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We present MAGIC, an integrative and accurate method for comparative genome mapping. Our method consists of two
phases: preprocessing for identifying ‘‘maximal similar segments,’’ and mapping for clustering and classifying these
segments. MAGIC’s main novelty lies in its biologically intuitive clustering approach, which aims towards both
calculating reorder-free segments and identifying orthologous segments. In the process, MAGIC efficiently handles
ambiguities resulting from duplications that occurred before the speciation of the considered organisms from their
most recent common ancestor. We demonstrate both MAGIC’s robustness and scalability: the former is asserted with
respect to its initial input and with respect to its parameters’ values. The latter is asserted by applying MAGIC to
distantly related organisms and to large genomes. We compare MAGIC to other comparative mapping methods and
provide detailed analysis of the differences between them. Our improvements allow a comprehensive study of the
diversity of genetic repertoires resulting from large-scale mutations, such as indels and duplications, including
explicitly transposable and phagic elements. The strength of our method is demonstrated by detailed statistics
computed for each type of these large-scale mutations. MAGIC enabled us to conduct a comprehensive analysis of the
different forces shaping prokaryotic genomes from different clades, and to quantify the importance of novel gene
content introduced by horizontal gene transfer relative to gene duplication in bacterial genome evolution. We use
these results to investigate the breakpoint distribution in several prokaryotic genomes.

Citation: Swidan F, Rocha EPC, Shmoish M, Pinter RY (2006) An integrative method for accurate comparative genome mapping. PLoS Comput Biol 2(8): e75. DOI: 10.1371/
journal.pcbi.0020075

Introduction

In the context of comparative genome mapping, one seeks to
identify ‘‘homologous’’ segments in different genomes and to
classify them into orthologs and paralogs, as well as to identify
segments ‘‘free of reordering.’’ Segments belonging to differ-
ent genomes are said to be homologous if they descend from a
single common ancestral segment [1–3]. Segments belonging to
different genomes are said to be free of reordering or reorder free
(RF) if they were not reordered in the different genomes
relative to their cenancestor, i.e., their most recent common
ancestor [2]. RF segments may contain large indels, resulting,
for example, from deletions, duplications, horizontal gene
transfer (HGT), or selfish DNA. Thus, in the context of
comparative genome mapping, one attempts to achieve a
detailed description of the common and different parts
between whole genomes with respect to large-scale mutations.
This description, along with a characterization of point
mutations in homologous segments, enables us to study the
relative frequency and the effect of the different types of
mutations (or forces) shaping the evolution of the genomes.
Since the biological events considered in the comparative
mapping problem are substantially different from those
considered in the alignment problem, neither global alignment
nor local alignment techniques are sufficient to address it.

Most of the pioneering studies considered the problem of
comparative mapping over sets of genes instead of arbitrary
genomic segments. These methods start, usually, by calculat-
ing an all-against-all alignment of common sets of genes (a
preprocessing phase), and then, in a second phase, use
clustering techniques to predict operons or collinear blocks.
Such approaches include Lamarck, the P-quasi complete

linkage approach, ADHoRe, EM_TRAILS, STRING, and
other methods [4–10]. This approach was also applied in
yeast for the automatic discovery of regulatory motifs [11].
Later, comparative mapping methods over arbitrary genomic
segments were developed. The preprocessing phase in these
methods consists of searching for similar genomic segments—
referred to as hits, markers, or anchors (usually performed by a
fast local alignment procedure). Then, in the mapping phase,
a clustering procedure is applied to the output of the first
phase. Examples of fast seed-based preprocessing phases
include BLASTZ and CHAOS [12,13], in which the seeds are
allowed to contain degeneracy, as well as that of Mauve, which
searches for exact and unique matches [14]. Examples for
mapping phases include CHAIN-NET, FISH, GRIMM-Syn-
teny, Mauve (as well as GRIL—its predecessor), and SLAGAN
[13–18]; for a mini-review see [19]. CHAIN-NET and GRIMM-
Synteny use the distance between anchors as a criterion for
clustering (and hence are referred to as distance-basedmapping
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methods). Mauve and SLAGAN rely on solving (different)
optimization problems to prune anchors and to define the
mapping. SLAGAN prunes anchors by introducing various
gap penalties for discriminating between different subsets.
Finally, FISH is based on a statistical model for anchor
clustering.

Here we present MAGIC, an integrative and accurate tool
for comparative genome mapping. MAGIC consists of two
independent phases: a preprocessing phase, in which we
compute a comprehensive table of all maximal similar segments
(see Preprocessing Phase: Building a Comprehensive Table of
Similar Segments), and a mapping phase for clustering the
table into RF regions. MAGIC’s clustering approach is based
on a new definition of ‘‘consecutive homologous segments’’
which relies on a biologically intuitive ordering of similar
segments (see Mapping Phase: Clustering into RF Segments).
It enables a better handling of duplications in general and
allows us to adequately address the problem of ‘‘nuisance
cross-overlaps,’’ i.e., misleading similarities between duplica-
tions that occurred before the most recent common ancestor
(see Figures 1 and 2 for examples). Nuisance cross-overlaps
can introduce significant artifacts in the mapping (see False
Anchors and A Comparison with Mauve’s Results for
examples), and, to the best of our knowledge, were not taken
explicitly into account before. MAGIC is also robust with
respect to both its parameters’ values and the initial set of
anchors (see MAGIC’s Robustness). It is capable of modifying
and refining the mapping induced from the anchors and even
recognizing and reassigning false orthologs in the initial
anchor set itself (see False Anchors). Furthermore, MAGIC is
scalable and can be applied to distantly related pairs and to
large genomes (see MAGIC’s Scalability). Finally, our ap-
proach is explicitly designed to handle circular genomes (by
considering the last and first nucleotides to be successive).
The output of our algorithm consists of detailed coverage

statistics of the genomes and of several tables including a one-
to-one table describing the RF segments.
We have applied our method to several prokaryotic pairs

spanning different branches of the tree of life. Due to the
quality of their sequences, annotations, and the availability of
many closely related sequenced species, prokaryotic genomes
are very good models to test the quality of the mapping.
MAGIC’s analysis of the different forces shaping these
genomes shows that lateral transfer and large deletions affect
them significantly more than duplications (see Major Forces
Shaping the Prokaryotic Genome). Furthermore, we utilized
MAGIC’s results to analyze the breakpoint distribution in
bacteria. Previous studies, on Salmonella typhimurium [20,21]
and on Escherichia coli [22,23], have shown that they contain
noninvertible (or nonpermissive) segments. For some of these
segments, forcing an inversion by mechanisms different from
those found in the cell resulted in organisms that are viable
and that grow normally [24]. Thus, these studies suggest that
the mechanisms of reordering in these bacteria may
inherently cause deviations from a uniform breakpoint
distribution [20]. In addition, reorderings in bacterial
genomes are constrained by the viability and fitness of the
resulting organisms. These selection constraints result in
operons and in the large-scale organization of the genome
relative to replication [25]. Finally, repeats, a major element
of genome disruptions caused by homologous recombination
[26], are by themselves recombination hotspots [25,27].
Surprisingly, however, statistical tests show that, in many
pairs, the breakpoint distribution fits well to the uniform
distribution (see Breakpoint Distribution section). This
controversy extends the debate about the Nadeau-Taylor
model and the existence of hotspots in mammalian genomes
to prokaryotes [17,28–35].

Figure 1. A Hypothetical Example Demonstrating the Definition of

Positional Orthologs and the Emergence of a Nuisance Cross-Overlap

A portion of the genomic segments in a hypothetical cenancestor is
denoted by letters. Their orthologous segments in the descendant
organisms org1 and org2 are given, using the same letters, but in
different font (to stress that the segments, despite being orthologous,
are similar but not identical). The scenario described in this example is as
follows: a duplication of a genomic segment results in two duplicates b1

and b2 in the cenancestor. During the speciation of org1 and org2 the
cenancestor genomic segments are shuffled. The orthologous segments
b1 and b1 have similar genomic contexts and are thus positional
orthologs. Similary b2 and b2 are positional orthologs as well. When
comparatively mapping org1 and org2, one would find that b1 is similar
to b2 and b2 is similar to b1. These hits obscure the deduction of the
true evolutionary relation between b1 and b1 as well as between b2 and
b2, and are referred to as nuisance cross-overlaps. In real biological
examples, similar situations arise, e.g., because of rDNAs; see Figure 2.
Notice also that, unlike in sequence alignment, and as is demonstrated in
this example, duplications that occurred before the cenancestor (referred
to sometimes as outparalogs [3]) may cause hardships when compara-
tively mapping two organisms. Thus, nuisance cross-overlaps can be
thought of as an ‘‘ancestral curse.’’
DOI: 10.1371/journal.pcbi.0020075.g001
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Synopsis

Comparative genomics is an important discipline with applications
in evolutionary, genetic, and genome rearrangement studies. When
comparing genomes, one is usually interested in investigating the
relation between the genomic segments to establish their evolu-
tionary origin: are the segments orthologous, and hence inherited
from their most recent common ancestor? Are they paralogs, and
hence duplicated from an ancestral segment? Did the segments
undergo reordering? Were the segments deleted or inserted and—if
so—how (insertion sequence, prophage, horizontal gene transfer)?

In this paper, Swidan et al. present MAGIC, a new approach for
comparative genome mapping. The main novelty of this approach is
the biologically intuitive clustering step, which aims towards both
calculating reorder-free segments and identifying orthologous
segments. The authors demonstrate MAGIC’s robustness, relative
to both its initial input and to its parameters’ values. MAGIC’s
scalability is demonstrated by running it on distantly related
organisms and on large genomes. In addition, Swidan et al. provide
a detailed analysis of the differences between MAGIC and other
comparative mapping methods.

Applying MAGIC to several prokaryotic pairs enabled the authors to
address the aforementioned questions and to quantitatively study
the different evolutionary forces shaping the prokaryotic genome as
well as to investigate their breakpoint distribution.

A Comparative Genome Mapping Method



To relate our method to previous work, we give a detailed
comparison between MAGIC’s results and that of other well-
known genome mapping tools (see A Comparison with
Mauve’s Procedure and A Comparison with Mauve’s Results).
A Cþþ implementation of MAGIC and a Java-based graph-

ical user interface (GUI) are under development. They will be
made available at http://magicmapping.sourceforge.net.

Terms and Definitions
The relation of being orthologous can be further refined to

‘‘positional orthology’’—see Figure 1. Segments belonging to
different genomes are said to be positional orthologs if they are
orthologs and have preserved their relative positioning or
genomic contexts in the genomes. The related term ‘‘posi-
tional homologs’’ was presented in [36,37] to refine the
homology relation. The paralogy relation can be further
refined to ‘‘outparalogs’’ and ‘‘inparalogs’’ [3]: a segment that
has duplicated before (after) the speciation from the
cenancestor is referred to as an outparalog (inparalog). Out-
paralogs induce the phenomenon of nuisance cross-overlaps,
complicating the comparative mapping (see Figure 1).
Identifying inparalogs, on the other hand, is required to
quantify the amount of duplications that occurred since the
divergence of the taxa.

Results/Discussion

MAGIC’s preprocessing phase constitutes a linear flow of
global and local alignments and can be described as a cascade
of five steps (Figure 3A). We first choose a set of anchors,
which are joined into consecutive runs to serve as a first (likely
inaccurate) table. Any set of anchors can be chosen. In the
present analysis, we used the list of curated orthologs of KEGG
(KO) [38], since it is based on functional and positional
information [5], in addition to sequence similarity. Note,
however, that the anchor set can be derived from other
sources. For example, in the comparison with other compa-
rative mapping methods, we have used their automatically
generated output as a set of anchors (see A Comparison with
Mauve’s Results). The table is then refined by validating the
similarity of existing correspondences (by global alignment)
and extracting unmatched regions. This is followed by looking
for new hits in the unmatched regions (by local alignment).
Because of MAGIC’s ability to discover and reassign ‘‘false’’
anchors (see False Anchors) and its robustness with respect to
the initial set of anchors (see MAGIC’S Robustness), it is
suitable to be used with any set of (noisy) anchors.
In the mapping phase (Figure 3B), the comprehensive table

resulting from the preprocessing phase is cleaned from short
entries and selfish DNA. Then a clustering technique is
applied to the remaining entries to combine RF segments,
determine positional orthologs, and classify inparalogs.
The design of the method aims towards maximizing the

flexibility of replacing existing components with new ones as
soon as those become available. Thus, for example, the
anchor set can be chosen arbitrarily. Also, the local or global
alignment programs from the preprocessing phase can be
readily replaced. Eventually, the whole preprocessing phase
can be replaced with another one.
In the following we present a description of the two phases;

further details can be found in Materials and Methods, as

Figure 2. Schematic Examples of Situations That May Be Encountered

While Clustering Entries of the Comprehensive Table (Steps 2 and 3 in

the Mapping Phase)

An entry is represented as two arrows having the same label, one in the
top and one in the bottom panels. Labels for the arrows are given on the
left side. The relative direction of identically labeled arrows represents
the relative orientation of the corresponding segments.
(A) A real example from the comparison of E. coli versus S. typhi ty2
demonstrating the difficulty of identifying the consecutive entry. In the
top (bottom) panels, the positions of the segments in S. typhi ty2 (E. coli)
are given. Arrows having the same label are drawn with identical
grayscale color. The significantly overlapping entries, e.g., 2 and 3 in E.
coli, correspond to rDNA operons, of which there are seven units in each
organism. Each of these seven units have a hit overlapping, for example
Entry 2 in both top and bottom panels. For the sake of clarity, the figure
demonstrates only a part of the hits and is schematic (not to scale).
(B) Illustration of nuisance cross-overlaps and inparalogs. Entry 2 overlaps
with Entry 1 in org1 and with Entry 3 in org2. Assuming that both
overlaps are long enough and that Entry 2 is significantly shorter than
either Entry 1 or Entry 3, Entry 2 is considered as a nuisance cross-
overlap. On the other hand, Entry 4 overlaps Entry 1 in org2, but does
not overlap with other entries in org1, and hence is not a nuisance cross-
overlap. Assuming the length of Entry 1 is significantly greater than that
of Entry 4, Entry 1 is considered to be the positional ortholog, while Entry
4 is considered to be the inparalog.
DOI: 10.1371/journal.pcbi.0020075.g002
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noted throughout. In the section Preprocessing Phase:
Building a Comprehensive Table of Similar Segments, we
describe the steps involved in the preprocessing phase
(building the comprehensive table). Then, in Mapping Phase:
Clustering into RF Segments, we describe the mapping phase.
A summary of MAGIC’s parameters is given in Table 1.
Tuning these parameters is discussed in Tuning the Param-
eters. Finally, in A Comparison with Mauve’s Procedure, we
compare our method to previous work. While some of the
algorithms are based on existing tools (the dependencies are
noted in the text), the rest was implemented as R [39] and
BASH scripts (a Cþþ implementation with a Java-based GUI
are under development).

Preprocessing Phase: Building a Comprehensive Table of
Similar Segments
Here we describe Steps 1–5 of the preprocessing phase (see

Figure 3A) in detail. Some of our steps require a more
complicated mathematical formalism so as to be well-defined.
For these, the formal definitions are given in Materials and
Methods.
Step 1: Generating runs of anchors. To generate a first

coarse mapping, we join consecutive anchors into runs: given
two genomes, we generate permutations of signed elements [17]
based on their common unique anchors, e.g., KOs—see
Figure 4. The signs represent the relative orientation of the
KOs in the two genomes. The two permutations are renamed
so that one becomes the identity permutation (with positive
elements). The other permutation is then searched for
maximal runs of consecutive numbers (while taking their
signs into account). We refer to a genomic segment
corresponding to such a run as a KO-induced segment (KIS).
The procedure is illustrated in Figure 4.
Step 2: Global alignment of KISs. To validate the similarity

of the KISs in the two organisms, we globally align them.

Figure 3. A Flow Diagram of MAGIC

(A) A flow diagram of the preprocessing phase (see Preprocessing Phase:
Building a Comprehensive Table of Similar Segments).
(A1) A one-to-one table (anchors) between two genomes is used to
calculate runs of anchors corresponding to potentially similar segments.
(A2) These segments are globally aligned to validate their similarity and
to find unmatched regions (these regions are candidates for indels or
reordering events).

(A3) The unmatched regions are extracted (the entries remaining in the
table correspond thus to maximal similar segments) and aligned
(including uncovered regions between the runs) locally against the
other genome to search for new hits, in an attempt to make the table
comprehensive.
(A4) Local hits are stitched together to form potentially similar segments.
(A5) These segments are globally aligned to validate their similarity and
to extract unmatched regions out of them. The resulting table is
comprehensive and consists of maximal similar segments.
(B) A flow diagram of the mapping phase (see Mapping Phase: Clustering
into RF Segments).
(B1) Short entries and entries corresponding to known selfish DNA in
either of the genomes are removed.
(B2) Consecutive entries are joined for the first time (which makes it
easier to identify nuisance cross-overlaps and inparalogs).
(B3) Nuisance cross-overlaps (see Steps 3–5: Identifying nuisance,
classifying inparalogs, and re-clustering and Figure 2) are identified
and discarded.
(B4) Inparalogs are identified, classified, and removed from the table.
(B5) Consecutive entries are joined again (nuisances and inparalogs may
have hindered joining some of the entries in the previous clustering).
Steps B3–B5 are performed iteratively until the table converges (no more
nuisance or inparalogs are identified).
(B6) Remaining conflicts (unresolved significant overlaps), corresponding
most likely to selfish DNA, are removed.
(B7) Consecutive entries are joined for the final time (the conflicts
removed in B6 may have hindered joining some of the entries in the
previous clustering). The output of the mapping phase consists of
several tables, among which are: a one-to-one table describing the RF
segments, a one-to-one table describing the positional orthologous
segments contained in the RF segments, a table of the classified
inparalogs in each organism, and a table of identified transposable
elements.
DOI: 10.1371/journal.pcbi.0020075.g003
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Among the currently available methods for global alignments,
e.g., [40–49] (see also [50] for a recent review), we used AVID
[41]. AVID is a heuristic that runs in time and space that are
linear with respect to the size of the genomic sequences. Still,
to cope with memory limitations, KISs longer than 200,000 bp
are divided into subsegments such that successive pieces start
and end with the same KO.

Step 3: Extracting unmatched regions and local alignments.
To identify unmatched regions in the global alignment, we
group proximal gaps and extract sufficiently long ones—see
Figure 5. The unmatched regions are either segments that
have undergone reordering (and thus disturb the collinear
global alignment) or indels. To distinguish between the two
cases, we search the other genome for hits based on these
regions. If hits are found, the unmatched regions might result
from reordering mutations (this is determined in the
mapping phase—see Mapping Phase: Clustering into RF
Segments), or otherwise they are most likely indels. The
unmatched regions are constructed by joining close gaps in
each of the two genomes separately (,gapJoinLen parameter).
Afterwards, sufficiently long unmatched regions
(.gapExtractLen parameter) that overlap are merged together,
the merged unmatched regions are extracted, and the
alignment is broken at the corresponding points. The
extracted unmatched regions, along with the uncovered
regions between KISs, are locally aligned against the other
genome. Among the currently available methods for local
alignment, e.g., [12,43,51–53], we used BLAST [54]. Tuning the

parameters is discussed under Tuning the Parameters.
Pseudo-code for the procedure is given in Algorithm 1, in
Materials and Methods.
Step 4: Stitching local matches. To calculate new potential

maximal similar segments, each set of local matches is
scanned for hits that can be stitched together. Stitched hits
need to have the same orientation. To determine which hits
to stitch, three quantities are considered—see Figure 6. The
first is the difference between the distances of the two hits in
the two organisms (j‘1 � ‘2j in Figure 6). Intuitively, the
distance between two hits in a given organism is calculated by
subtracting the end of the one hit from the start of the
other—see the section, Formal description of stitching local
matches, for the exact definition and Figure 6 for an
illustration. If the segments between the two hits are similar,
the distances between the two hits in the two organisms
should be similar. Therefore, hits with an excessive difference
in their distances (.stitchDifference parameter) are not
stitched. Second, we consider the distance between the two
hits (‘1 and ‘2 in Figure 6). If two segments in the two
organisms are similar, one would expect to find many hits
when locally aligning them. Thus, the distance between
consecutive hits in similar segments should be short. There-
fore, hits with too large a distance (.stitchDistance parameter)
are not stitched. Finally, after stitching hits that fulfill the
above two requirements, we keep stitched segments (‘3 in
Figure 6) that are long enough (.stitchMinLen parameter).
Tuning the parameters is discussed in Tuning the Parameters.
A formal definition of the quantities considered in this step is

Figure 4. Renaming Common Anchors in Genomes org1 and org2 to

Permutations perm1 and perm2 (Step 1 of the Preprocessing Phase)

The genome org1 is renamed to the identity permutation (perm1) and
the genome org2 is renamed accordingly. Runs of consecutive numbers
in perm2 are combined (with respect to their signs) into KISs. A negative
sign preceding a KO indicates that the KO is coded on the
complementary strand. A negative sign preceding a permutation
element indicates that its orientation is not identical in both genomes.
DOI: 10.1371/journal.pcbi.0020075.g004

Figure 5. Joining Gaps into Unmatched Regions and Extracting Long

Ones from a Sequence Alignment (Step 3 of the Preprocessing Phase)

Gaps ‘1 and ‘3 in org1 are joined if the (intragapped) hit ‘2 is short
enough. Assume that ‘2 and other intra-gapped regions are short
enough so that the proximal gaps in org1 are joined to form the
unmatched region ‘. Assume that gaps in org2 are joined similarly to
form the unmatched region k, and that the unmatched regions ‘ and k
are long enough. If the regions ‘ and k intersect (as in this example), they
are joined and the resulting segments in both organisms are extracted to
be handled in the next step.
DOI: 10.1371/journal.pcbi.0020075.g005

Table 1. A Summary of the Parameters Used in MAGIC

Phase Parameter Value Parameter Used for Parameter Used In Step

Preprocessing phase gapJoinLen 110 bp Joining close gaps Extracting unmatched regions from global alignments (Step 3)

gapExtractLen 200 bp Extracting long unmatched regions Extracting unmatched regions from global alignments (Step 3)

stitchDifference 2,000 bp Finding hits having similar distances Stitching hits resulting from local alignments and extracting long ones (Step 4)

stitchDistance 15,000 bp Finding close hits Stitching hits resulting from local alignments and extracting long ones (Step 4)

stitchMinLen 200 bp Removing short stitched hits Stitching hits resulting from local alignments and extracting long ones (Step 4)

Mapping phase cleanMinLen 200 bp Removing short entries Cleaning the table (Step 1)

cleanISPerc 40% Removing transposable elements Cleaning the table (Step 1)

cleanProPerc 40% Removing prophages Cleaning the table (Step 1)

dupPerc 50% Finding significant overlaps The mapping phase (Steps 2–7)

orthPerc 50% Identifying positional orthologs Distinguishing positional orthologs from inparalogs (Step 4)

DOI: 10.1371/journal.pcbi.0020075.t001
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included in the section Formal description of stitching local
matches. Pseudo-code for the procedure is given in Algo-
rithm 2, in Materials and Methods.

Step 5: Global alignment of new segments. Potentially
similar segments that were stitched together are globally
aligned to validate their similarity, and unmatched regions
are extracted from them. However, unlike the previous round
of global alignments, this time there is no need to locally align
the unmatched regions against the other genome—they
cannot have significant hits since they were not picked up
by the previous local and global alignment steps.

Mapping Phase: Clustering into RF Segments
At this point we have a comprehensive table of maximal

similar segments between the two organisms. However,
because of repeated elements, e.g., duplicated rDNA operons
and ISs, the mapping is not one-to-one. Moreover, due to
insertions, deletions, and duplications, consecutive elements
belonging to the same RF segment are hard to identify. In the
remainder of this section, we present a novel approach for
defining consecutive entries that is capable of handling
duplications in general, and nuisance cross-overlaps in
particular. A flow diagram summarizing the mapping phase
as a cascade of seven steps is given in Figure 3B.

Step 1: Removing trivial entries and selfish DNA. We start
with the comprehensive table that was created in the
preprocessing phase. First we remove short entries
(,cleanMinLen). Then we identify and remove transposable
elements and prophages (when applicable). These elements
replicate and integrate autonomously in the genome [55].
Therefore, unless discarded before constructing the RF seg-
ments, they can lead to wrong assumptions about genome
dynamics and an incorrect mapping. The cleaning is done by
first identifying transposable elements in both genomes. Then,
entries in the table having too long an intersection
(.cleanISPerc) with the identified transposable elements are
discarded. Since sequences of transposable elements diverge
fast, we used the TBLASTX mode of BLAT [52] to identify them.
Todo the search, a database of all known transposable elements
in bacteria was obtained through SRS [56] on EMBL [57].

Prophages, on the other hand, are harder to identify
because their sequences diverge fast, they often have genes
that are similar to chromosomal genes, and both functional

and remnant prophages (e.g., cryptic and mosaic) often have
only residual similarity with other known functional phages
[58]. Guidelines for identifying prophages were introduced in
[58] and were implemented in [59]. We use the latter
annotation for discarding entries in the table intersecting
with prophages in a similar manner to transposable elements.
We refer to the threshold used for the prophages as
cleanProPerc.
Finally, we join entries that overlap in both organisms and

move toward constructing the RF segments.
We emphasize that MAGIC can be run without the

information on transposable elements or prophages (see,
for example, the Bordetella pair in Table 2). However, keeping
these elements is expected to result in a less accurate map
with higher fragmentation (see, for example, A Comparison
with Mauve’s Results as well as Tables 3 and 4).
Step 2: Finding consecutive entries and clustering into RF

segments. Duplications are one of the major hurdles when
constructing RF segments because they introduce ambiguity
that makes identifying consecutive entries hard. Figure 2A
illustrates this difficulty by an example from the comparison
of Escherichia coli K-12 MG1655 (E. coli) [60] versus Salmonella
enterica serovar typhi ty2 (S. typhi ty2) [61]. The question that we
want to answer is: which of the entries f2,. . .,5g from Figure
2A is consecutive to 1 (if any)? Intuitively, Entry 3 is the
‘‘natural’’ choice, since among all the entries that have the
same orientation as Entry 1 in both organisms, Entry 3 is the
‘‘closest’’ to Entry 1 in both organisms. In the following we
present a description for a method to generalize the above
example. The description is intuitive and is demonstrated on
Entries 1 and 3 from Figure 2A. The formal definitions are
given in Formal description of clustering into RF segments.
Consider all the ‘‘significant overlaps’’ of Entries 1 and 3 in

both organisms. Two entries are said to overlap significantly in a
given organism if the percentage of their intersecting length
in that organism relative to their length is large enough
(.dupPerc). For example, Entry 2 overlaps significantly with
Entry 3 in E. coli, while Entries 4 and 5 overlap significantly
with Entry 3 in S. typhi ty2. Entry 1 does not overlap
significantly with other entries in either of the organisms.
Notice that even though Entries 1 and 3 are not successive in
either of the organisms, Entry 2, which overlaps significantly
with Entry 3 in E. coli, is successive to Entry 1 in E. coli.
Furthermore, Entry 4, which overlaps significantly with Entry
3 in S. typhi ty2, precedes Entry 1 in S. typhi ty2. Thus, even
though 1 and 3 are not successive in either of the organisms,
Entry 3 overlaps significantly with entries in both organisms
that are the closest to Entry 1. In addition, as mentioned
earlier, Entries 1 and 3 have the same sign. Therefore, they
are potentially a consecutive pair. Since this is the only
potentially consecutive pair involving either Entry 1 or 3,
these two Entries are considered to be consecutive. In general
there might be another entry besides 3 that is potentially
consecutive with Entry 1. In this case, we choose the entry
that is closest to 1 (for more details, see the section Formal
description of clustering into RF segments). After calculating
the consecutive entry of each given one, we join consecutive
entries together into initial RFs (Algorithm 3 in Materials and
Methods).
Steps 3–5: Identifying nuisance, classifying inparalogs, and

re-clustering. The table resulting from the above clustering
step would usually contain overlapping entries. To identify

Figure 6. Parameters Considered When Stitching Hits Having the Same

Orientation (Step 4 of the Preprocessing Phase)

To stitch the hits hit1 and hit2, we consider first the distance between
them in both organisms (length ‘1 and ‘2, respectively). If the segments
corresponding to the lengths ‘1 and ‘2 are similar, then ‘1 and ‘2 are
expected to have similar values. Assuming the latter, the difference
between the distances of the two hits, i.e., j‘1� ‘2 j, should be small. In
addition, consecutive hits in similar segments are expected to be close,
i.e., both distances, ‘1 and ‘2, should be small. Finally, if hit1 and hit2 are
stitched (with no other hits stitched to them), we check that the total
segment’s length in each organism is long enough. In org2 this length is
referred to as ‘3.
DOI: 10.1371/journal.pcbi.0020075.g006
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duplications correctly, we need first to identify and remove
‘‘nuisance cross-overlaps,’’ which are entries that overlap
significantly with different initial RF segments in the differ-
ent organisms. Figures 1 and 2B illustrate the definition.
Nuisance cross-overlaps correspond to ‘‘fake’’ hits, e.g., low
similarity segments or duplications that occurred before the
most recent common ancestor (outparalogs), and need
therefore to be discarded (see A Comparison with Mauve’s
Results for the artifacts that nuisance cross-overlaps can
introduce in the mappings).

For the remaining significant overlaps, we consider those
for which positional orthologs and inparalogs can be
determined. Given two entries that overlap significantly
according to one of the organisms, if one entry is at least
orthPerc longer than the other, the former is considered to be
the positional ortholog, and the latter—the inparalog. Figure
2B illustrates these definitions. Notice that the duplications
that are considered in this method are those that happened
in either of the two organisms since their divergence
(inparalogs). Therefore, old duplications (outparalogs), e.g.,
the rDNA operons, are not relevant. This behavior is assured
by removing the nuisance cross-overlaps. The set of
inparalogs in each organism is further classified to identify
segments that have multiple duplications. In addition, entries
in the set of inparalogs that correspond to a single duplicated
segment in one organism are identified and grouped
together. Such entries might result in multiple counting of

the same duplicated segment, unless counted as a single
group.
After discarding the inparalogs, we extend the initial RF

segments by calculating consecutive entries and joining them
(by running Algorithm 3 in Materials and Methods) again.
Steps 3–5 are performed iteratively until the table converges
and no more nuisances or inparalogs are identified.
Steps 6–7: Discarding remaining conflicts and re-clustering.

Any significant overlaps that remain at this point correspond
to isolated segments for which positional orthologs and
inparalogs cannot be inferred—see Figure S1. Such entries
are referred to as conflicts. Conflicts could correspond to
unidentified selfish DNA segments and are thus discarded.
Afterwards, we calculate consecutive entries and join them
(by running Algorithm 3 in Materials and Methods) for the
final time, which results in the final RF segments.
Comparison statistics. To check the similarity between the

two genomes, we calculate at this point the similarity between
all the initial entries that were joined to construct the RF
segments. This calculation is done by globally aligning these
entries one more time. Based on the alignments, a weighted
mean of their identity percentage is calculated for each
genome, where the weights are the respective lengths of the
entries in each organism. Furthermore, these entries, the RF
segments, the classified inparalogs, the transposable elements,
and the annotated prophages as well as identified phagic
elements in [59] are all used to calculate genome coverage
statistics (see Table 2).

Table 2. Pairwise Comparison Statistics

Pairs Organism

(Shown in Pairs)

Genome

Size

Number/

Coverage

of RF

Segments

Coverage of

Positionally

Orthologous

Segments

Adding

Paralogs

to the

Previous

Column

Adding

Transposable

Elements to

the Previous

Column

Adding

Prophages

and Phagic

Elements to

the Previous

Column

Mean

Identity

of all

Positional

Orthologs

Result

of Rao

Uniformity

Test with

Critical Value

of 5%

Type I pairs B. bronchisepticaa 5,339,179 149/0.74 0.67 0.69 0.70 0.70 0.98 þ
B. pertussisa 4,086,189 149/0.91 0.87 0.87 0.90 0.90 0.98 þ
H. pylori 1,667,867 31/0.96 0.92 0.93 0.94 0.94 0.93 -

H. pylori j99 1,643,831 31/0.97 0.93 0.94 0.94 0.94 0.93 -

N. meningitidis a 2,184,406 34/0.99 0.88 0.90 0.92 0.94 0.96 -

N. meningitidis b 2,272,351 34/0.95 0.85 0.88 0.90 0.91 0.96 -

S. typhi ty2 4,791,961 18/0.95 0.85 0.86 0.87 0.90 0.98 þ
S. typhimurium 4,857,432 18/0.99 0.84 0.84 0.85 0.90 0.98 þ
Y. pestis co92 4,653,728 33/0.97 0.90 0.90 0.94 0.96 0.98 þ
Y. pseudotuberculosisa 4,744,671 33/0.98 0.89 0.89 0.90 0.90 0.98 þ

Type II pairs B. aphidicola aps 640,681 1/0.93 0.91 0.91 0.91 0.91 0.75 NA

B. aphidicola sg 641,454 1/0.93 0.90 0.90 0.90 0.90 0.75 NA

E. coli mg1655 4,639,675 37/0.95 0.79 0.79 0.82 0.85 0.97 þ
S. flexneri 2457t 4,599,354 37/0.93 0.80 0.80 0.88 0.92 0.98 -

L. monocytogenes egd-e 2,944,528 11/0.99 0.85 0.85 0.85 0.87 0.87 -

L. innocua 3,011,208 11/0.98 0.83 0.83 0.83 0.90 0.87 -

P. abyssi 1,765,118 99/0.88 0.75 0.75 0.76 0.76 0.73 -

P. horikoshii 1,738,505 99/0.87 0.76 0.76 0.76 0.76 0.73 -

S. pyogenes m18 1,895,017 4/0.97 0.79 0.79 0.79 0.90 0.98 þ
S. pyogenes ssi1 1,894,275 4/0.95 0.79 0.79 0.79 0.97 0.98 þ

Bolding and nonbolding are used to highlight pairs.
aIndicates that no prophage annotation was available for those species. The 10 pairs are divided into two groups according to the uniformity test reliability. Type I pairs are pairs in which
the number of breakpoints is large (�10), at least in one organism the RF coverage is large (�90%), and at least in one organism the difference between the RF and the positional ortholog
coverage is small (�10%). Type II are the remaining pairs.
þ, accepting; -, rejecting; NA not applicable.
DOI: 10.1371/journal.pcbi.0020075.t002
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Tuning the Parameters
We tuned the parameters used in the different steps based

on comparisons between the bacteria Shigella flexneri 2457t
serotype 2a (S. flexneri 2457t) [62] and S. typhi ty2, which are
among the most difficult and the least stable genomes in the
enterobacteria family, since they contain more ISs, proph-
ages, and rearrangements than other Escherichia or Salmonella
[63]. A summary of the parameters and their default values is
given in Table 1. As a guideline, we took advantage of the
initial coarse mapping induced by the KISs wherever possible,
to help in tuning the different parameter values as described
below. In addition, we ran the algorithms with a range of
values and compared their behavior under the different
settings.

To calibrate the parameters gapJoinLen and gapExtractLen in
Step 3 of the preprocessing phase, we checked the gap
distribution resulting from alignments between common
unique KOs. We found that most of the gaps in these regions
are usually shorter than 200 bp, with a few extending to 300
bp and 600 bp in S. flexneri 2457t and S. typhi ty2, respectively.
Similarly, we checked the lengths of intragap regions in the
KO alignments and found that most of these regions are
shorter than 100 bp.

To gain more evidence, we ran the algorithm described in
Step 3 of the preprocessing phase with different parameter

values, while focusing on the total count of unmatched
regions that the algorithm finds in both organisms. The
results given in Figure 7 show that the count decreases rapidly
as the value of gapExtractLen approaches 200 from below. The
decrease, however, becomes moderate for values greater than
200 (Figure 7). As for gapJoinLen, the fast decay occurs when its
value approaches 100 from below and is followed by a
moderate increase for values between 200 and 600 (Figure 7).
Intuitively, this change in behavior results from two factors:
first, the tendency of gaps to be joined together as the
gapJoinLen parameter increases causes the initial decrease.
Second, after some point, especially when gapJoinLen gets
larger than gapExtractLen, new unmatched regions longer than
gapExtractLen start to emerge as the result of joining faraway
small gaps that did not pass the threshold test before. Thus, it
does not make much sense to set gapJoinLen to a value greater
than gapExtractLen. In the actual runs, we used a value of 200
for gapExtractLen (approximately where the moderate de-
crease starts) and 110 for gapJoinLen (approximately where the
minimum happens)—see Figure 7.
Similar runs were performed to determine the value of the

parameters stitchDifference, stitchDistance, and stitchMinLen used
in Step 4 of the preprocessing phase. The results, shown in
Figure 8, showed that the parameter stitchDistance did not
have much influence on the number of stitched hits

Table 3. Comparing Coverage between MAGIC’s Results and Mauve’s Results When Run with Default Parameters

Pairs Organism

(Shown in Pairs)

Differences in RFs Differences in PO Differences in PS

MVMG MGMV MVMG MGMV MVMG MGMV

Type I B. bronchiseptica 0.038 0.0240 0.037 0.0050 0.035 0.036

B. pertussis 0.043 0.0069 0.047 0.0042 0.042 0.032

H. pylori 0.0071 0.13 0.013 0.14 0.010 0.16

H. pylori j99 0.0066 0.12 0.013 0.14 0.010 0.15

N. meningitidis a 0.0045 0.077 0.051 0.034 0.032 0.08

N. meningitidis b 0.0140 0.070 0.051 0.037 0.026 0.078

S. typhi ty2 0.0072 0.038 0.061 0.0090 0.044 0.041

S. typhimurium 0.0026 0.051 0.060 0.0098 0.043 0.046

Y. pestis 0.016 0.017 0.045 0.0042 0.027 0.050

Y. pseudotuberculosis 0.013 0.040 0.044 0.0076 0.039 0.017

Type II B. aphidicola aps 0.067 0.0051 0.078 0.027 0.076 0.028

B. aphidicola sg 0.068 0.0051 0.078 0.027 0.076 0.027

E. coli mg1655 0.0078 0.041 0.055 0.0044 0.031 0.042

S. flexneri 2457t 0.0120 0.020 0.055 0.0032 0.033 0.100

L. monocytogenes egde 0.0039 0.016 0.059 0.0061 0.043 0.012

L. innocua 0.0120 0.072 0.057 0.0082 0.038 0.063

P. abyssi 0.0200 0.54 0.018 0.50 0.015 0.50

P. horikoshii 0.0071 0.57 0.014 0.50 0.014 0.50

S. pyogenes m18 0.011 0.55 0.047 0.44 0.017 0.52

S. pyogenes ssi1 0.028 0.55 0.046 0.43 0.016 0.59

Results from the Example Run S. flexneri 2457t 0.028 0.031 0.056 0.023 0.030 0.140

S. typhi ty2 0.033 0.060 0.053 0.022 0.044 0.071

MG, MAGIC; MV, Mauve.
MAGIC’s results from Table 2 and the Example Run section and Mauve’s results when run with default parameters, see Table S1.
Bolding and nonbolding are used to highlight pairs.
Differences in RFs coverage, the genomic portion covered by Mauve’s LCBs but not by MAGIC’s RFs (MVMG), and vice versa (MGMV).
Differences in PO, the genomic portion covered by Mauve’s Backbones but not by MAGIC’s positional orthologs (MVMG), and vice versa (MGMV).
Differences in PS (positional orthologs and selfish): the genomic portion covered by Mauve’s backbones but not by MAGIC’sþProphages column, i.e., after adding inparalogs, transposable
elements, and prophages to positional orthologs (MVMG), and vice versa (MGMV). Compare with Table S3.
Type I pairs are pairs in which the number of breakpoints is large (�10), at least in one organism the RF coverage is large (�90%), and at least in one organism the difference between the
RF and the positional ortholog coverage is small (�10%). Type II are the remaining pairs.
DOI: 10.1371/journal.pcbi.0020075.t003
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calculated by the algorithm. In the actual runs, we used values
of 2,000, 200, and 15,000 for the parameters stitchDifference,
stitchMinLen, and stitchDistance, respectively. Loose values can
be chosen for these parameters since the stitched hits are
going to be validated by global alignments.

The value of cleanMinLenwas set to equal that of stitchMinLen
(200 bp). Tuning the values used for discarding transposable

elements and prophages was based on the intersection
percentage between table entries and identified transposable
elements as well as that between table entries and annotated
prophages, respectively. Histograms describing these percen-
tages are given in Figure 9. As mentioned earlier, these
elements’ sequences diverge fast. Therefore, one would expect
that they undergo rapid changes in their sequence. To balance

Figure 7. Number of Detected Unmatched Regions in Step 3 of the Preprocessing Phase (see Figure 3A and Preprocessing Phase: Building a

Comprehensive Table of Similar Segments) in the Comparison of S. flexneri 2457t and S. typhi ty2 as a Function of gapJoinLen and of gapExtractLen

(A) A 3-D graph of the function.
(B) A projection of the graph as a function of gapExtractLen (horizontal axis) when setting gapJoinLen ¼ 110.
(C) A projection of the graph as a function of gapJoinLen (horizontal axis) when setting gapExtractLen¼ 200.
DOI: 10.1371/journal.pcbi.0020075.g007
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this effect, we choose a conservative threshold for their
identification, by setting both cleanISPerc and cleanProPerc to
40%. The values of dupPerc and orthPerc were both determined
to be 50%, based on similar histograms (see Figures 10 and 11).

For identifying local similarities between extracted un-
matched regions and whole genomes, we used BLAST [54] in its
BL2SEQ [64] implementation, with an e-value of .01.

A Comparison with Mauve’s Procedure
We compare MAGIC primarily with Mauve, a cross-species

genome comparison tool, since the motivation for developing
Mauve was to compare bacterial genomes. In fact, Mauve was
initially used on nine enterobacterial genomes, four of which
form two pairs that are considered in this study. In addition,
it has been previously shown that Mauve is more accurate
than other well-known comparison tools on bacteria pairs
with substitution and inversion rates as in the above nine
enterobacteria genomes [14].
Preprocessing phases. In the preprocessing phase, Mauve

[14] constructs multiple maximal unique matches (multi-
MUMs) and considers only those that are longer than a given
threshold as alignment anchors. The multi-MUMs correspond
to exact matches shared by a number of genomes. Mauve uses
a recursive anchoring scheme combined with its mapping
phase. One can pinpoint at least two differences between the
preprocessing phase of Mauve and our method: first, MAGIC
does not require exact matches; this allows comparing more
divergent genomes [14]. Second, MAGIC does not consider
only unique matches. On the contrary, it aims towards
building a comprehensive table.
Mapping phases. Mauve applies a selection criterion to the

multi-MUMs calculated in the preprocessing phase (see the
previous section Preprocessing phases). Before that, overlaps
between the multi-MUMs are resolved locally, i.e., by only
considering the two overlapping multi-MUMs. Then, a
minimum partitioning of the multi-MUMs into collinear
blocks (i.e., segments free of reordering) is done by break-
point analysis [65]. To do that, a guiding phylogeny is
calculated from the multi-MUMs. After calculating the
partitioning, the locally collinear blocks (LCBs) having the
minimum weight are discarded if their weight is below a given
threshold. The weight of an LCB is defined to be the sum of

Figure 8. Number of Stitched Hits as a Function of the Parameters

stitchDifference, stitchDistance, and stitchMinLen

The hits were obtained by locally aligning inter-KIS genomic regions
against the other genome in the comparison of the bacteria S. flexneri
2457t versus S. typhi ty2.
(A) The number of stitched hits as a function of stitchDistance when
stitchDifference¼ 500 and stitchMinLen¼ 200. Notice that the number of
stitched hits changes only by 1 while stitchDistance ranges from 5,000 to
29,000. This indicates that the value of stitchDistance has a very weak
effect on the number of stitched hits.
(B) The number of stitched hits as a function of stitchDifference and
stitchMinLen when stitchDistance¼ 29,000. Here, the number of stitched
hits decreases rapidly as stitchDifference increases from 1,000 to 2,000.
This is followed by a moderate decrease. As stitchDifference approaches
8,000, a moderate increase is observed. The reasons for this increase are
similar to those discussed in Tuning the Parameters to explain the
increase observed in Figure 7. On the other hand, and as is expected, the
number of stitched hits decreases monotonically when stitchMinLen runs
from 200 to 1,000.
DOI: 10.1371/journal.pcbi.0020075.g008

Figure 9. Step 1 of the Mapping Phase in the Comparison of S. flexneri

2457t and S. typhi ty2

Histograms of the percentage of intersection (horizontal axis) between
entries of the comprehensive table and transposable elements (A) and
between entries of the comprehensive table and phages (B). See Figure 3
and Step 1: Removing trivial entries and selfish DNA.
DOI: 10.1371/journal.pcbi.0020075.g009
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lengths of the multi-MUMs contained in it. After discarding
the minimum weight blocks (if any), the program recalculates
the partitioning and discards the minimum weight blocks
iteratively. Thus, Mauve’s mapping phase requires that the
input table is one-to-one, which is guaranteed by locally
resolving overlaps. Our approach resolves overlaps based on
global information, after performing a clustering step. In
contrast to our approach, Mauve tackles the problem of
selfish DNA, similarly to GRIMM-Synteny and CHAIN-NET,
by discarding blocks weighing less than a given threshold.
Similarly to our method, in Mauve gaps are extracted from
the alignments to construct the ‘‘backbone’’ of the compared
genomes. However, in Mauve proximal gaps are not grouped
prior to their extraction.

There is at least one important difference between the
mapping phases of Mauve and MAGIC: in MAGIC, resolving
overlaps is done based on global information. Thus, given two
overlapping entries, MAGIC seeks evidence on how to solve
the overlap in other table entries. Mauve, on the other hand,
resolves the overlap based on local information and by
considering only the two overlapping entries. The section A

Comparison with Mauve’s Results demonstrates the implica-
tions of this difference.

Example Run
To illustrate MAGIC’s operation and output we use the

same pair, i.e., S. flexneri 2457t and S. typhi ty2, that was used in
Tuning the Parameters. Yet, and for the same reason, its
results are excluded from the subsequent biological discus-
sions (to avoid tuning the algorithm and analyzing its results
on the same input).
The genome of S. flexneri 2457t contains 4,599,354 bp, 4,068

genes, and 131 RNAs. Out of the 4,068 genes, 1,446 are
associated with KOs. The genome of S. typhi ty2 is somewhat
larger: it contains 4,791,961 bp, 4,323 genes, out of which
1,542 are associated with KOs, and 109 RNAs. The number of
common KOs is 1,118, out of which 917 are unique. The KIS
permutation contains 69 runs and covers about 77% of both
genomes. The total length of the homologous segments in
these KISs, i.e., the sum of the lengths of the 917 common
KOs covers slightly more than 20% of the two genomes. For
comparison, see Table 5, which gives a complete overview on
genome coverage statistics reported by MAGIC.

Figure 10. Histogram of Intersection Ratios between Table Entries (after

Removing Trivial Entries and Selfish DNA) in the comparison of S. flexneri

2457t and S. typhi ty2

The ratio is calculated as the intersection length divided by the length of
the shortest entry.
(A) Ratios in S. flexneri 2457t and (B) ratios in S. typhi ty2. We set the
default value of dupPerc to 50% since most of the histogram values are
larger than that.
DOI: 10.1371/journal.pcbi.0020075.g010

Figure 11. Histogram of Length Ratios between Significant Overlaps

(after Removing Nuisance Cross-Overlaps) in the Comparison of S. flexneri

2457t and S. typhi ty2

Given two entries that significantly overlap, the ratio between the
smallest entry to the largest one is calculated. For identifying significant
overlaps we use dupPerc¼ 50%.
(A) Ratios in S. flexneri 2457t and (B) ratios in S. typhi ty2. We set the
default value of orthPerc to 50%, where the minimum in both histograms
occurs.
DOI: 10.1371/journal.pcbi.0020075.g011
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After running the preprocessing phase and removing short
entries, the comprehensive table of similar segments con-
tained 854 entries. The number of entries identified as
belonging to transposable elements was 72. The number of
entries identified as belonging to prophages was 45. Entries
belonging to either of the two categories were discarded from
the table leaving 737 entries. Notice that these numbers are
not the number of transposable elements or prophages in
either of the two genomes: transposable elements or
prophages that are present in one organism but not in the
other are not expected to be included in the mapping.
Furthermore, as mentioned earlier, two segments belonging
to the same prophage in one organism might correspond to
two distant—either chromosomal or phagic—segments in the
other organism.

Joining overlapping entries and clustering consecutive
entries reduced the table size to 247. After removing identified
nuisance cross-overlaps, the size is further reduced to 185.
Classifying the inparalogs resulted in 22 and 19 identified
duplications in the two bacteria, respectively. Some of the
duplicates are rather nontrivial. A detailed description of the
nontrivial duplicates is given in Text S1. We note that the
table converged with respect to nuisances and inparalogs after
the first iteration (see Figure 3 and Steps 3–5: Identifying
nuisance, classifying inparalogs, and re-clustering).

The table size after removing the classified inparalogs is
140. After clustering consecutive entries a second time, the
table size is reduced to 122. The number of remaining
unresolved significant overlaps is nine. The total lengths of
these entries are 5,920 bp (.1%) and 3,962 bp (.08%) in the
two bacteria, respectively. They are discarded, and clustering
consecutive entries is done for the last time, which results in
the final table of size 106. A schematic presentation of the
comparative mapping is given in Figure 12.

Recall that there were 201 entries in the initial anchor set
corresponding to common non-unique KOs. Except perhaps
for some of the identified duplications and some of the nine
unresolved significant overlaps, MAGIC was able to establish
that the ambiguity in the majority of the non-unique
common KOs does not result from inparalogs. Thus, it most
likely results from nuisance cross-overlaps or selfish DNA
elements.

The calculated statistics of the two genomes is given in
Table 5. The RF coverage leaves about 16% of both genomes
in the breakpoint regions. A comparison between the RF
coverage and the positional ortholog coverage shows that a

significant amount of indels (about 20%) is found inside RF
segments. Notice that taking the inparalogs into account did
not add much to the positional ortholog coverage percentage.
On the other hand, transposable elements do cover a
significant part of S. flexneri 2457t—about 10%—as previously
indicated [62]. However, they are less significant in S. typhi ty2.
Prophages contribute equally to the coverage of both
genomes—about 5%. The average nucleotide similarity
between positional orthologs in both genomes equals 79%.
Notice that approximately 20% and 30% of the genomes of S.
flexneri 2457t and S. typhi ty2, respectively, can neither be
mapped onto the other genome nor explained by known
transposable elements or prophages. These portions can
result from deletions, unknown prophages, unknown trans-
posable elements, or HGTs. Interestingly, several authors
[66,67] estimate that E. coli (which is the same species as S.
flexneri) has obtained .15% of its genetic material by HGT
from distant species having different sequence composition.

False Anchors
Even when MAGIC starts from a high quality anchor set

(the KOs) and the organisms are evolutionarily close, a few
false anchors could still be discovered. A striking example was
found in the comparison of Salmonella typhi CT18 (S. typhi) and
S. typhi ty2 (99% average identity)—see Figure S2. K00357
(hmp), dihydropteridine reductase, one of the anchors
uniquely common to the two organisms, corresponds to
genomic segments (621146,621799) and (344300,345490),
respectively. This anchor is isolated (it is not collinear to
any other anchor). Furthermore, the identity percentage
achieved by globally aligning the two segments is about 56%
and 31%, respectively. Notice that in KEGG [38], unlike in

Figure 12. A Dot-Plot-Like Schematic Presentation of the Final One-to-

One RF Table in the Comparison between S. flexneri 2457t (Horizontal

Axis) and S. typhi ty2 (Vertical Axis)

Each line in the figure corresponds to an entry in the table. Lines
corresponding to entries with a positive sign are drawn parallel to the
positive diagonal and lines corresponding to entries with a negative sign
are drawn parallel to the negative diagonal.
DOI: 10.1371/journal.pcbi.0020075.g012

Table 5. Genomes’ Coverage Statistics

Organism RF PO þIP þTransposable þProphages Identity

S. flexneri 2457t 0.84 0.65 0.65 0.76 0.80 0.79

S. typhi ty2 0.84 0.62 0.63 0.64 0.68 0.79

RF, coverage of reordering-free segments.
PO, coverage of positionally orthologous segments.
þIP, adding inparalogs to the previous column.
þTransposable, adding transposable elements to the previous column.
þProphages, adding prophages as well as phagic elements to the previous columns.
Identity, mean identity of all positional orthologs.
DOI: 10.1371/journal.pcbi.0020075.t005
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MAGIC, the alignments are done on the translated amino
acid sequences, which may result in high amino acid
similarity for low DNA sequence similarity. MAGIC, however,
has found the segment (595530,629581) in S. typhi to
correspond to (2351520,2385571) in S. typhi ty2. These two
segments are 99% identical, are much longer than the initial
KO, and are collinear with other entries. As for the segment
(344300,345490) in S. typhi ty2, MAGIC has found the segment
(344119,355499) in S. typhi ty2 to correspond to
(2649350,2660730) in S. typhi, with similar properties to the
above. Thus, K00357 is an example of a false anchor and a
nuisance cross-overlap. As such, it is discarded during
MAGIC’s mapping phase (see Steps 3–5: Identifying nuisance,
classifying inparalgos, and re-clustering).

Detailed statistics and classifications of false anchors are
given in A Comparison with Mauve’s Results and in Table 4.

Major Forces Shaping the Prokaryotic Genome
The results described in Table 2 enable us to compare

between the different forces shaping the genome, i.e., point
mutations, genome reorderings, duplications, and indels
(insertions resulting from transposable elements, prophages,
and HGTs or deletions). Many of these elements have been
separately analyzed in the recent literature [55,58,59,68], but
were not quantitatively compared against each other.

A comparison between duplications and indels indicates
that indels are more frequent. Duplications, except in
Bordetella bronchiseptica and the two Neisseria, account for at
most 1% of the genomes’ lengths, whereas a large fraction of
the genomes are not mapped to their counterparts because of
lack of similarity. This observation is best explained by HGT
or deletion events and is coherent with data indicating that
HGT is the major cause of bacterial diversification [69]. It is
also consistent with the known role of lateral transfer in the
fast exchange of pathogenicity islands among prokaryotes
[70,71] and supports the hypothesis regarding its central role
in speciation and sub-speciation [72–75]. In B. bronchiseptica,
these events account for up to 30% of its genome. This high
percentage is likely to result from massive gene loss in
Bordetella pertussis due to the action of transposable elements
and its small population size [76]. This analysis also points out
that gene loss in B. pertussis has severely reduced the number
of inparalogs relative to the ancestral genome, if this is taken
to be more similar to B. bronchiseptica. Taking into account the
evolutionary distance between the pairs of genomes, one
finds Buchnera (B. aphidicola aps and B. aphidicola sg) at the
other end of the spectrum with as little as 7% of unmapped
regions for an average sequence identity of 75%, as described
previously [77].

Transposable elements and prophages can account for as
much as 18% of the genome length, as in S. pyogenes ssi1.
However, the share of prophages is typically much larger than
that of transposable elements, namely 3% and 1.25% on
average, respectively.

Breakpoint Distribution
Let x1 , x2 , . . . , xk be the ordered positions of k

breakpoints relative to a fixed origin in the genome, and
denote the genome length by G. The check for breakpoint
circular uniformity was done on the transformed positions
2px1/G, 2px2/G, . . ., 2pxk/G by applying the Rao, the Watson,
and the Kuiper tests [78,79]. The critical value in the three

tests is set to 5%. All tests showed similar tendencies, except
on the Helicobacter pair, S. flexneri 2457t, and Neisseria
meningitidis a (which Rao rejected while Watson and Kuiper
accepted), demonstrating the robustness of the results. In
Table 2 we report the Rao test results (as mentioned above,
the Rao test rejected more organisms than the other two
tests), and the discussion is based on them. These results
indicate that in more than four pairs, three of which are
considered reliable (see Table 2), one cannot reject the
uniformity null-hypothesis.
One should emphasize that the breakpoint uniformity test

aims only at checking genome reorderings. It does not take
into account the disruption of chromosomal organization
resulting from deletions and insertions of genetic material. In
our comparisons we find that between 3% and 30% of the
genomes cannot be mapped either to their counterpart or to
known selfish DNA (Table 2). These regions are likely to
correspond to indels that occurred since the divergence of
the species, i.e., HGTs and large deletions, and they have an
important role in defining the boundaries between RF
segments. Hence, our observation that the distribution of
breakpoints can be uniform suggests that, in the relevant
cases, the distribution of reorderings, and also the distribu-
tion of HGTs and large deletions, is uniform. This is in line
with data indicating that HGT is more or less homogeneously
distributed in E. coli [80] and along the two replichores of
Bacillus and Streptococcus [81].
Interestingly, and despite containing noninvertible seg-

ments [20–23], both S. typhimurium and E. coli mg1655 passed
the uniformity test. The fit of uniformity in four pairwise
comparisons is surprising for two additional reasons. First,
one does not expect deletion and reordering events to be
totally random because both events are typically induced by
homologous recombination between repeated elements [27].
Since these are discrete elements dispersed along the
genome, the likelihood of each pair of contiguous nucleotides
in the genome to be separated by a reordering mutation is
not homogeneous. However, if there are many pairs of
repeats displaced randomly in the chromosome, each with a
low probability of leading to a reordering mutation, the
overall picture is one of random distribution of breakpoints
and few—if any—breakpoint reuses. Indeed, both E. coli
mg1655 and S. typhimurium have many repeats [82], but the
number of reorderings between them is very low, in spite of
the ;100 million years of divergence [83]. Hence, although
repeats are abundant and lead to reorderings, each individual
repeat has a low probability of leading to a reordering that
gets fixed in the population [84]. Also, when one identifies
inverted repeats within a genome, the distance between each
pair of repeats is random [82]. Thus, the conditions for a
uniform positioning of breakpoints are fulfilled, but at a
coarser level—the one defined by the distribution of repeats
in genomes.
Second, even if reorderings, HGTs, and deletions were

random, one would expect selection to purge events disrupt-
ing operons [85] or disorganizing the chromosome relative to
replication [81]. However, none of these constraints would
lead to a large deviation from uniformity. Hence, our data
suggest that the uniformity is a good approximation of the
reordering mechanisms of closely related bacterial genomes,
even though a finer analysis might reveal the selective
constraints associated with the organization of the genome.

PLoS Computational Biology | www.ploscompbiol.org August 2006 | Volume 2 | Issue 8 | e750883

A Comparative Genome Mapping Method



A Comparison with Mauve’s Results
Recall that Mauve’s output includes an alignment of LCBs,

comparable to MAGIC’s RFs, and a backbone table (com-
parable to MAGIC’s positional orthologs) containing seg-
ments in these alignments that do not contain large gaps.
These segments are extracted similarly to Step 3 of MAGIC’s
preprocessing phase. However, in Mauve, proximal gaps are
not joined before extracting long ones (.maxBackboneGapSize).
In addition, similarly to MAGIC’s filtering steps, Mauve
discards short entries (,minBackboneSize). The seed-size
threshold used in Mauve (comparable to BLAST’s seed size)
for filtering short multi-MUMs is dynamically calculated by
the formula seed_size¼ log2ð g1þg22 Þ/1.5, where g1 and g2 are the
sizes of the first and second genomes, respectively. For the
genomes considered in this study, this value ranges between
12.8 and 15. These three parameters are comparable to the
three parameters gapExtractLen, stitchMinLen, and BLAST seed
size used in MAGIC, respectively. By giving these parameters
two sets of values, we conducted two runs: in the first, Mauve’s
default values are used, whereas in the second, we set the
values of the parameters to the defaults used in MAGIC
(seed_size ¼ 11, maxBackboneGapSize ¼ 200,minBackboneSize ¼
200). The results of both runs are given in Tables S1 and S2.
We note that these settings might not be optimal for Mauve
and that other settings might yield better results. A
comparison between the results of both runs of Mauve
(Tables S1 and S2) against MAGIC’s results (Table 2 and the
example run given above in Example Run) shows the
following: a) Mauve fragments the genomes into more
segments (;7.7-fold higher on average in the ten pairs); b)
Mauve’s default settings sometimes give poor coverage—see,
for example, the Streptococcus pair (with LCB/backbone
coverage of 43% and 39%, respectively, in the default run
and 95% and 92%, respectively, in the nondefault run); c)
changing the seed size usually increases the fragmentation of
the genomes as well (e.g., the number of LCBs is 9-fold higher
for the Buchnera pair); d) both runs of Mauve reject the
breakpoint circular uniformity null-hypothesis in all pairs,
except in Buchnera (which has a single RF according to
MAGIC); e) the values of the identity percentage in the three
tables (Tables 2, S1, and S2) are similar; f) the LCB and
backbone coverage of Mauve with nondefault parameters are
similar to the RF and positional orthologous coverage of
MAGIC, respectively; g) Mauve is faster than MAGIC
(unpublished data). On the example run (the comparison of
S. flexneri 2457t with S. typhi ty2), Mauve terminated after less
than 17 min of CPU time (the run was done by using the
command-line tool, called mauveAligner—and not the Java
GUI, called Mauve—as well as by using the program
calculateBackboneCoverage for extracting the backbones
and calculating identities), while MAGIC required about 35
min of CPU time, most of which is consumed by AVID for
global alignments (about 70%) and by BLAST for local
alignments (about 13%). Recall that the rest of MAGIC’s steps
are implemented as R [39] and BASH scripts, whereas Mauve
is implemented in C. (We expect MAGIC’s Cþþ implementa-
tion to be faster.)

The differences in the LCB/RF numbers may result from
either of these two reasons: the methods cover rather
different parts of the genomes or the methods cover similar
parts but map them differently. To get a better under-

standing of the differences in this case, we conducted two
types of analysis: first, we checked whether the genomic
portions covered by the two methods are similar. Second, we
checked whether the mappings are similar. The results of the
first comparison are given in Table 3 for Mauve’s default run,
and in Table S3 for Mauve’s nondefault run. These two tables
show that when the coverage percentage is similar (e.g., not in
the Streptococcus pair), both methods cover similar portions of
the genomes. Thus, the difference between the methods is
most likely in the mapping.
To gain more evidence for this, we utilized the flexibility of

MAGIC and its ability to correct false anchors by running it
on Mauve’s backbone tables. This feature is made possible by
MAGIC’s robustness with respect to the initial set of anchors,
which we discuss in the next section. By checking MAGIC’s
classifications of the backbone anchors, we are able to learn
more about the differences in the mappings. Table 4
describes these classifications. The table shows that there
are indeed differences between the mappings achieved by the
two methods. These differences are significant enough to
explain the deviations in the results of the uniformity test.
For example, in genomes with abundant transposable
elements, e.g., Shigella, the results show many of Mauve’s
backbone anchors corresponding to transposable elements. A
similar situation exists in genomes abundant with prophages,
e.g., Streptococcus. In genomes abundant with repeats, e.g.,
Neisseria [86], the results show many of Mauve’s backbone
anchors corresponding to nuisance cross-overlaps, inpara-
logs, or final conflicts that MAGIC could not resolve (see
Steps 6–7: Discarding remaining conflicts and re-clustering).
We note that for the two enterobacteria pairs, the total

percentage of the corrected anchor lengths is less than 4%.
This percentage is in agreement with the estimated error for
Mauve on the enterobacteria family [14]. The results achieved
by both methods show that this small percentage (calculated
according to nucleotide lengths) causes considerable differ-
ences in breakpoint positions, which are very significant for
the uniformity test.

MAGIC’s Robustness
MAGIC robustness was checked against two types of

changes: first, and since MAGIC is an anchor-based method,
robustness with respect to the initial set of anchors was

Figure 13. Histogram of RF Numbers when Comparing S. flexneri 2457t

versus S. typhi ty2 under Different Parameter Values

See the section Robustness with respect to parameter values.
DOI: 10.1371/journal.pcbi.0020075.g013
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tested; and second, robustness with respect to perturbations
in the parameters’ values was tested. In the following, we
report the results of both tests.

Robustness with respect to the initial anchor set. To
validate the robustness of MAGIC relative to the initial set of
anchors, we ran it on the backbone tables produced by Mauve
(with default parameters). The results of this run are given in
Table S4, and are similar to the results achieved in the KO-
based run (Table 2). This similarity demonstrated the robust-
ness of MAGIC: in both runs, the identities are equal. The
difference in RF numbers is at most 11 (in the Pyrococcus
archaeal pair where the RF number equals 88 and 99,
respectively). The difference in the RF coverage is usually
very low and reaches a maximum of 5% in Neisseria meningitidis
b. The positional ortholog coverage is usually very similar and
its maximal difference (of 7%) is obtained in S. pyogenes m18
(which belongs to the pair on which Mauve yielded very low
coverage with the default settings—see Table S1). Finally, the
paralog percentage (the difference between the þIP column
and the PO column in Table S4) is virtually identical.

The test for uniformity yielded similar results, and the same
pairs are accepting/rejecting the test in both MAGIC’s runs.

Robustness with respect to parameter values. We checked
the effect of changing the parameters’ values on MAGIC’s
results. Each length parameter was randomly chosen from f1/
2d,d,3/2dg, where d is the parameter’s default value (Table 1).
For example, gapJoinLen was randomly chosen from
f55bp,110bp,165bpg. Each percentage parameter was randomly

chosen from fd � 0.1,d,d þ 0.1g, where d is the parameter’s
default value. For example, cleanISPerc was randomly chosen
from f0.3,0.4,0.5g. Twenty random runs were performed on S.
flexneri 2457t and S. typhi ty2. The greatest deviations were
observed in the number of RFs—see Figure 13. These changes
are not surprising, and result from removing or adding
different types of entries along MAGIC’s run because of the
different parameter values. On the other hand, the RF and the
positional ortholog coverage did not change significantly,
ranging 0.83–0.85 and 0.59–0.64 in S. flexneri 2457t, and 0.83–
0.85 and 0.57–0.62 in S. typhi ty2, respectively. The identity did
not change much either, and ranged 0.78–0.80 in S. flexneri
2457t and 0.78–0.79 in S. typhi ty2.

MAGIC’s Scalability
We perform two tests to check how MAGIC scales up: first,

we run MAGIC on evolutionary distant pairs. Second, we test
MAGIC on large genomes.
Comparing evolutionarily distant organisms. The results of

comparing evolutionarily distant organisms are given in
Table 6. Despite their very low average similarity (;65% of
protein similarity between orthologs), MAGIC was able to
calculate a good mapping for these pairs. In particular, the
results for the Chlamydia pair are in agreement with those
reported in previous studies [87].

Table 6. Comparing Distantly Related Bacteria Pairs

Species Organism (Each Two a Pair) Size RF (Number/Coverage) PO þIP þTransposable þProphages Identity

Chlamydia C. trachomatis 1,042,519 65/0.81 0.70 0.71 0.71 0.71 0.62

C. pneumoniae 1,230,230 65/0.74 0.59 0.59 0.59 0.59 0.63

Bacillus B. subtilis 4,214,630 275/0.39 0.28 0.29 0.29 0.35 0.63

B. anthracisa 5,227,293 275/0.34 0.23 0.23 0.23 0.23 0.63

The format is identical to that of Table 2.
RF, number and coverage of reordering-free segments.
PO, coverage of positionally orthologous segments.
þIP, adding inparalogs to the previous column.
þTransposable, adding transposable elements to the previous column.
þProphages, adding prophages as well as phagic elements to the previous columns.
Identity, mean identity of all positional orthologs.
aIndicates that no prophage annotation was available for those species.
DOI: 10.1371/journal.pcbi.0020075.t006

Table 7. Comparing the Results of MAGIC, GRIMM-Synteny, and
the UCSC Genome Browser on Human–Mouse X Chromosome

Method Table Size Human Coverage Mouse Coverage

MAGIC 7 0.85 0.90

GRIMM-Synteny 11 0.82 0.79

UCSC Genome Browser 6 0.93 0.92

In all methods, segments shorter than 1,000,000 bp were discarded. Table size and
coverage as reported by the three methods.
Table size, the number of RF segments (MAGIC), synteny blocks (GRIMM-Synteny) [17],
and nets in the syntenic subset (UCSC Genome Browser) [15].
Human Coverage, segments coverage of the human X chromosome.
Mouse Coverage, segments coverage of the mouse X chromosome.
DOI: 10.1371/journal.pcbi.0020075.t007

Table 8. Comparing the Results of MAGIC, GRIMM-Synteny, and
the UCSC Genome Browser on Human–Mouse X Chromosome

Method Human Mouse

MG–GS 0.09 0.18

GS–MG 0.05 0.06

MG–UC 0.00 0.05

UC–MG 0.08 0.07

GS–UC 0.00 0.03

UC–GS 0.11 0.16

In all methods, segments shorter than 1,000,000 bp were discarded. Differences in
chromosome coverage: the genomic portion covered by MAGIC’s (MG) RFs but not by
GRIMM-Synteny (GS) [17] syntenic blocks (MG–GS) as well as the portion covered by
MAGIC’s RFs but not by the UCSC Genome Browser (UC) syntenic nets (MG–UC). The rest
of the differences are defined similarly. Notice that the results of the different methods are
reported on different Human and Mouse genome assemblies. Furthermore, whereas
MAGIC’s RFs and GRIMM-Synteny syntenic blocks correspond to one-to-one mappings,
the UCSC Genome Browser table represents a hierarchy of syntenic nets [15].
DOI: 10.1371/journal.pcbi.0020075.t008
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Comparison of the X chromosome in human–mouse.
Although the initial motivation of our method was to compare
prokaryotic genomes, we applied MAGIC to the X chromo-
some of the human andmouse genomes to assess its scalability.
Running the preprocessing phase on the human–mouse
genomes is time-consuming: BLASTZ (a fast local alignment
tool) required 481 days of CPU time on a cluster of 1,024 833-
Mhz Pentium III CPUs [12]. To avoid this computational
bottleneck, we extracted the information on the X chromo-
some from the precomputed preprocessing table available on
the UCSC Genome Browser [88] for the human genome build
35 and the mouse genome build 35. Because of the large size of
the table, we had to implement our mapping phase in Cþþ.
The initial size of the table (restricted to the X chromosome) is
86,755. Running the Cþþ implementation required less than
half a minute of CPU time and less than 10MB of memory on a
1.4-GHz PC equipped with GNU/Linux. The resulting table
contained 1,101 entries. Removing entries shorter than 100,00
bp and re-clustering reduced the table size to 25. Removing
entries shorter than 1,000,000 bp and re-clustering reduced
further the table size to 7. This table is presented in Table S5.
The calculated RF coverage is 0.85 and 0.90 in the human and
mouse, respectively. These results are comparable to what has
been previously reported [17,88]—see Tables 7 and 8. The
implementation of MAGIC in Cþþ, when ready, will allow both
a more detailed comparison of these results and an extension
of the analysis to larger chromosomes.

Future Work
MAGIC can be enhanced to enable comparing both

multichromosomal organisms and multiple genomes. Fur-
thermore, MAGIC can be extended to integrate additional
annotations of the genomes. For example, such an approach
was adopted in [89]. Here, identified repeat pairs were added
to MAGIC’s comparative mapping, enabling a unique and
efficient reconstruction of the ancestral genome order and
the rearrangement scenario.

Materials and Methods

In this section we give a formal description of the methods used in
stitching local matches (Step 4 in the preprocessing phase) and
clustering the RF segments (Step 2 in the mapping phase).
Throughout the section we present a correspondence between a
segment in organism 1 and a segment in organism 2 as an Entry I ¼
((s1(I),e1(I)),(s2(I),e2(I)),sign(I)). Here, (sk(I),ek(I)) represents the start and
end indices of the entry in organism k, for k 2 f1,2g, and sign(I)
represents the sign of the entry, i.e., þ1, if the matching sequences
have the same orientation in both organisms and �1 otherwise.

Formal description of stitching local matches. Let I and J be two
entries representing two hits such that sign(I)¼ sign(J), s1(I) � s1(J), and
sign (I) � s2(I) � sign(I) � s2(J). We define the relative distance between
(s1(I),s1(J)) and (s2(I)s2(J)) as

dððs1ðIÞ; s1ðJÞÞ; ðs2ðIÞ; s2ðJÞÞÞ ¼
��ðs1ðIÞ � s1ðJÞÞ � signðIÞ�ðs2ðIÞ � s2ðJÞÞ

��
ð1Þ

Notice that s2(I) � s2(J) when sign(I)¼ 1. But if sign(I)¼�1, we have
s2(I) � s2(J). To correct the latter, we need to multiply s2(I) � s2(J) by
the sign sign(I).

Intuitively, the distance defined in Equation 1 corresponds to the
length of indel mutations that occurred since the divergence of the
two organisms. This distance directly influences the result of the
global alignment that we are going to perform on the stitched local
matches. If the distance in Equation 1 is too big, then most probably
the global alignment is going to contain big gaps, and hence is going
to be broken. Thus, stitching faraway (with respect to Equation 1) hits
would be unwise. Therefore, we first group hits with relative distance
smaller than a specified threshold (parameter stitchDifference in

Algorithm 2). Afterward, we check that the grouped hits are not
too far apart on both genomes, i.e., that j s1(I)� s1(J)j þ j s2(I)� s2(J) j is
smaller than a specified threshold (parameter stitchDistance in
Algorithm 2). Indeed, if a segment is conserved in the two organisms,
one would expect to find a lot of hits in it. Thus, the distance between
consecutive hits in a conserved segment should be short. Finally,
stitched matches that are longer than a specified threshold in both
organisms (parameter stitchMinLen in Algorithm 2) are further
considered. Pseudo-code describing this step is given in Algorithm 2.

Formal description of clustering into RF segments. Figure 2 is used
throughout this section to demonstrate the different definitions and
steps.

Denote the length of the intersection of Entries I and J in
organism k by intersect(I,J,k) and denote the length of Entry I in
organism k by k(I,k). Entries I and J are said to significantly overlap in
organism k if their intersection length is greater than dupPerc of the
length of the shorter one according to k, i.e., intersect(I,J,k) � dupPerc �
min(k(I,k),k(J,k)). Define Duplicates(I,k) to be the set of all entries that
significantly overlap with Entry I in organism k (including I itself). In
Figure 2 (with dupPerc ¼ 50%), since Entries 2 and 3 significantly
overlap in E. coli, we have Duplicates(2,1) ¼ f2,3g. In S. typhi ty2,
however, Entry 2 does not overlap significantly with other entries and
thus Duplicates(2,2) ¼ f2g. Given two Entries I and J, denote by
dist(I,J,k), for k 2 f1,2g, the offset between J and I when sorting the
table in lexicographical order according to (sk,ek), i.e., sorting first
according to sk and among entries having the same sk value according
to ek. For example, if the table is sorted according to (s1,e1), then
dist(I,J,1)¼ J� I. Notice that dist(�,�,�) is a signed quantity. In Figure 2,
the arrows are sorted in lexicographical order according to E. coli. For
Entries 1,2 and 4 we have: dist(1,2,1)¼ dist(1,2,2)¼1 while dist(1,4,1)¼3
and dist(1,4,2)¼�2 (Entry 3 precedes Entry 4 in S. typhi ty2).

We refer to two Entries I and J such that j dist(I,J,k) j ¼ 1 as successive
in organism k. If dist(I,J,1)¼ 1 and dist(I,J,2)¼ sign(I), then I and J are
successive in both organisms in the correct orientation with respect
to I’s sign. If, in addition, sign(I)¼ sign(J), then (I,J) are consecutive. If the
table does not contain overlapping entries, the previous definition
would have been sufficient. However, as Figure 2 demonstrates,
usually this is not the case. To cope with overlapping entries, the
definition of consecutive entries needs to be generalized. We denote
the ‘‘desired’’ distance between two Entries I and J that have the same
sign by Ck. So we have C1 ¼ 1 and C2 ¼ sign(I). If the segment of J in
organism 2 was duplicated, then we might get that j dist(I,J,1) j . 1, as
is the case with Entries 1,3 in Figure 2. Consider the sets Duplicates(I,k)
and Duplicates(J,k) for k 2 f1,2g. Define the distance in organism k
between the sets of significant overlaps of I and significant overlaps of
J as the closest distance to the desired distance Ck realized by a pair of
significant overlaps:

DistðDuplicatesðJ ; kÞ;DuplicatesðI ; kÞ; kÞ
¼: minargdistðL;M;kÞfj distðL;M; kÞ�Ckj :

L 2 DuplicatesðJ ; kÞ;M 2 DuplicatesðI ; kÞg ð2Þ

For example, we have

distððDuplicatesð1; 1Þ;Duplicatesð5; 1Þ; 1Þ ¼ 3

and

distððDuplicatesð1; 2Þ;Duplicatesð5; 2Þ; 2Þ ¼ �1:

We say that (I,J) is a potentially consecutive pair (PCP) if J =2
Duplicates(I,k) for k 2 f1,2g, the entries have the same relative
orientation (sign(I) ¼ sign(J)), and

DistðDuplicatesðJ ; kÞ;DuplicatesðI ; kÞ; kÞ ¼ 1; k ¼ 1
signðIÞ; k ¼ 2

�
ð3Þ

Given an Entry I, it might be the case that there exists J and J9 6¼ J
where both pairs (I,J) and (I,J9) are PCPs. If (I,J) is a PCP such that

8J9 6¼ J ; ðI ; J9ÞPCP : distðI; J ; kÞ �distðI ; J9; kÞ; k 2f1; 2g
8I9 6¼ I ; ðI9; JÞPCP : distðI ; J ; kÞ �distðI9; J ; kÞk 2f1; 2g ð4Þ

i.e., the best PCP, then we refer to them as consecutive. For a consecutive
pair (I,J), where J comes after I according to the lexicographical order
on (s1(�),e1(�)), we say that J is consecutive to I and denote this by J ¼
consec(I).

In Figure 2, we have that Duplicates(1,1)¼Duplicates(1,2)¼f1g while
Duplicates(3,1)¼f2,3g and Duplicates(3,2)¼f3,4,5g. Notice that sign(1)¼
sign(3)¼� 1 and that Entries 1,3 do not significantly overlap. On the
other hand, we have that dist(f1g,f2,3g,1)¼ 1 and dist(f1g,f3,4,5g,2)¼
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�1. In addition (1,3) is the only PCP involving either Entry 1 or Entry
3. Thus we conclude that 3 ¼ consec(1).

It is straightforward to show that, in general, if the table contains
no entries that overlap in both organisms, each entry can have at
most one consecutive entry and each entry can be the consecutive of
at most another one.

Using the notion of ‘‘consecutive,’’ we can use single linkage
clustering to start constructing the RF segments as follows: calculate
chains (or runs) of consecutive entries in the table and join them to
the same RF segment. A pseudo-code implementing this idea is given
in Algorithm 3. Notice that the resulting table might still contain
overlapping entries. To identify duplications correctly, we need first
to identify and remove ‘‘nuisance cross-overlaps.’’ We say that Entry I
cross-overlaps in the table if I significantly overlaps with two other
Entries H and J in organisms 1 and 2, respectively, i.e., I 2
Duplicates(H,1) and I 2 Duplicates(J,2). Notice that cross-overlaps might
correspond either to ‘‘fake’’ hits, e.g., low similarity homologous
segments, or might be the result of evolutionary events, e.g.,
duplications or genome rearrangements in both organisms. We
distinguish between the two cases based on the relative lengths of the
entries: if the length of I is less than orgPerc the lengths of H and J in
organisms 1 and 2, respectively, i.e., ‘(I,1) , orgPerc � ‘(H,1) and ‘(I,2)
, orgPerc � ‘(J,2), I is considered as a nuisance cross-overlap and is
discarded.

For the remaining significant overlaps, we consider those for which
positional orthologs and inparalogs can be determined: if I
significantly overlaps with J in organism k and I is shorter than
orgPerc of J’s length in k, i.e., ‘(I,k) , orgPerc � ‘(J,k), I is declared an
inparalog and J is declared a positional ortholog.

Pseudo-code. Algorithm 1 getGappedSegments(org1Gaps,org2Gaps,-
gapExtractLen, gapJoinLen)

1: org1CloseGaps ‹ joinCloseGaps(org1Gaps,gapJoinLen)
2: org2CloseGaps ‹ joinCloseGaps(org2Gaps,gapJoinLen)
3: org1LongGaps ‹ gapsLongerThanThreshold(org1CloseGaps,gapEx-

tractLen)
4: org2LongGaps ‹ gapsLongerThanThreshold(org2CloseGaps,gapEx-

tractLen)
5: return mergeGaps(org1LongGaps,org2LongGaps)
Algorithm 2 combineBlastResults(hits,stitchDifference,stitchMinLen,-

stitchDistance)
1: relativeDistanceHits ‹ checkRelativeDistance(hits,stitchDifference)
2: absoluteDistanceHits ‹ checkAbsoluteDistance(relativeDistance-

Hits,stitchDistance)
3: return checkLength(absoluteDistanceHits,stitchMinLen)
Algorithm 3 buildRFs(table)
1: let group[�] be an array of length length(table) s.t. 8I 2 table :

group[I]¼ I.
2: for I 2 table do
3: J ‹ consec(I)
4: if J !¼ NULL then
5: group[J] ‹ group[I]
6: end if
7: end for
8: cluster table according to group[�]
9: return clusters

Supporting Information

Figure S1. An Example of a Final Conflict in the Comparison of S.
flexneri 2457t and S. typhi ty2
The cyan and the gray entries correspond to the same segment in S.
typhi ty2. However, their corresponding segments in S. flexneri 2457t
are different. Since these two entries are not collinear to any other

entry, one cannot infer positional ortholog and inparalog relations
based on length considerations. Hence, these two entries are
considered a conflict.

Found at DOI: 10.1371/journal.pcbi.0020075.sg001 (30 KB PDF).

Figure S2. An Example of a False KO Anchor Resulting from a
Nuisance Cross-Overlap in the Comparison of S. typhi ct18 and S.
typhi ty2

Entry 2 (green) corresponds to K00357. By comparing it with Entry 1
and Entry 3, it is easy to see that Entry 2 corresponds to a false anchor
and is a nuisance cross-overlap.

Found at DOI: 10.1371/journal.pcbi.0020075.sg002 (21 KB PDF).

Table S1. Running Mauve with Default Parameters on 10 Prokaryotic
Pairs

Found at DOI: 10.1371/journal.pcbi.0020075.st001 (101 KB PDF).

Table S2. Running Mauve with Nondefault Parameters on 10
Prokaryotic Pairs

Found at DOI: 10.1371/journal.pcbi.0020075.st002 (98 KB PDF).

Table S3. Comparing Coverage between MAGIC’s and Mauve’s
Results

Found at DOI: 10.1371/journal.pcbi.0020075.st003 (109 KB PDF).

Table S4. Running MAGIC while Taking Mauve’s Backbone Results as
Anchors

Found at DOI: 10.1371/journal.pcbi.0020075.st004 (117 KB PDF).

Table S5. The One-to-One RF Table Resulting from Running MAGIC
Mapping Phase and Filtering Entries of Length Smaller than
1,000,000 on the Human–Mouse X Chromosome Based on BLASTZ
Chained Output as Available on the UCSC Genome Browser

Found at DOI: 10.1371/journal.pcbi.0020075.st005 (37 KB PDF).

Text S1. A Description of Nontrivial Duplications in the Comparison
of S. flexneri 2457t and S. typhi ty2

Found at DOI: 10.1371/journal.pcbi.0020075.sd001 (40 KB PDF).
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