothesized that after cleavage of the azo unit, the fluorescence of the
flavylium dye would be restored.

A novel azo-flavylium dye (AZO-Flav) was synthesized according to Scheme 2. First,
the azo dye 1 was obtained through the diazotization reaction of 4-aminoacetophenone and
N,N-dimethylaniline. Next, the condensation between the azo dye 1 and 4-(diethylamino)-
salicylaldehyde under acid conditions generated the corresponding product, AZO-Flav, in
a yield of 90%. In addition, the proposed product, Flav-NH2, in Scheme 1 was synthesized
according to the literature [31]. The detailed synthesis and characterization of AZO-flav
and Flav-NH2 are presented in the Supporting Information.
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2.2. Photophysical Properties of Probe AZO-Flav and Fluorophore Flav-NH2

The photophysical properties of the azo probe, AZO-Flav, and the flavylium fluo-
rophore, Flav-NH2, were investigated to confirm the alteration of the fluorescence process
after the fluorophore incorporated with the azo group. The UV-Vis-NIR absorption and
fluorescent emission spectra of AZO-Flav and Flav-NH2 (10 µM) in 100 mM phosphate
buffer (pH 7.4) are shown in Figure 1. AZO-Flav displays a broader absorption peaking
around 570 nm while Flav-NH2 exhibits narrower absorption band peaking around 560 nm.
In their emission profiles, negligible fluorescence was observed from AZO-Flav due to
the depletion of absorbed energy by isomerization of the azo bond in which a similar
phenomenon occurred in the reported azo-containing dyes [11]. On the other hand, the
flavylium fluorophore (Flav-NH2) displays strong fluorescence peaking at 607 nm, which
is also concentration dependent (Figure S1). These emission profiles showed the great
difference of emission intensities between AZO-Flav and Flav-NH2. Therefore, Flav-NH2
generated from AZO-Flav reduction (Scheme 1) could be an excellent turn-on indicator for
hypoxia detection.

2.3. Fluorescence Stability towards pH Changes

To ensure our probe can effectively detect the oxygen deficiency area in a tumor, the
pH sensitivities of AZO-Flav and Flav-NH2 were tested and monitored by fluorescence
spectroscopy. The results showed that the fluorescence signals of the reduction product
(Flav-NH2) were quite stable in the acidic to neutral pH range (pH 3–7), whereas the
emission intensity dropped about 10–20% in the basic solution (pH 8–11). On the other
hand, AZO-Flav still showed low fluorescence signals in pH ranging from 3 to 11 (Figure 2
and Figure S2), implying no cleavage of the azo bond by altering the pH. These results
suggested that the probe AZO-Flav could be stable in hypoxic zones, which are usually
acidic [32]. Moreover, the product (Flav-NH2) from the reduction reaction could still
maintain its full fluorescent intensity in acidic condition.
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Figure 1. UV-vis-NIR absorption and fluorescence spectra of AZO-Flav and Flav-NH2 (10 µM) in
100 mM phosphate buffer (pH 7.4) excited at 540 nm.
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Figure 2. Fluorescent response of AZO-Flav and Flav-NH2 (10 µM) at different pH values
(λex = 540 nm and λem = 607 nm).

2.4. In Vitro Reduction of AZO-Flav by E. coli Flavodoxin Reductase (EcFldR)

To investigate the ability of the probe AZO-Flav to detect hypoxia, the fluorescence
response of AZO-Flav towards reductases was tested in vitro (Figure 3). The flavodoxin
reductase, E. coli FldR (EcFldR), was chosen because it can be simply overexpressed and
purified in a large quantity in the lab (Figure S3). Moreover, EcFldR has also been applied
to reduce various cytochrome P450 enzymes, including microsomal cytochrome P450, via
an electron transfer process [33–35]. Therefore, EcFldR could be used to mimic cytochrome
P450 reductases in cancer cells. A hypoxic environment was created by purging nitrogen
gas for 30 min before adding EcFldR (2 µM) and its cofactor NADPH (50 µM). Subsequently,
the mixture was preincubated at 37 ◦C for 5 min to activate the enzyme prior to the addition
of AZO-Flav (10 µM). Upon the addition of AZO-Flav, a dramatic fluorescent enhancement
(Figure 3) was detected; its fluorescent spectrum is similar to that of Flav-NH2. As proposed
in Scheme 1, it suggested that the azo bond was cleaved followed by fragmentation to
generate Flav-NH2. To further confirm the product identity, the reaction mixture was
analyzed by HPLC with the standard comigration (Figure S4). In Figure 3, the control
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reaction (no EcFldR, blue line) did not show fluorescence enhancement, suggesting that
Flav-NH2 was resulted from the EcFldR-catalyzed reaction. Furthermore, to confirm
that EcFldR catalyzes reduction via electron transfer, which is similar to cytochrome
P450 reductases, an experiment for inhibition of the reduction process was performed.
Therefore, diphenyliodonium chloride (DPIC), known as an electron scavenger in the
electron transport process [36–38], was applied to this study. DPIC was added to the
mixture prior to the addition of AZO-Flav, and its inhibitory effect on the EcFldR activity
was investigated. We found that the addition of DPIC (50 µM) in the full reaction led to
a very weak fluorescence signal (Figure 3, green line) similar to the ones of the negative
control reactions. This suggested that the electron transfer reduction (Scheme 1) was
inhibited. In addition, the coenzyme NADPH was also proved to be a key factor in the
EcFldR-catalyzed reduction (Figure 3, magenta line).
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Figure 3. The fluorescent response of AZO-Flav (10 µM) in the presence of NADPH (50 µM) catalyzed
by EcFldR in 100 mM hypoxic phosphate buffer (pH 7.4) with and without DPIC (50 µM). The spectra
were measured at the excitation wavelength of 540 nm.

To mimic sensing of cytochrome P450 reductases in cancer cells, linear fluorescence
responses with varied concentrations of AZO-Flav or EcFldR were investigated to monitor
the release of Flav-NH2 from AZO-Flav triggered by EcFldR in the presence of excess
NADPH by fluorescence spectroscopy (Figure 4). In Figure 4A, the results showed that the
fluorescence intensities increased along with AZO-Flav concentration in the presence of a
fixed concentration of EcFldR and excess NADPH. Furthermore, the fluorescence signals
reached the maximum after 2 min, which provides the basis for rapid response detection.
Moreover, in all experiments, the fluorescence signals of the reduction product (Flav-NH2)
were higher than the background signals from AZO-Flav at 0 min. To determine the
limit of detection (LOD) for EcFldR, 10 µM of AZO-Flav and 50 µM of NADPH were
incubated with varied concentrations of EcFldR (0–5 µM) for 2 min and analyzed by
fluorescence spectroscopy (Figure 4B). The results showed that the fluorescence intensities
linearly increased along with EcFldR concentration (0–2 µM). Therefore, the LOD value
was calculated to be 0.4 µM.
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Figure 4. Response of AZO-Flav towards EcFldR under simulated hypoxic conditions. (A) 400 s time
course measurement (λex = 540 nm and λem = 607 nm) of 2 µM of EcFldR and 50 µM of NADPH
incubated with AZO-Flav at various concentrations (0–10 µM). (B) AZO-Flav (10 µM) responses to
various concentrations of EcFldR (0.5–5.0 µM) in the presence of NADPH (50 µM).

2.5. Specificity of AZO-Flav Reduction

Because cells contain various metabolites and proteins, we investigated whether
they react with AZO-Flav to generate false-positive fluorescence signals. AZO-Flav was
treated with various reductants (sulfide, sulfite, bisulfite, sodium ascorbate, glutathione,
and NADPH), biothiol (cysteine), oxidative species (nitric oxide and hydrogen peroxide),
bovine serum albumin (BSA), or glucose. As displayed in Figure 5, all substances in very
high concentrations did not induce any noticeable fluorescence enhancement compared
with the full reaction (NADPH+EcFldR). Moreover, to be applicable for live cell imaging,
AZO-Flav was also tested in the cell lysate extract. Interestingly, there was a turn-on
signal in the cell lysate extract experiment. By adding the electron scavenger, DPIC, we
could further confirm that the turn-on signal was majorly from the reduction catalyzed
by the reductases inside the cells (Figure 5). To be certain that AZO-Flav could be a great
candidate for hypoxia detection in tumor environment with high specificity, the following
cell assays were performed.
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Figure 5. Selectivity of AZO-flav (10 µM) towards EcFldR incubated in 100 mM hypoxic phos-
phate buffer (pH 7.4) containing NADPH (50 µM) and either Na ascorbate (1 mM), nitric oxide
(100 µM), hydrogen peroxide (100 µM), GSH (10 mM), cysteine (1 mM), sulfide (1 mM), bisulfite
(1 mM), sulfite (1 mM), BSA (1 mg mL−1), D-glucose (1 mM), NADPH (100 µM), HepG2 cell lysate
extract, or HepG2 cell lysate extract with DPIC compared with AZO-Flav (10 µM) alone without
enzyme. All samples were incubated for 5 min at 37 ◦C before measuring fluorescent spectra
(excitation wavelength = 540 nm). Statistical analysis is based on T-test (** p < 0.01).
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2.6. Hypoxic Cell Imaging

As all above findings support the potential of AZO-Flav in hypoxia detection, the
probe, AZO-Flav, was then applied to monitor the hypoxic condition in human liver
carcinoma cells, HepG2. Prior to performing cellular sensing experiments, cytotoxicities
of the azo probe, AZO-Flav, and its reduction product, Flav-NH2, were inspected. Cell
viability assays using MTT reagent were conducted to determine their safe doses for the
live cell detection experiments. The results showed that the cells maintained full viability
at concentrations up to 20 µM for both AZO-Flav and Flav-NH2 (Figure S5). At higher
concentrations (30–50 µM), cell viability decreased to about 65%. Therefore, the optimal
concentration ranges for monitoring hypoxia in cells would be 2.5 to 20 µM.

Consequently, AZO-Flav was tested in detection of hypoxia in living cells. The HepG2
cells were incubated in a hypoxia incubator chamber (5% pO2) for different duration
times to detect graded hypoxic conditions. It was found that the fluorescent signal of the
reduction product was clearly observed after the cells were exposed to the low oxygen
condition for 6 h and reached the maximum after 12 h incubation (Figure 6A). Therefore,
we chose to expose the cells to hypoxia for 12 h for the following experiments.
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Figure 6. Confocal images of HepG2 cells. (A) Different exposure times (0, 1, 3, 6, and 12 h) of HepG2
cells in hypoxic conditions. (B) Time dependent hypoxia detection, with hypoxic cells incubated with
5 µM of AZO-Flav for 0, 15, 30, and 60 min. DPIC (50 µM) was added after 60 min incubation to
inhibit electron transfer. (C) Quantitative corrected total cell fluorescence data of images in B were
quantified using ImageJ and represent the mean ± SD (n = 100 from three independent experiments).
(D) The cells incubated with 5 µM of AZO-Flav for 0 and 24 h under normoxia. Statistical analysis:
One-way ANOVA followed by Tukey’s post-hoc analysis was used for comparison between multiple
groups using R studio. P values of less than 0.05 are considered significant (** p < 0.01, *** p < 0.001).

After incubation in a hypoxia incubator chamber for 12 h, the cells were treated with
AZO-Flav for different time durations (15, 30, and 60 min). The fluorescence signal of the
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reduction product (Flav-NH2) was found to notably increase over time compared to the sig-
nal observed from the cells in normoxic conditions (Figure 6B,C, and the Supporting Video).
Moreover, the fluorescence from the enzymatic reaction in hypoxia is comparable with the
signal observed from the cells incubated with Flav-NH2 at the same periods (Figure S5).
These confirmed that the detected fluorescence signal appeared in a time-dependent man-
ner. In addition, when hypoxic enzyme activity was inhibited by DPIC [7], the fluorescence
signal from the cells in the hypoxic environment was suppressed (Figure 6B,C). In contrast,
there is no red fluorescent signal observed in normoxic cells, even after incubating with the
probe for 24 h (Figure 6D). To observe if photobleaching occurs after hypoxic cells were
incubated with AZO-Flav for 60 min where the maximal signal is achieved, a video of live
cell imaging from 60–120 min was recorded to see if the fluorescence remains stable over
time. We found that the signal slightly increased over time, and after 90 min the signal
decreased. This implied that the fluorescence from the reduction product is stable for up to
90 min in hypoxic cells (see Supporting Video). Therefore, AZO-Flav was shown to be a
highly specific probe for hypoxia detection in living cells.

Dose-dependent internalizations of AZO-Flav and Flav-NH2 were also investigated
for comparison. As shown in Figure 7, when greater concentrations of AZO-Flav and
Flav-NH2 were used, the fluorescence signals also increased significantly under hypoxic
conditions. Interestingly, at higher concentrations (10–20 µM), the detected signal of Flav-
NH2 was found to be localized in the cell nuclei (Hoechst 33342 signal in blue, DAPI
channel). This is in good agreement with previous literature reports regarding the observed
interaction of flavylium cations with double-stranded DNA and RNA [39,40]. Moreover,
at lower concentrations (≤10 µM), the reduction product was found to be localized in
some organelles such as lysosomes, Golgi apparatus, and mitochondria with Pearson’s
coefficients of 0.60, 0.62, and 0.55, respectively (Figure S7).
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Finally, to compare AZO-Flav with commercially available hypoxia detection probes
such as EF5 [41] and BioTracker 520 Green Hypoxia Dye [22], we list their comparison in
Table S1. The key advantages of AZO-Flav are (i) convenient synthesis with less steps and
(ii) longer emission wavelength which could avoid signals from cell auto-fluorescence. In
addition, AZO-Flav, which is an activity-based sensor probe, shows superior advantages,
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including higher sensitivity, ease of synthesis, and improved selectivity, when compared to
some protein-based sensors [42] (Table S2). Moreover, our AZO-Flav showed the fastest de-
tection of reductase activity among other azo-based fluorescent sensors [1,7–9,22,24,43–47]
(Table S3). Thus, all experiments ssupport the generation of strongly emissive Flav-NH2
when AZO-Flav was in the hypoxic environment, confirming its ability of hypoxia detec-
tion in cancer cells.

3. Materials and Methods
3.1. Instruments and Chemicals

For all reactions, glassware was oven-dried prior to use. All reagents were purchased
from commercial sources (TCI, Carlo Erba, and Sigma-Aldrich, Milan, Italy) and used
without any further purification. Column chromatography purification was performed on
a silica gel (Merck, Germany) as a stationary phase. Analytical thin layer chromatography
(TLC) was performed on TLC Silica gel 60 F254 (Merck, Germany) and visualized in a UV
cabinet (254 and 365 nm). 1H and 13C-NMR spectra were recorded on a Bruker-500 MHz
spectrometer at room temperature. Chemical shifts of 1H-NMR spectra were reported
in ppm and calibrated from the residual non-deuterated solvent DMSO-d6 (2.50 ppm).
1H-NMR data are reported as the following: chemical shift, multiplicity (s = singlet,
d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants, and number of
protons. 13C-NMR spectra were also recorded in ppm, DMSO-d6 (39.50 ppm). Mass spectra
(MS) were measured under high resolution ESI conditions.

3.2. Synthesis of AZO-Flav and Flav-NH2

The detailed syntheses of AZO-Flav and Flav-NH2 are reported in the Supporting
Information.

3.3. Spectroscopic Materials and Methods

All UV/vis absorption and fluorescence spectra were recorded on a UV-vis spec-
trophotometer (T80+ UV/vis spectrometer, PG Instruments Ltd., Lutterworth, UK) and a
spectrofluorometer (JASCO FP-8300), respectively, and performed in a quartz cell with 1 cm
path length. In all experiments, the stock solutions (1 mM) of AZO-Flav and Flav-NH2
were prepared in DMSO. Hypoxic phosphate buffer (100 mM, pH 7.4) was prepared by
N2 purge for 30 min before measurement. The fluorescence spectra of AZO-Flav and
Flav-NH2 (10 µM) in 100 mM hypoxic phosphate buffer were recorded with λex = 540 nm.

The Study of pH Effect

The fluorescence response of AZO-Flav and Flav-NH2 (10 µM) toward different pH
values was performed in 100 mM buffer at different pH values (pH = 3, 4, 5, 6, 7, 8, 9, 10,
and 11) and measured at λex = 540 nm.

3.4. EcFld Reductase Assay
3.4.1. Overexpression and Purification of Escherichia coli Flavodoxin Reductase (EcFldR)
Plasmid Construction of pET30-EcFldR

The gene encoding EcFldR was amplified from E. coli MG1655 genomic DNA by Q5
high-fidelity DNA polymerase (New England Biolabs). The plasmid of pET30-EcFldR
was constructed by Gibson assembly of PCR products. The amino acid sequence of
overexpressed EcFldR contains a N-terminal His-tag and EcFldR (underlined label).

MSSHHHHHHSSGENLYFQGGGMADWVTGKVTKVQNWTDALFSLTVHAPVLPF
TAGQFTKLGLEIDGERVQRAYSYVNSPDNPDLEFYLVTVPDGKLSPRLAALKPGDEVQV
VSEAAGFFVLDEVPHCETLWMLATGTAIGPYLSILQLGKDLDRFKNLVLVHAARYAADL
SYLPLMQELEKRYEGKLRIQTVVSRETAAGSLTGRIPALIESGELESTIGLPMNKETSHVM
LCGNPQMVRDTQQLLKETRQMTKHLRRRPGHMTAEHYW.
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Overexpression and Purification of EcFldR

Ten milliliters of overnight culture of E. coli BL21(DE3) containing pET30-EcFldR was
inoculated into 1 L of Luria-Bertani broth (LB) with 50 µg/mL kanamycin. The culture
was shaken at 200 rpm and 37 ◦C until OD600 reached about 0.6. Protein expression
was induced by addition of isopropyl-β-D-1-thiogalactopyranoside (IPTG) with a final
concentration of 200 µM. The culture mixture was shaken for an additional 16 h at 200 rpm
and 20 ◦C. Subsequently, cells were collected by centrifugation (5000 rpm, 25 min, 8 ◦C)
and kept at −80 ◦C till purification. The harvested cells were thawed and resuspended in
the lysis buffer (300 mM NaCl, 50 mM NaH2PO4, and 10 mM imidazole). The cells were
lysed by sonication (1.5 s cycle, 50% duty) on ice, followed by centrifugation at 12,000 rpm
and 4 ◦C for 40 min. The supernatant was loaded onto a Ni-NTA column (QIAGEN)
and the proteins were eluted by the manufacturer’s instructions. After elution, the pure
fractions were combined and concentrated, followed by incubation with 1 mM of flavin
adenine dinucleotide (FAD). The unbound FAD was removed by a 10DG column (BioRad)
pre-equilibrated with 100 mM Tris-HCl, 30% glycerol, pH 7.5. The purified protein was
aliquoted and stored at −80 ◦C. The SDS-PAGE analysis is showed in Figure S2.

3.4.2. Response towards EcFld Reductase

2 µM of EcFldR and 50 µM of NADPH were preincubated at 37 ◦C for 5 min in 100 mM
hypoxic phosphate buffer (pH 7.4). The reaction was initiated by the addition of 10 µM of
AZO-Flav and analyzed by fluorescence spectrometry at λex = 540 nm and λem = 607 nm.

3.4.3. Selectivity towards EcFld Reductase

All interference stocks (sodium ascorbate, nitric oxide (NO), hydrogen peroxide
(H2O2), glutathione (GSH), cysteine, Na2S (H2S), Na2O5S2 (HSO3

−), Na2SO3, bovine serum
albumin (BSA), D-glucose, and NADPH) were prepared in 100 mM hypoxic phosphate
buffer (pH 7.4). 10 µM of AZO-Flav was added into hypoxic phosphate buffer containing
50 µM of NADPH and each interference.

For lysate preparation, HepG2 cells cultured in complete media (See Section 3.5.1) on a
T-25 flask were washed twice with cold PBS. Subsequently, RIPA buffer (Thermo Scientific,
Waltham, MA, USA) was added to the cells and the flask was kept on ice for 5 min, swirling
occasionally. The cells were removed from the flask using a cell scraper, then transferred
into a microcentrifuge tube. Collected cells were then centrifuged at ~14,000× g for 15 min.
The supernatant was transferred to a new tube for further analysis.

For fluorescence experiments, all samples were incubated at 37 ◦C for 5 min before
adding AZO-Flav (10 µM). The emission spectra were recorded at λex = 540 nm and
λem = 607 nm.

3.4.4. Limit of Detection (LOD) of AZO-Flav Reduction toward EcFldR

100 mM hypoxic phosphate buffer containing various concentrations of EcFldR (0,
0.25, 0.5, 1, 1.5, 2, 3, 4, and 5 µM) and 50 µM of NADPH was preincubated at 37 ◦C for 5 min.
After that, AZO-Flav was added to the solution at a final concentration of 10 µM. The
fluorescence intensity of the reduction product, Flav-NH2, was analyzed by a fluorescence
spectrophotometer (λex = 540 nm and λem = 607 nm).

3.4.5. HPLC for AZO-Flav with EcFldR

The reaction solutions were prepared in 100 mM hypoxic phosphate buffer contain-
ing 2 µM of EcFldR and 50 µM of NADPH; these were preincubated at 37 ◦C for 5 min.
AZO-Flav was then added to the final concentration of 10 µM to initiate the reaction. The
mixture was incubated for 5 min. The reaction was quenched by adding 50% acetoni-
trile to precipitate EcFldR followed by centrifugation at 10,000 rpm for 5 min to remove
the protein. The supernatant was analyzed by HPLC. Reverse phase HPLC analysis
was performed on an Agilent HPLC 1100 using a column of ZORBAX Eclipse XDB-C18
(4.6 mm × 150 mm, 5 µm ID). The solvents were solvent A (water + 0.1% TFA) and solvent



Molecules 2021, 26, 4938 11 of 14

B (acentonitrile + 0.1% TFA). The linear gradient was as follows: 0 min: 100% A; 2 min:
95% A, 5% B; 5 min: 85% A, 15% B; 10 min: 5% A, 95% B; 12 min: 5% A, 95% B; 14 min:
95% A, 5% B; 16 min: 100% A; 20 min: 100% A. The flow rate was 1 mL/min. The analysis
was monitored by a UV-Vis detector at a wavelength of 560 nm.

3.5. Cell Culture and Confocal Imaging
3.5.1. Cell Culture

HepG2 (a human liver cancer cell line, purchased from ATCC) cells were cultured on
a 75 cm3 culture flask in a complete medium, Dulbecco’s Modified Eagle’s Media (DMEM,
Hyclone) supplemented with 10% fetal bovine serum (FBS, Gibco) and 1% penicillin–
streptomycin (Corning). The cells were incubated at 37 ◦C in a humidified atmosphere
containing 5% CO2. Under hypoxia conditions, the cells were incubated in a hypoxia
incubator chamber (STEMCELL Technologies Inc., Vancouver, BC, Canada).

3.5.2. Cell Imaging

HepG2 cells were seeded on an 8-well chambered coverglass (LabTek, Nunc) at
1 × 104 per well and incubated at 37 ◦C for 24 h. For time-dependent cellular uptake, the cells
were incubated under normoxic (humidified 95% air, 5% CO2 atmosphere) and hypoxic
(5% pO2) conditions at 37 ◦C for 12 h. Subsequently, the cells were treated with 5 µM of
AZO-Flav (or Flav-NH2) in FBS-free DMEM for 0, 15, 30, and 60 min. For dose dependent
cellular uptake, the cells were treated with 0, 5, 10, and 20 µM of AZO-Flav and Flav-NH2
in FBS-free DMEM for 60 min. After the incubation, the cells were washed with PBS buffer
(0.01 M, pH 7.4) three times and treated with fresh media containing 1.0µM of Hoechst
33342 (Thermo Fisher Scientific) for 10 min before being imaged by a Laser Scanning
Confocal Microscope (LSCM, Nikon A1Rsi). Laser sources were as follows: excitation:
561 nm and emission: 595 nm/50 nm (for AZO-Flav or Flav-NH2), and excitation: 405 nm
and emission: 450 nm/50 nm (for Hoechst 33342) using a 60X oil immersion objective
lens. Quantitative corrected total cell fluorescence data were quantified using ImageJ and
represented the mean ± SD (100 cells from three independent experiments, n = 3).

3.5.3. Hypoxia Inhibitory Effect

HepG2 cells were seeded on an 8-well chambered coverglass (LabTek, Nunc) at 1 × 104

per well and incubated at 37 ◦C for 24 h. Subsequently, the cells were treated with 0, 100,
and 200 µM of diphenyliodonium chloride (DPIC, TCI) and incubated under hypoxic
(5% pO2) conditions at 37 ◦C for 12 h. After incubation, the cells were treated with 5 µM
of AZO-Flav in FBS-free DMEM for 60 min. Then, the cells were washed with PBS buffer
(0.01 M, pH 7.4), stained with Hoechst 33342, and visualized under LSCM.

3.5.4. Cell Viability Assay of AZO-Flav and Flav-NH2

HepG2 cells were seeded on a 96-well cell culture plate at approximately 7× 103 cells
per well and incubated for 24 h. Cells were then treated with different concentrations of
AZO-Flav and Flav-NH2 (0, 2.5, 5, 10, 20, 30, 40, and 50 µM) for 24 h. After incubation,
the cells were washed with PBS (three times) before adding 25 µL (0.5 mg mL−1) of
MTT reagent (methylthiazolyldiphenyltetrazolium bromide, Sigma-Aldrich) in 0.01 M PBS
(pH 7.4) for 3 h. After supernatant removal, DMSO (100 µL) was added to dissolve the
formazan product which was detected at a wavelength of 560 nm using a microplate reader
(BMG Labtech/SPECTROstar Nano).

4. Conclusions

AZO-Flav was successfully developed as a hypoxia-responsive probe. In an enzyme-
catalyzed reduction, AZO-Flav exhibited high selectivity and sensitivity towards an elec-
tron transfer process in the presence of the reductase and its cofactor, NADPH, with a
limit of detection about 0.4 µM. The azo bond was cleaved via the enzymatic reaction to
release the corresponding amine (Flav-NH2) that provided the strong fluorescence turn-on
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signal. The capability of AZO-Flav to detect hypoxia in cancer cells was confirmed by
cell imaging experiments. Fluorescence intensities were found to increase up to 26-fold
when hypoxic cells were incubated with AZO-Flav for 60 min. Moreover, fluorescence
signals from the hypoxic cells can be suppressed by the inhibition of the electron transfer
process, suggesting the azo bond reduction of AZO-Flav is associated with reductase in the
hypoxic tumor. Lastly, the detected fluorescence signals from the cell nuclei after hypoxic
cells incubated with AZO-Flav confirmed the existing of the reduction product (Flav-NH2)
inside the cells. Therefore, AZO-Flav showed great potential in its application toward
in vivo hypoxia detection.

Supplementary Materials: The followings are available online. General procedure for the synthesis
of AZO-Flav and Flav-NH2 and compound characterizations; Figure S1: Calibration curve of Flav-
NH2 (λex = 540 nm and λem = 607 nm); Figure S2: pH effect in 100 mM phosphate buffer at pH = 3, 4,
5, 6, 7, 8, 9, 10, and 11 with λex = 540 nm and λem = 607 nm. (a) 10 µM of Flav-NH2 and (b) 10 µM
of AZO-Flav; Figure S3: SDS-PAGE analysis of purified EcFldR; Figure S4: HPLC analysis of the
metabolism of AZO-Flav when reacted with EcFldR reductase. AZO-Flav (10 µM) and NADPH
(50 µM) were treated with EcFldR reductase (2 µM) for 5 min. HPLC profiles were detected by UV/Vis
at 560 nm; Figure S5: MTT assay of AZO-flav and Flav-NH2 in HepG2 at different concentrations,
incubated for 24 h; Figure S6: Time-dependent cellular uptake of Flav-NH2 incubated for 0, 15, 30, and
60 min; Figure S7: Confocal images of AZO-Flav incubated with hypoxic HepG2 cells and colocalized
with sub-organelle trackers. Table S1: Comparison of AZO-Flav with commercially available hypoxia
detection probes; Table S2: Comparison of AZO-Flav with a reported protein-based sensor; Table S3:
The structures and O2 responses of azo-based probes. Video files of imaging of cells (hypoxia and
normoxia) incubated with AZO-Flav from 15–60 min; video recording of photobleaching behavior of
the dye in hypoxic cells from 60–120 min.
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