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Abstract

Background: Prioritizing genes according to their associations with a cancer allows researchers to explore genes in
more informed ways. By far, Gene-centric or network-centric gene prioritization methods are predominated. Genes
and their protein products carry out cellular processes in the context of functional modules. Dysfunctional gene
modules have been previously reported to have associations with cancer. However, gene module information has
seldom been considered in cancer-related gene prioritization.

Results: In this study, we propose a novel method, MGOGP (Module and Gene Ontology-based Gene Prioritization),
for cancer-related gene prioritization. Different from other methods, MGOGP ranks genes considering information of
both individual genes and their affiliated modules, and utilize Gene Ontology (GO) based fuzzy measure value as well
as known cancer-related genes as heuristics. The performance of the proposed method is comprehensively validated
by using both breast cancer and prostate cancer datasets, and by comparison with other methods. Results show that
MGOGP outperforms other methods, and successfully prioritizes more genes with literature confirmed evidence.

Conclusions: This work will aid researchers in the understanding of the genetic architecture of complex diseases, and
improve the accuracy of diagnosis and the effectiveness of therapy.
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Background
Discovering cancer-related genes has profound applica-
tions in modelling, diagnosis, therapeutic intervention,
and in helping researchers get clues on which genes to
explore [1–3]. Computational approaches are preferred
due to their high efficiency and low cost [4, 5]. Many com-
putational methods have been proposed, including: a)
gene-based function similarity measure methods [6–9]; b)
biological interaction network-based methods [10–14],
and c) methods based on multiple datasets fusion [15–17].
Methods of the first kind based on the hypothesis that
phenotypically similar diseases are caused by functionally
related genes. Based on this hypothesis, many methods
prioritize genes by computing similarity scores between
the candidate genes and the known disease genes. For ex-
ample, ToppGene [6] ranks genes based on similarity

scores of each annotation of each candidate genes by
comparing enriched terms in a given set of training genes.
Endeavour [8] prioritizes candidate genes by similarity
values between candidate genes and seed genes, by inte-
grating more than six types of genomic datasets from over
a dozen data sources. Methods of the second kind
prioritize genes using the guilt-by-association principle,
which means genes interacting with known disease genes
are more likely disease-related genes. For instance, PINTA
[10] prioritizes candidate genes by utilizing an underlying
global protein interaction network. Other methods rank
candidate genes by exploiting either local or global net-
work information [2]. Methods of the last kind incorpor-
ate datasets such as gene expression, biomedical literature,
gene ontology, and PPIs together for gene prioritization.
For example, ProphNet [17] integrates information of
different types of biological entities in a number of hetero-
geneous data networks. Taking all these methods into con-
sideration, they are either gene-centric or network-centric.
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However, gene module as a basic functional unit of genes has
seldom been considered.
Gene module can be defined as a protein complex, a

pathway, a sub-network of protein interactions. Module
detection has long been studied and many useful algo-
rithms have been proposed, such as [18–21]. Although
different methods have different module detection strat-
egies, most of them rely on PPIs network. PPIs network
suffers from drawbacks as highlighted in [22]. Firstly, the
PPI network is incomplete, which only covers the interac-
tions of well-researched proteins. For instance, of the
20,502 genes in the gene expression matrix downloaded
from The Cancer Genome Atlas (TCGA), only 9078
(44.2%) and 2761 (13.4%) genes are included in Human
Protein Reference Database (HPRD) [23] and Database of
Interacting Proteins (DIP) [24] PPIs networks respectively.
As a result, detected modules are incomplete and their
accuracy are limited. Secondly, protein interactions in
PPIs network suffer from high false positive and negative
rates, modules discovered from such PPI data also suffer
from high false rates. All these inherent limitations affect
the coverage and accuracy of the inferred modules.
Nowadays, numerous public databases of protein and

gene annotation information are available, such as Entrez
Gene [25], Ensembl [26], PIR iProClass [27], GeneCards
[28], KEGG [29], Gene Ontology Consortium [30], DAVID
[31], GSEA [32] and UniProt [33]. For instance, DAVID
[31] contains information on over 1.5 million genes from
more than 65,000 species, with annotation types, including
sequence features, protein domain information, pathway
maps, enzyme substrates and reaction, protein-protein

interaction data and disease associations. Gene Ontology
Consortium describes the functions of specific genes, using
terms known as GO (Gene Ontology). KEGG map genes to
pathways while GSEA provides functional gene groups col-
lected from BioCarta genes sets, KEGG gene sets and
Reactome gene sets. With these annotation information,
we can easily group genes into functional modules.
Complex diseases, especially cancer are caused by the

dysfunction of groups of genes and/or gene interactions ra-
ther than the mutations of individual genes. Detecting and
prioritizing cancer-related genes from the perspective of
gene module is promising. Although some useful work has
been conducted [34, 35], the results are still far from being
satisfactory. In this study, we take the importance of not
only genes but also their affiliated modules into consider-
ation, and prioritizing genes in a heuristic way. We measure
module importance by the number of differential genes
within the module and the number of differential correla-
tions between the module genes. Besides, the number of
known cancer-related genes in the module is also consid-
ered. We measure the gene importance by three aspects in-
formation: a), gene’s differential expression value, b), the
number of differential correlations between the gene and
all other module gene. c), the fuzzy measure based similar-
ity values between the gene and all known cancer-related
genes (if exist) within the module. The global rank of all
genes is obtained by utilizing a rank fusion strategy.

Methods
As shown in Fig.1, MGOGP takes gene expression datasets,
gene modules, known disease genes and gene ontology

Fig. 1 Main components of MGOGP
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annotation information [36] as input, and the ranked genes
as output. The main parts including: module importance
measure, module-specific gene importance measure, mod-
ule rank and module-specific gene prioritization, and global
cancer-related gene prioritization. Figure 2 schematically
illustrates these steps in detail.
First, obtain functional gene modules; then get the global

ranking of all modules and the local ranking of all
module-specific genes based on their importance; finally, the
rank fusion algorithm further gives all genes a global rank.

Input datasets
As shown in Fig. 1, MGOGP takes gene expression data-
sets, gene modules, known disease-related genes and
gene ontology annotation information as input. In this
study, all gene modules are downloaded from GSEA
website (http://software.broadinstitute.org/gsea/down-
loads.jsp). All GO ontologies of genes are downloaded
from GeneCards [37, 38]. Information of relationships
between GO terms are got from Gene Ontology Consor-
tium website.

Module importance measure
We measure the importance of a module by: the number
of differentially expressed genes in the module, the num-
ber of differential correlations between module genes
and the basic importance of the module itself.
We use DESeq2 for gene differential expression ana-

lysis [3, 35, 39, 40]. If genes with padj(gi) value bigger
than the threshold value μ, we set Se(gi) = 0. Otherwise,

we set Se(gi) = 1, which means the gene gi is a candidate
differential expression gene. Se(gi) is defined as follows:

Se gi
� � ¼ 0; if padj gi

� �
> μ

1; else

�
ð1Þ

To further improve the statistical significance of the se-
lected candidate differential expression genes, we applied
a multiple random sampling strategy. As defined in Eq. 2.

DEG gi
� � ¼ 0; if

1
s

XS
s¼1

Se gi
� �

< ω

1; else

8><
>: ð2Þ

Where S is the number of sampling; ω is a threshold
value; if a gene gi is selected as a differential expression
gene we set DEG(gi) = 1, Otherwise, we set DEG(gi) = 0.
We define Ncr(mj) as the ratio of differential expres-

sion genes in the module mj as shown in Eq. 3:

Ncr mj
� � ¼

PN
i¼1DEG gi

� �
N

j∈1; 2; 3;…;M
ð3Þ

Where, gi is the ith gene in the module mj; N is the
total number of genes in the module mj; DEG(gi) is de-
fined in Eq. 2.
Next, for each pair of genes in the module mj, two correl-

ation values are calculated using normal and tumor samples
respectively. As defined in Eqs. 4 and 5 respectively.

Fig. 2 MGOGP processes are illustrated. a Obtain gene modules, b Module importance measure and prioritization, c Module-specific gene
importance measure and prioritization, d Compute global gene ranking
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rN gi; gh
� � ¼

PL
l¼1 xl−xð Þ yl−yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPL
l¼1 xl−xð Þ2 yl−yð Þ2

q ð4Þ

rN(gi, gh) is the Pearson correlation value between gene
gi and gene gh across all normal samples. L is the normal
sample number.

rT gi; gh
� � ¼

PQ
q¼1 xq−x

� �
yq−y

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPQ

q¼1 xq−x
� �2

yq−x
� �2

r ð5Þ

rT(gi, gh) is the Pearson correlation value between gene
gi and gene gh across all tumor samples. Q is the tumor
sample number.
To test whether the correlation coefficient between

gene gi and gene gh is differentially correlated, we test
whether rT(gi, gh) and rN(gi, gh) are significantly different.
The two correlation coefficients are changed to ZN(gi, gh)
and ZT(gi, gh) respectively.

ZN gi; gh
� � ¼ 1

2
log

1þ rN gi; gh
� �

1−rN gi; gh
� � ð6Þ

Similarly, rT(gi, gh) is changed to ZT(gi, gh) as Eq. (6).
The differential correlation is tested based on Fisher’s
z-test [41]. As defined in Eq. (7):

Z ¼ ZN gi; gh
� �

−ZT gi; gh
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L−3
þ 1
Q−3

r ð7Þ

The Z value has an approximately Gaussian distribu-
tion under the null hypothesis [41]. If the fdr value of a
gene is bigger than the threshold value υ, we set Sc(gi,
gh) = 0, otherwise we set Sc(gi, gh) = 1, which means the
correlation coefficient is a potential differential correl-
ation. Sc(gi, gh) is defined as follows:

Sc gi; gh
� � ¼ 0; if fdr gi; gh

� �
> υ

1; else

�
ð8Þ

Where fdr(gi, gh) is the local false-discovery rate (fdr)
derived from fdrtool package [42]; υ is a threshold value.
As the way we find differential expression genes, we

retain only those significantly changed correlations. As
defined in Eq. 9:

DEE gi; gh
� � ¼ 0; if

1
s

XS
s¼1

Sc gi; gh
� �

< δ

1; else

8><
>: ð9Þ

Where S is the number of sampling; δ is a threshold
value; we set DEE(gi, gh) = 1 if the gene gi and gh are dif-
ferentially correlated. Otherwise, we set DEE(gi, gh) = 0.

We define Ecr(mj) as the ratio of differential correla-
tions among genes in the module mj. Ecr(mj) is defined
in Eq. 10:

Ecr mj
� � ¼

PK
k¼1DEE gi; gh

� �
K

K ¼ N N−1ð Þ
2

and i; h∈1; 2; 3;…;N
ð10Þ

K and N is the edge number and the gene number of
the module mj respectively.
We measure the basic importance of a module by cal-

culating the ratio of known disease genes in a module,
as shown in Eq. 11:

info mj
� � ¼ num d j

� �þ 1
� �

=N ð11Þ

num(dj) is the number of known disease genes in the
module mj; N is the number of genes in the module mj.
The module importance is defined in Eq. 12.

p mj
� � ¼ Ncr mj

� �þ Ecr mj
� �� �

=2
� � � info mj

� �
j∈1; 2; 3…;M

ð12Þ

where mj means the jth module; M is the total number
of modules.

Module-specific gene importance measure
We measure the importance of a gene (p(gi)) in the
module by measuring: the gene’s differential expression
value, the number of differential correlations between
the gene and all other module genes and the basic im-
portance of the gene itself.
The number of differential correlations (CorC(gi)) be-

tween the gene gi and all other genes in the same mod-
ule is calculated as in Eq. 13.

CorC gi
� � ¼

PN−1
h¼1;h≠iSc gi; gh

� �
N−1

i; h∈1; 2; 3;…;N ; gi∈mj

j∈1; 2; 3;…;M

ð13Þ

N is the number of genes in the module mj; M is the
total module number.
Finally, the basic importance of a gene is determined

by the gene ontology-based fuzzy measure similarity
values between the gene and all known disease gene (if
exist) in the same module. As shown in Eq. 14.
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info mj gi
� � ¼
0; if num mj dh

� � ¼ 0
1; if gi isaknown disease gene itselfXnum mj dhð Þ

h¼1
SFMS gi;mj dh

� �
=num mj dh

� �
; else

8><
>:

ð14Þ

num(mj_dh) is the number of known disease genes
in the module mj. If num(mj_dh) = 0, which means no
known disease gene in the module mj, we set
info(mj_gi) = 0. If gi itself is a known disease gene, we
set info(mj_gi) = 1. Otherwise, we calculate the gene
importance value based on the fuzzy similarity meas-
ure between the gene and all the known disease gene
in the module mj. SFMS(mj_gi, mj_dh) is defined in Eq.
15, as in [43]:

SFMS m j gi;m j dh
� � ¼ Smi Tm j gi∩Tmj dh

� �þ Smh Tm j gi∩Tmj dh

� �
2

ð15Þ

Where Smi is the Sugeno measure [43] defined on GO
terms of gene mj_gi and Smh is the Sugeno measure
defined on GO terms of module disease gene mj_dh.
Let Tm j gi is the set of GO annotation terms of gene

mj_gi, Smi, is a real value function, satisfying [44]:

1) SmiðTm j giÞ ¼ 0; if Tm j gi ¼ ∅; elseSmiðTm j giÞ ¼ 1:
2) SmiðTm j giÞ≤SmðTmjdhÞ if Tm j gi⊆Tmjdh
3) For all TA;TB⊆Tm j gi with TA∩ TB =Φ

SmiðTA∪TBÞ ¼ SmiðTAÞ þ SmiðTBÞ
þλSmiðTAÞSmiðTBÞ; λ > −1

For a given gene annotation set Tm j gi , the parameter λ
of its Sugeno fuzzy measure can be uniquely solved as in
Eq. 16:

1þ λð Þ ¼
Yn
i¼1

1þ λSmið Þ ð16Þ

This equation has a unique solution for λ > −1. Let
Smk = Sm({Tk}). The mapping Tk→ Smk is called a fuzzy
density function. The fuzzy density value, Smk, is inter-
preted as the importance of the single information
source Tk in determining the similarity of two genes. As
defined in Eq. 17:

Smk ¼ − ln p Tkð Þ= max
T j∈Tgi

− ln p T j
� �� �� 	
 �

ð17Þ

Where p(Tk) is defined in Eq. 18:

p Tkð Þ ¼
count Tk þ children of Tk in corpusð Þ

count allGOterms in corpusð Þ

 �

1≤k≤ j Tgi j
ð18Þ

The importance of gene (p(gi)) in a module is defined
in Eq. 19.

p gi
� � ¼ padj gi

� �þ CorC gi
� �þ info gi

� �
i∈1; 2; 3;…;N ; gi∈mj

ð19Þ

N is the number of genes in the module mj.

Global gene ranking
Most genes deploy their functions in the context of
sophisticated functional modules [45, 46]. Therefore,
the global rank of a gene need be decided by its
own importance and the importance of its affiliated
module. As in [34], a rank fusion strategy is used to
fuse the local rank of genes in each module into a
global rank.
The rank fusion strategy is a recursive process. It

decides the rank of the nth gene based on all the
top-ranked n − 1 genes. We define i as the number of
genes having already obtained their global ranking in
the recursive process of rank fusion, m(i, j) as the
number of top i genes located in the module j after
having determined the top i genes. t(i, j) as the ex-
pectation of the number of top i genes located in the
module j. e(i, j) as the expectation of probability that
the i + 1 globally ranked genes come from the module
j. We use the module importance value p(mj) as the
probability of a disease-related gene comes from it.
The relationship between i, m(i, j), t(i, j) and p(mj) is
shown in Eq. 20:

t i; jð Þ ¼ ip mj
� �

e i; jð Þ ¼ t iþ 1; jð Þ−m i; jð Þ ð20Þ

Initially, the first ranked gene in the module with high-
est importance value is chosen as the top 1 gene in the
gene’s global rank, because all genes in each module
have been ranked from big to small according to their
importance value. Let i as the number of genes having
obtained their global ranking, to decide the i + 1 ranked
gene, we need to find the module with the biggest e(i, j)
value, because e(i, j) indicates the expectation of prob-
ability that the i + 1 globally ranked genes from module
j. So the genes ranked m(i, j) + 1 in the module j will be
chosen as the top i + 1 ranked gene, because in the mod-
ule j, top m(i, j) genes has obtained the global ranking.
Repeat the process until all genes get ranked. As shown
in Fig. 3 (in Additional file 1).
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Results
Both raw count and normalized gene expression data-
sets are downloaded from TCGA (http://cancergen-
ome.nih.gov/) [47], which include expression values of
20,503 genes across 102 normal samples and 779
tumor samples. Besides, gene expression datasets of
Prostate adenocarcinoma containing 483 tumor sam-
ples and 51 normal samples are also downloaded
from TCGA. Four thousand seven hundred twenty-six
gene modules are downloaded from the website of
GSEA (in Additional file 2).
Firstly, the performance of MGOGP is validated

by comparing it with three module based
cancer-related gene prioritization methods (MEN-
DEAVOUR, MDK and MRWR) proposed in [34].
For comparison, the same prostate cancer network
used in [34] are used, which consists of 233 genes
and 1218 interactions. Modules are obtained by
picking out all the GSEA modules that contain
more than three genes in the prostate network after
removing irrelevant module genes. Irrelevant genes
are genes that are included in GSEA modules but
are not included in these 233 genes. Fifteen known
prostate cancer genes are obtained from OMIM
(Table 1). Six genes (BRCA1, TP53, EP300, STAT3,
ZFHX3, HNF1B), which are confirmed have associa-
tions with prostate cancer by Genetics Home Refer-
ence (https://ghr.nlm.nih.gov/) are used as test
genes. Results are shown in Table 2.

As shown in Table 2, all the six genes are ranked on
average within top10% of all the candidate genes, which
indicates the superiority of MGOGP to other three algo-
rithms. For further comparison, we put these 21 genes
together, each time we randomly select 20 different
genes as known disease genes and the remaining 1 gene

Fig. 3 Rank fusion process. N is the number of genes in the module j, M is the total module number

Table 1 Known prostate cancer genes retrieved from the OMIM

Gene
ID

Gene
Symbol

Gene name

367 AR Androgen receptor

675 BRCA2 Breast cancer type 2 susceptibility protein

3732 CD82 CD82 antigen

11200 CHEK2 Serine/threonine-protein kinase Chk2

60528 ELAC2 Zinc phosphodiesterase ELAC protein 2

2048 EPHB2 Ephrin type-B receptor 2 precursor

3092 HIP1 Huntingtin-interacting protein 1

1316 KLF6 Krueppel-like factor 6

8379 MAD1L1 Mitotic spindle assembly checkpoint
proteinMAD

4481 MSR1 Macrophage scavenger receptor types I and II

4601 MXI1 MAX-interacting protein 1

7834 PCAP Predisposing for prostate cancer

5728 PTEN Phosphatase and tensin homolog

6041 RNASEL 2-5A-dependent ribonuclease

5513 HPC1 Hereditary prostate cancer 1
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for test. Each run we compared the ranked positions of
the 1 test gene between our method and Endeavour.
Results are shown in Table 3. In Table 3 some genes do
not exist, because they don’t exist in our GSEA gene
modules or not exist in Endeavour database. According
to Table 3, 11 of the 13 known prostate cancer-related
genes and 4 of the 6 test genes have much higher ranks
than these of the Endeavour. Moreover, the average
ranking of these genes is 51 by MGOGP, which is better
than 82 by Endeavour.

Next, we use MGOGP for genome-wide breast cancer
gene prioritization. We use 328 breast disease-related
genes downloaded from SNP4Disease (http://snp4disea-
se.mpibn.mpg.de/result.php) as seed genes (see
Additional file 3). Ten well-known breast cancer-related
genes (shown in Table 4, which are not contained in the
328 genes) are used to validate the effectiveness of our
method. All GSEA gene modules are pre-processed by
removing all the genes which do not have gene expres-
sion information (the final module list is supplied in
Additional file 4). The result is shown in Fig. 4.
As shown in Fig. 4, all the 10 breast cancer-related genes

are ranked within the top5% of the gene prioritization results.
During the process, we set S= 1000, ω= 0.9 and δ= 0.9
(which means of the 1000 sampling results, over 90% fulfill
the filter criteria). We set υ= 0.05 and μ= 0.01 as most
others do [39, 41]. The performance of MGOGP under
different parameter settings are supplied in Additional file 5.
The top 10 ranked modules in this case study are shown in
Table 5.
As can be seen from Table 5, many top-ranked

modules are included in well-known breast cancer path-
ways, such as PI3K/AKT [48] pathway and VEGF
ligand-receptor pathway. The VEGF family of ligands
and receptors are intimately involved in tumor angio-
genesis, lymphangiogenesis, and metastasis [49]. More
importantly, of the 100 genes in the top 10 ranked
modules, 20 of them are contained in the KEGG breast
cancer pathway (hsa05224), which is an indication of
the good performance of MGOGP for cancer gene
prioritization.
Next, we validate the performance of MGOGP by com-

paring the gene prioritization results with results obtained
by methods: Endeavour [8], GeneFriends [50], PINTA
[10], TOPPGene [6] and TOPNet [13]. All the methods
use the same datasets and under their default parameter

Table 2 Ranks of six test genes in prostate cancer gene
network. They are prioritized by MDK, MRWR, Endeavour and
MGOGP

Gene MDK MRWR Endeavour MGOGP

BRCA1 29 6 58 63

TP53 104 132 85 24

EP300 83 70 90 11

STAT3 39 41 88 17

ZFHX3 174 174 34 19

HNF1B 44 190 109 26

Average Rank 78 102 77 26

Table 3 Ranks of each validation gene

Gene MGOGP Endeavour

AR 32 30

BRCA2 29 40

CD82 169 211

CHEK2 19 35

ELAC2 64 176

EPHB2 45 165

HIP1 91 111

KLF6 88 72

MAD1L1 78 194

MSR1 60 190

MXI1 92 89

PCAP Not Exist Not Exist

PTEN 24 94

RNASEL 67 83

HPC1 Not Exist Not Exist

BRCA1 46 16

TP53 5 5

EP300 11 12

STAT3 17 23

ZFHX3 59 68

HNF1B 26 12

Table 4 Ten well-known breast cancer genes

Gene
ID

Gene symbol Gene name

672 BRCA1 Breast Cancer 1, Early Onset

675 BRCA2 Breast Cancer 2, Early Onset

7157 TP53 Tumor Protein P53

5728 PTEN Phosphatase And Tensin Homolog

841 CASP8 Caspase 8, Apoptosis-Related Cysteine
Peptidase

2263 FGFR2 Fibroblast Growth Factor Receptor 2

4214 MAP3K1 Mitogen-Activated Protein Kinase Kinase
Kinase 1, E3 Ubiquitin Protein Ligas

11200 CHEK2 Checkpoint Kinase 2

472 ATM ATM Serine/Threonine Kinase

83990 BRIP1 BRCA1 Interacting Protein C-Terminal
Helicase 1

Su et al. BMC Bioinformatics  (2018) 19:215 Page 7 of 12

http://snp4disease.mpibn.mpg.de/result.php
http://snp4disease.mpibn.mpg.de/result.php


settings. The results are shown in Fig. 5. Brief descriptions
of these methods are provided in Additional file 6. Core
sourcecode of MGOGP is provided in Additional file 7.
Other source codes are available from the corresponding
author on reasonable request.
In Fig. 5, we count the number of breast

cancer-related genes in the gene prioritization results.
As is shown in Fig. 5, MGOGP outperforms other
methods in detecting cancer-related genes. We use all
the 328 breast disease related genes as known disease
gene (Endeavour and GeneFriends used the same gene
sets) and count the number of known disease genes ap-
pear in top 100–1000 prioritization results.
To do comparison more rigorously, we further com-

pare MGOGP to Endeavour, TOPNet and TOPPGene.
Each time we randomly select 100, 150 and 200 dif-
ferent known disease genes from the 328 breast
disease-related genes for known disease genes and

others are left for test (each kind of selection repeat
100 times). We count the average number of test
genes appear in Top 200 gene prioritization results.
Results are shown in Fig. 6.
Finally, to further validate our method, we get the top

10 ranked genes of each method in Fig. 5. The results
are shown in Table 6.
In Fig. 7, the number of Known Disease Gene is the

number of genes supplied for training each method that
fall within the top 10. For example, in Table 6, PTEN,
VEGFB, and MCM2 are three genes fall within the top
10 of the gene ranking result, so the number of Known
Disease Gene of MGOGP in Fig. 7 is 3. For each gene
within the top 10 gene ranking results of each method,
we search the number of articles in PubMed mention
the association between the gene and breast cancer. We
count the number of genes has more than 10 PubMed
article reference. As shown in Fig. 7, genes detected by
MGOGP have more article supports than other
methods.

Discussion and conclusion
Results of omics experiments commonly consist of
a large set of genes, while researchers usually only
care about the behaviour of several genes. In this
paper, a heuristic algorithm is proposed for priori-
tizing disease-associated genes by utilizing gene
ontology annotation information and known
disease-related genes as heuristic information. Dif-
ferent from existing methods, we propose to rank
genes considering the importance of both individual
genes and their affiliated modules, and utilize Gene
Ontology (GO) based fuzzy measure value as well
as known disease genes as heuristics, and use rank
fusion strategy to obtain the global gene
prioritization. Results show that MGOGP

Fig. 4 Known cancer-related gene prioritization result

Table 5 Top 10 ranked modules

Rank Module name Gene number Importance
value

1 zerbini_response_to_sulindac_dn 6 0.542

2 reichert_g1s_regulators_as_pi3k_
targets

8 0.523

3 sa_g2_and_m_phases 8 0.492

4 reactome_vegf_ligand_receptor_
interactions

10 0.478

5 biocarta_srcrptp_pathway 11 0.461

6 honrado_breast_cancer_brca1_
vs_brca2

18 0.447

7 tcga_glioblastoma_mutated 8 0.445

8 pid_vegf_vegfr_pathway 10 0.444

9 liang_silenced_by_methylation_dn 11 0.411

10 agarwal_akt_pathway_targets 10 0.410
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outperforms many other methods in cancer-related
gene prioritization.
Different from other module-based gene prioritization

methods, where modules are detected by partitioning
the network using the network clustering methods, we
obtain modules through gene function annotation, that
is, functionally related genes are grouped into the same
modules. Because gene interaction networks often suffer
from the problems of high rates of false positive/negative
interactions, and modules detected by network cluster-
ing algorithms often have limited accuracy, so our
method is more advanced. One important difference
between modules used in this study and modules de-
tected through network partition is that no edges in
our module. Instead, we use statistical methods de-
tecting differential correlations between genes within
a module, which could help avoid the preference of
genes or modules that are well-researched (because
currently obtained network is far from complete, the

number of interactions among well-researched genes
may be much more than that of newly discovered
genes).
Different from module-based methods in [34],

MGOGP ranks modules considering three aspects of
information: module-specific gene importance, differ-
ential correlations, and importance of the module it-
self. In [34], the author considers the importance of a
module by considering only the number of disease
genes and the size of the module, which may bias to-
ward big modules. Furthermore, gene as the major
component of the module whose importance is not
considered when measuring the importance of a mod-
ule in [34]. While in our method, when measuring
the importance of a module, we consider: the import-
ance of the module itself, the importance of module
contained genes as well as differential correlations
within the module, which are the main improvements
of our method.

Fig. 5 Comparison results between 6 methods. Endeavour, GeneFriends, PINTA, TOPPGene, TOppNet, and MGOGP

Fig. 6 Comparison results between MGOGP, Endeavour, TOPPGene, and TOPNet with different number of known disease genes as input
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Compared with other non-module-based prioritization
methods, our algorithm also has obvious advantages.
First, it is easier to find the potential pathogenic genes
that cause the disease from the point of view of gene
modules. Second, it takes cross-validation strategy which
could guarantee the stability of the recognition re-
sults. And our method works with heuristic informa-
tion which could effectively avoid the blindness of
the search.
By applying MGOGP on different datasets, we dem-

onstrate that MGOGP performs better than previous
gene or network-centric methods in terms of poten-
tial disease-related genes prediction. Firstly, the per-
formance of MGOGP is validated by comparing it
with three module based cancer-related gene
prioritization methods. Results show that all test
genes are ranked on average within top10% of all the
candidate genes. According to our results, many

top-ranked modules are included in well-known can-
cer pathways, and top-ranked genes have more sup-
porting PubMed articles. All of the results show that
our methods perform better than the state of the art
methods.
Prioritization methods are useful for assisting sci-

entists at early research stages, and to formulate
novel hypotheses of interest. In the future, one of
our main goals is to see how our method behaves in
other prioritization problems when using different
entities and sources of data sets not covered in this
study. Furthermore, we plan to study in more detail
the quality of the datasets and their influence on al-
gorithm performance, and design new methods to
try to improve the results. As we all know that the
methods become more mature the results will be-
come increasingly accurate and more biologically
meaningful.

Table 6 Top 10 ranked genes of each method

MGOGP Endeavor GeneFriends PINTA ToppGene ToppNet

Top 10 gene CCNB1IP1
CCNE2
NEK1
NRP1
CDC25C
VIM
PTEN
VEGFB
MCM2
PTGS2

SNRPF
BUB3
MSH2
SSBP1
RFC4
EZH2
CENPF
BLMH
KIF20B
BAZ1A

LURAP1L
PVRL2
CYFIP1
FAM120A
IL13RA1
MYO1B
BCL9L
NQO1
RIN2
SDC4

MGP
EEF1A1
TPT1
RPS6
RPL3
RPS27
ACTB
SCGB2A2
RPL11
PIP

RAD51
APEX1
SIRT2
NOC2L
NEDD1
TERT
EPN3
PPARGC1A
NBN
ATR

APP
ELAVL1
NTRK1
RPA1
XPO1
EED
CUL3
BARD1
HSP90AA1
NXF1

Known disease genes
fall in the top 10 gene

PTEN
VEGFB
MCM2

MSH2
EZH2

NQO1 SCGB2A2
PIP

RAD5
TERT
NBN
ATR

BARD1

In Table 6, each method is run with default parameter settings and use same training genes. Top 10 gene means the top 10 genes prioritized by each method
and Known disease genes fall in the top 10 gene means genes supplied for training each method falls in the top 10 genes. Detail statistic results are shown in
Fig. 7

Fig. 7 Detail statistic results of results in Table 6
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