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The advent of immune checkpoint inhibitors (ICIs) has revolutionized the field of oncology,

but these are associated with immune related adverse events. One such adverse event,

is myocarditis, which has limited the continued immunosuppressive treatment options in

patients afflicted by the disease. Pre-clinical and clinical data have found that specific ICI

targets and precipitate distinct myocardial infiltrates, consistent with lymphocytic or giant

cell myocarditis. Specifically, it has been reported that CTLA-4 inhibition preferentially

results in giant cell myocarditis with a predominately CD4+ T cell infiltrate and PD-1

inhibition leads to lymphocytic myocarditis, with a predominately CD8+ T cell infiltrate.

Our manuscript discusses the latest literature surrounding ICI pathways and targets,

while detailing proposed mechanisms behind ICI mediated myocarditis.

Keywords: cardio-oncology, immune checkpoint inhibitor, immune-related adverse event, cardiovascular adverse

event, myocarditis

INTRODUCTION

Myocarditis is an illness caused by myocardial inflammation that can lead to heart failure (1). The
etiology ranges from infectious, such as viral or bacterial, to non-infectious, including autoimmune
and drug toxicity (1). Similarly, the clinical presentation is heterogeneous and can mimic other
pathologies, such as acute coronary syndrome (1–3). However, a diagnosis of fulminantmyocarditis
portends a grave prognosis with a high rate of fatality and serious morbidity due to electrical
instability and acute decompensated systolic heart failure, requiring circulatory support for
mechanical compromise (2).

Current treatment guidelines to manage myocarditis are similar to management of chronic
systolic heart failure, as prior immunosuppressive strategies have failed to show any significant
difference (2, 4). Heart failure treatments for myocarditis are aimed at preserving left ventricular
function and improving left ventricular remodeling (5). Chronic inflammation from myocarditis
can lead to myocyte death, fibrosis, and scarring, ultimately leading to a dilated cardiomyopathy
(5). In order to provide more effective treatments, mechanisms involved in the development of
myocarditis need to be understood. At the present time, targeted therapies for myocarditis are
lacking, in part due to a gap in understanding of the pathophysiology and precipitating factors
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involved in the development of myocarditis (1). A recently
published consensus highlights these deficiencies and while it
provides a template for potential therapies, strong mechanistic
data is still lacking (5).

The recent advent of immune checkpoint inhibitors (ICIs)
has highlighted a possibility of elucidating mechanisms behind
the development of these individual myocarditis subtypes. ICI
therapies have revolutionized cancer treatment and improved
survival in many oncological diseases such as melanoma of the
skin, non-small cell lung cancer, kidney cancer, bladder cancer,
head and neck cancers, and Hodgkin lymphoma (6). ICIs act
on T cells leading to immune system activation and subsequent
attenuation, if not amelioration, of cancer (7, 8). However,
60–80% of patients experience some degree of autoimmune
inflammatory responses due to a heightened immune response,
grouped under immune related adverse events, that can affect
almost any organ system (7, 9). Cardiovascular adverse events
(CVAEs) due to ICIs include arrhythmias, cardiomyopathies,
coronary artery disease, pericarditis, myocarditis and as we
identified recently, valvulitis (7, 10). Of the CVAEs, the most
common, approaching 45% of all CVAEs, and the condition that
poses the greatest threat on life, is myocarditis (7). Current data
estimate the prevalence of ICI-mediated myocarditis to range
from 0.06 to 2.4% (11). Additionally, recent studies have shown
that myocarditis has been presenting with other pathologies such
as myositis and myasthenia gravis, termed 3M (12, 13). The
mortality rate in the last cohort is estimated at 52% and is
largely driven by humoral response to ICI (14). Recent literature
has shown that ICI therapy leads to myocarditis, specifically
lymphocyticmyocarditis (LM) and giant cell myocarditis (GCM),
with distinct immune profiles (15–17). The objective of this
review is to shed light on the mechanism underlying the
development of ICI-mediated LM and GCM.

CURRENT PARADIGM OF POTENTIAL
MECHANISMS

ICI-mediated myocarditis may present in the form of LM as
well as GCM, and in order to better understand their potential
mechanisms, it is important to review the current knowledge
about mechanisms driving these pathologic findings.

Lymphocytic Myocarditis
LM is typically characterized by patchy infiltration of an array
of mononuclear cells, with a majority of T lymphocytes and
some macrophages (1, 18). Other immune related cells, such as
neutrophils, eosinophils, and plasma cells may be present, but
are not the prominent cell type (1). LM is further characterized
into acute and chronic LM based on immunopathology (18).
In acute LM, there is minimal fibrosis, however chronic LM is
characterized by fibrosis given the persistent inflammation (18).
Of note, in chronic LM, the lymphocytic infiltration still remains
in addition to fibrosis (18). Currently, the timing of transition
from acute to chronic LM is not well described and varies at the
individual level (18). Thus far, studies have found LM is due to
viral (coxsackie B virus and adenovirus being the most common)

and autoimmune etiologies (1, 18). The exact pathophysiology
of LM is not completely understood; however, current proposed
mechanisms have been attributed to an inflammatory response
following viral infection (19).

It has been identified that viral infection causes activation
of toll-like receptors which leads to an innate immune
response and upregulation of immune mediators (19). As
the inflammatory cascade continues, the acquired immune
system is eventually generated, leading to T cell activation
(19). In order for T cell activation to occur, viral antigen
must be presented via binding between the T cell receptor
and major histocompatibility complex (19, 20). If the viral
antigen peptide shares similarity to myosin, or other myocardial
antigens, the T cells may attack the myocardium, which is
known as molecular mimicry (19, 20). Through damage from
T cells, the myocardium exposes more antigens and provokes
further activation of toll-like receptors, perpetuating the immune
response (19). This continued inflammatory response engenders
B cell activation and production of cardiac autoantibodies,
leading to further myocardial inflammation and damage (19).
Studies have found that this pathologic immune response
is regulated by T helper 17 (Th17) cells and regulatory T
cells (19). Th17 cells lead to a proinflammatory state while
regulatory T cells lead to an immunosuppressive state and
are thus responsible for increasing the threshold of immune
cells in recognizing self-antigens (19). Demonstrating this effect,
research has shown that humans diagnosed with myocarditis
have higher ratios of Th17 to regulatory T cells in peripheral
blood, leading to proinflammatory cytokines and the recruitment
of inflammatory cells to the myocardium (19). Also, in animal
models, injection with regulatory T cells has been shown
to decrease inflammation in viral myocarditis (19). Despite
the implications of various pathways, a coherent immune-
pathological mechanistic understanding of LM is lacking.

Giant Cell Myocarditis
GCM is another histological subtype with a more severe
clinical course and worse prognosis (1). The average age at
diagnosis is 40 and approximately 20% of patients have an
autoimmune condition (19). Histology of GCM is comprised
of myocyte necrosis with T lymphocytes and multinucleated
giant cell derived from macrophages (1, 21). Eosinophils and
plasma cells may be found, but to a much smaller degree
(1). The pathophysiology of GCM is not fully understood, but
current evidence suggests an autoimmune etiology (22). The
initial support of an autoimmune etiology for GCM came from
basic science research where mice were injected with either
membranous proteins or cardiac myosin (22). In this study, only
the mice injected with cardiac myosin developed myocarditis
with histology showing myocardial necrosis and giant cells (22).
Thus, cardiac myosin was able to elicit an autoimmune-mediated
myocarditis, with histology consistent with GCM (22). Further
insight into the pathogenesis of GCM was offered with gene
expression analysis, which has helped to characterize the specific
immune response involved in GCM (23). In a study comparing
gene expression of GCM vs. normal heart tissue samples, the
authors found a large number of genes T cell activation genes
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upregulated in GCM samples (23). More specifically T helper
type 1 (Th1) cells, were involved in precipitating the immune
response in GCM (23). The predominantly T cell response
in GCM is different from LM, where autoimmune damage
in the latter occurred in part through B cells and cardiac
autoantibodies (19).

ICI SIGNALING PATHWAYS

ICIs were developed under the premise that cancer cells escape
the immune system by exploiting negative feedback mechanisms
on the surface of T cells (6). ICI prevents engagement of these
pathways and harnesses the power of the immune system to
kill cancer cells (6). In order to understand the mechanisms by
which ICIs work, it is important to understand the cytotoxic
T-lymphocyte antigen 4 (CTLA-4) and programmed cell death
protein (PD-1) - program death cell protein ligand (PD-L1)
signaling pathways (Figure 1) (24).

T cell activation is a complex and dynamic process of
inhibitory and stimulatory signaling (7, 24). In order for T
cells to become activated, co-receptors on T cells must interact
with major histocompatibility complexes located on antigen
presenting cells (7, 24). CTLA-4 and PD-1 on T cells bind
to B7 and PD-L1 on antigen presenting cells, respectively (7,
24). This interaction results in an inhibitory signal, preventing
T cell activation and proliferation (7, 24). Thus, by blocking
CTLA-4, PD-1, or PD-L1, T cells are activated to ward off
cancer cells (7, 24). Until recently, there have been seven FDA
approved ICIs: ipilimumab, monoclonal antibody against CTLA-
4, pembrolizumab, nivolumab and cemiplimab, monoclonal
antibodies against PD-1, and atezolizumab, durvalumab, and
avelumab, monoclonal antibodies against PD-L1 (Table 1) (25,
28). Earlier this year, the FDA granted breakthrough therapy
designation of tiragolumab, an anti-T cell immunoreceptor with
Ig and immunoreceptor tyrosine-based inhibitory motif domains
(TIGIT), for use in PD-L1-high non-small cell lung cancer
(Table 1) (31, 32). A thorough review of the ICI mediated
mechanisms can be found by Wei et al. (33).

ICI-Mediated Myocarditis Mechanisms
To date, the exact mechanism of the development of myocarditis
from ICI therapy is not understood (24, 34). However, novel
research has focused on better elucidating the mechanisms
of ICI-mediated myocarditis (17). Wei et al. provided insight
on distinct cellular mechanisms of anti-CTLA-4 and anti-PD-
1 on human melanoma and murine tumor models (17). The
authors showed that anti-PD-1 therapies resulted in expansion
of exhausted-like tumor infiltrating CD8+ T cells (17). This is
in line with other studies which have also shown that dynamic
expansion of CD8+ T cells takes place with PD-1 inhibition
(35, 36). Conversely, anti-CTLA-4 therapies result in expansion
of Inducible T cell CO-Stimulator Th1-like CD4 effector as
well as exhausted-like CD8+ T cells (17). The expansion of
Inducible T cell CO-Stimulator CD4+ T cells has been seen with
CTLA-4 inhibition in various tumor subtypes, also confirming
the preclinical findings of Wei et al. (17, 37–39). These results

illustrate how anti-CTLA-4 and anti-PD-1 therapies results in
unique cellular mechanisms (17).

Preclinical research has shown that CTLA-4 and PD-1 play a
key role in peripheral immune tolerance, and disruption leads to
activation T lymphocytes targeting cardiac antigens (24). Murine
studies have shown that antibodies against CTLA-4 or CTLA-
4 deficient murine models both result in the clinical picture of
myocarditis (40–42). Similarly, murine models deficient in PD-
1 and PD-L1 lead to myocarditis and dilated cardiomyopathy as
well (43–45). In fact, one study investigating PD-1 knockout mice
found myocarditis in 96% of the murine models (18). Another
study delivered cardiac troponin antibodies to murine models
deficient in PD-1, leading to a dilated cardiomyopathy, further
highlighting the immunoregulatory significance of PD-1 and PD-
L1 (46). This is of grave concern as T cells that escape negative
selection, andmay have reactivity tomyocardial tissue, are now at
a lower threshold for activation, leading tomyocardial infiltration
(18, 24).

In addition to murine models, there have been clinical
studies examining immune profiles of patients with ICI-
mediated myocarditis. Reuben et al. described a case of a
patient with metastatic melanoma treated with ipilimumab
who developed steroid refractory GCM (16). Immune analysis
of post-mortem cardiac tissue by immunohistochemistry, T
cell receptor sequencing, and gene expression profiling were
conducted (16). Autopsy demonstrated a myocardial infiltrate
composed of lymphocytes, multinucleated giant cells, and some
eosinophils (16). The myocardium was cultured and negative for
any infectious etiology. Immunohistochemical staining revealed
predominantly CD4+ T cells in the heart (16). Forkhead box
protein P3 (FoxP3) staining was used to identify regulatory T
cells and CD45RO was used to identify antigen-experienced T
cells (16). FoxP3 and CD45RO quantification showed few FoxP3
regulatory T cells in the heart, liver and lung metastasis with
CD45RO expression predominant in the heart (16). These results
demonstrate that CD4+ T cells were predominant in GCM
with a concomitant increase expression of CD45RO+ cells (16).
Thus, ipilimumab resulted in CD4+ T cell infiltration into the
myocardium, resulting in the development of GCM (16).

Conversely, Johnson et al. described two cases of patients
with melanoma treated with combination of ipilimumab and
nivolumab who developed fatal LM (15). Both patients had
immune infiltration affecting only the cardiac and skeletal muscle
cells (15). Postmortem evaluation of these two patients revealed
myocardium infiltrates with both CD4+ and CD8+ T cells
(Figure 2) (15). Similarly, Laubli et al. discussed a case of
patient with melanoma who was treated with pembrolizumab
resulting in myocarditis (26). Infectious workup was negative
and myocardial biopsy showed lymphocytic infiltration with
predominantly CD8+ T cells (26). Thus, PD-1 inhibitor alone
or in combination with CTLA-4 inhibitor mediates LM primarily
comprised of CD8+ T cells; with immune profiling distinct from
GCM patients (15, 26).

The above preclinical and clinical studies highlight that
CTLA-4 inhibition may cause development of GCM with
predominantly CD4 infiltration while PD-1 inhibition
preferentially results in the development of LM with
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FIGURE 1 | ICI Cell Signaling Pathway and Targets. Solid arrow depicts how binding of tumor cell PD-L1 to PD-1 or B7 to CTLA-4 leads to down-regulation of T-cell

activity. Dotted arrow depicts how blocking of T-cell anergy receptor ligands (B7 and PD-L1) results in T cell activation and tumor killing.

TABLE 1 | Immune checkpoint inhibitors and molecular targets.

Immune checkpoint

inhibitor

Molecular target Associated myocarditis immune profile

Ipilimumab (16, 25) CTLA-4 GCM, CD4+ T cell infiltration

Pembrolizumab (25, 26) PD-1 LM, CD8+ T cell infiltration

Nivolumab (25, 27) PD-1 LM, CD8+ T cell infiltration

Cemiplimab (28) PD-1 LM, CD8+ T cell infiltration

Atezolizumab (25, 29) PD-L1 LM, CD8+ T cell infiltration

Durvalumab (25, 30) PD-L1 LM, CD8+ T cell infiltration

Avelumab (25) PD-L1 LM, CD8+ T cell infiltration

Tiragolumab (31, 32) TIGIT Not documented

predominantly CD8 infiltration. Hence, different ICI
combinations precipitate distinct forms of myocarditis with
a unique pattern of immune infiltration, a mechanism which
may not necessarily translate into non-ICI myocarditis. This
differential T cell infiltrative response to CTLA-4 inhibition
PD-1 inhibition could be in part due to cytokine activation (47).
Chemokines help with recruitment and T cell trafficking, and
thus dictate the immune profiles of inflammatory processes (47).
C-X-C Motif Chemokine Receptor 3 (CXCR3) is involved in
several pathways, including mitogen-activated protein (MAP)
kinases and phosphoinositide 3-kinase (PI3K)/ protein kinase
B (Akt), leading to activation, differentiation, and recruitment
of CD4+ T cells (48, 49). CXCR3 appears to favor recruitment
of CD4+ T cells compared to CD8+ T cells (50). Additionally,
increased expression of CXCR3 and its chemokine ligands have
been found in GCM from CTLA-4 inhibition (16). Conversely,
C-C chemokine receptor type 5 (CCR5) has been shown to
recruit CD8+ T cells in response to chemokine ligand 3 (CCL3)

and chemokine ligand 4 (CCL4), a mechanism that has also been
found in other cardiovascular conditions (51, 52).

Similar recruitment has been demonstrated in Chagas disease,
which is caused by Trypanosoma cruzi (52). Histologically, the
non-ischemic cardiomyopathy in Chagas disease is characterized
by a predominantly CD8+ T cell infiltrate (19, 52). In a
murine study of Chagas disease, CCR5 and its chemokine
ligands aided in T cell migration to cardiac tissue (52).
Another example highlighting the importance of CCR5 in
CD8+ T cell recruitment is Kawasaki disease, which is a
fatal vasculitis in children that can lead to coronary artery
aneurysms (53, 54). Although the exact mechanism of Kawasaki
disease is not clear, histology is consistent with a predominantly
CD8+ T cell infiltrate (54). Further, genetic haplotypes that
result in loss of CCR5 expression have been shown to be
inversely related to Kawasaki disease incidence (53). These
findings further illustrate the role of CCR5 in CD8+ T cell
recruitment (53). Thus, CD4+ versus CD8+ T cell infiltrate
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FIGURE 2 | Myocardial biopsy depicting lymphocytic myocarditis in a patient

who received both nivolumab and ipilimumab. (A, B) Immunostaining is

predominantly CD8+, (C) with CD4+ staining and (D) hematoxylin and

eosin staining.

could be partially explained by differential chemokine response,
specifically CXCR3 versus CCR5 in development of GCM or
LM, respectively.

In addition to chemokine recruitment, studies have found the
immunoproteasome to lead to CD4+ T cell recruitment (55).
In a study by Bockstahler et al., murine models of autoimmune
myocarditis were treated with an immunoproteasome
inhibitor (55). Here, the immunoproteasome was found to
increase cytokine production, which led to a decrease in T
regulatory cells and differentiation of CD4+ T cells to Th1
and Th17 cells (55). The authors found that blocking the
immunoproteasome led to a significant reduction in the
autoimmune response and subsequent myocarditis (55).
Thus, given the predominantly CD4+ T cell response,
the immunoproteasome may play a key role in the
development of GCM and myocarditis caused by ICIs directed
at CTLA-4.

While the above pre-clinical and clinical data demonstrate
the complex interplay between ICI, chemokine signaling,
and distinct immune myocardial infiltrates, the molecular
mechanism behind injury to cardiomyocytes is thought to be
due to a shared antigen (34). As mentioned above, Johnson
et al. discussed two cases of melanoma treated with ICI who
developed fatal myocarditis (15). Interestingly, the affected
tissues were cardiac muscle, skeletal muscle, and tumor, all
with T cell infiltrates that had similar T cell receptor homology
(15). Additionally, histology of the tumor samples from the
two patients demonstrated desmin and troponin, which are
antigens found in muscle, further illustrating the possibility
of a shared antigen leading to ICI mediated myocarditis
(15, 34). Recent case reports have shown that anti-striated
muscle antibody might be a key factor as the elevation
of this antibody and subsequent decrease with intravenous
immunoglobulin (IVIG) can result in improvement in clinical
outcomes (12).

ICI Mediated Myocarditis Clinical
Characteristics
With the expanding use of ICIs, data on the clinical features of
ICI mediated myocarditis continues to expand (56). Mahmood
et al. conducted a retrospective case-control study comparing 35
cases of myocarditis due to various ICIs to 105 control patients
who received ICIs, but did not develop myocarditis, from 2013
to 2017 (56). Data from this study showed that the average
time from initiation of ICI to myocarditis presentation was 34
days, 94% of cases had troponin elevation, 89% of cases had an
abnormal electrocardiogram, 51% of cases had a normal ejection
fraction, and 46% of cases had major adverse cardiac events (56).
Interestingly, of the 46% of cases that developed major adverse
cardiac events, 38% had a normal left ventricular ejection fraction
(56). Compared to non-ICI mediated myocarditis cases, data
from this study suggest that a higher percentage ICI mediated
myocarditis cases develop a more severe course, and of those that
develop a fulminant course, a higher percentage have a normal
ejection fraction (56–58).

Also of growing interest is the association of specific ICI
therapies to myocarditis prevalence and outcomes. Studies have
shown that combination therapies lead to higher rates of
myocarditis, as well as worse outcomes (59). For example, one
study showed that nivolumab (PD-1 inhibitor) and ipilimumab
(CTLA-4 inhibitor) had almost a 5 times greater incidence
of myocarditis compared to single agent nivolumab (59). In
another study, Moslehi et al. examined 101 cases of ICI
mediated myocarditis, and mortality rates were significantly
higher among individuals who received combination ICI therapy
versus monotherapy (67 vs. 36%, respectively) (60). Further,
Chen et al. conducted a retrospective study using FDA Adverse
Event Reporting System and found a stronger association of
PD-1 inhibitors and myocarditis compared to CTLA-4 and PD-
L1 inhibitors (61). As more data becomes available, we will
have a better understanding on the prevalence and outcomes of
myocarditis with specific ICI therapy.

IMPLICATIONS OF THERAPY

Current recommendations for ICI mediated myocarditis
treatment are based on expert opinion and case series given that
clinical trials and prospective studies have not occurred at this
time (62). Once ICI mediated myocarditis is suspected, the first
step is to hold further ICI therapy, followed by administering
corticosteroids (62). The optimal dose of steroids has not been
established; however, data currently shows that higher doses of
steroids lead to less major adverse cardiac events (56). Current
recommendations suggest starting treatment with prednisone 1–
2 mg/kg and treatment with 500–1000mg of methylprednisolone
for severe or refractory cases (59, 63). If there is no response to
steroid therapy, infliximab or mycophenolate mofetil are further
immunosuppressive medications that can be used (63). More
recently, translational research on the use of abatacept by Salem
et al. has been reported (64, 65). Abatacept is an agonist toward
CTLA-4, preventing costimulation of T cells, and was used in
a case of steroid refractory nivolumab induced myocarditis,
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TABLE 2 | Select studies highlighting use of various immunosuppression strategies in myocarditis.

Study Patients Criteria Immunosuppression Outcomes Conclusion

The Myocarditis Treatment

Trial (4)

111 Histopathological diagnosis

and Left Ventricular Ejection

Fraction (LVEF) <0.45

Prednisone with

cyclosporine or azathioprine

Change in LVEF 28 weeks No statistical difference in

EF or survival

GCM Treatment Trial (66) 12 Biopsy-proven GCM with

<3 months of symptoms

Steroids and cyclosporine

+/– muromonab-CD3

EMB and LVEF in 4 weeks Statistically significant

decrease in inflammatory

cells and no statistical

difference in EF

Rabbit anti-thymocyte

globulin (RATG) at Harefield

Hospital (67)

6 Histopathological diagnosis RATG + methylprednisolone Mean LVEF improvement Mean LVEF improvement

29%

Intervention in Myocarditis

and Acute Cardiomyopathy

(IMAC) trial (68)

62 Histopathological diagnosis

(cellular inflammation not

necessary, GCM excluded),

LVEF <0.4, <6 months of

symptoms without CAD or

valvular disease

IVIG LVEF change at 6 and 12

months

No statistical difference in

change in EF compared to

placebo

resulting in a lifesaving treatment (64, 65). There is a strong
need for prospective treatment studies and immunosuppressive
strategies that target the underlying mechanism behind the
development of ICI mediated myocarditis.

Based on the current understanding of the pathogenesis and
immune profiles of both LM and GCM, potential mitigating
strategies exist (Table 2). Perhaps the most important study
in the consortium of trials was the Myocarditis Treatment
Trial conducted in 1995 (4). After evaluation, 111 patients
were enrolled in this trial with a histopathological diagnosis
of myocarditis and a left ventricular ejection fraction of <0.45
to either receive conventional therapy alone or combined
with a 24-week regimen of immunosuppressive therapy (4).
Immunosuppressive therapy consisted of prednisone with either
cyclosporine or azathioprine (4). The primary outcome measure
was a change in the left ventricular ejection fraction at 28 weeks
(4). After 28 weeks, there were no changes in the primary
outcome (4). Additionally, no change in survival rates were
noted (4). Unfortunately, like the Myocarditis Treatment Trial,
other trials that have looked at immunosuppressive therapies
lacked the knowledge of underlying etiologies of the enrolled
myocarditis patients (69–72). Therefore, a comprehensive
immunosuppressive guideline as it pertains to myocarditis
remains to be determined.

In a prospective trial involving 12 subjects with GCM,
immunosuppression led to decreased cellular myocardial
inflammation (66). The study used prednisone and cyclosporine,
with some subjects receiving muromonab-CD3 in addition (66).
Muromonab-CD3 is a monoclonal antibody that targets CD3,
preventing T cell proliferation (66). Thus, Muromonab-CD3
has the potential to dampen the predominantly a CD4+ T cell
response in GCM (22, 66). Since its initial approval in 1986,
Muromonab has been discontinued given other therapeutic
options with better side effect profiles (73). Another method
of suppressing the T cell response is with anti-thymocyte
globulin, which consists of rabbit or horse derived polyclonal
IgG antibodies against human T cells (67, 74). In a retrospective

study of 6 patients with GCM who were treated rabbit anti-
thymocyte globulin in conjunction with steroids, there was an
average improvement in left ventricular ejection fraction of
29% (67). Additionally, five of the six patients in the study were
discharged home from the hospital and at follow up of about
1,100 days, three patients were alive without recurrence and had
an average left ventricular ejection fraction of 55% (67). The
above therapies are the first to provide a mechanistic window
of potential strategies for attenuating and ameliorating GCM,
which is of incredible value as the average survival without
transplant or immunosuppression in GCM is 12 weeks (75).
Similar therapeutic strategies can be applied to LM in order
to mitigate the CD8+ T cell response. Success has been seen
in Kawasaki disease, mentioned above, where IVIG is used in
acute treatment and has been found to lower the incidence
of coronary artery aneurysms by 20% (76). The mechanism
behind IVIG is thought to be upregulation of Interleukin-
10 (IL-10) and regulatory T cells, suppressing the immune
response (76). Thus, IVIG is used to dampen the CD8+ T cell
inflammatory response in Kawasaki disease and has the potential
to mitigate the CD8+ T cell inflammatory response seen in
LM (76). However, the Intervention in Myocarditis and Acute
Cardiomyopathy (IMAC) trial, a prospective placebo-controlled
trial, investigated 62 patients with less than a 6-month onset of
dilated cardiomyopathy and found no additional improvement
in ejection fraction with IVIG compared to placebo (68).
While results were equivocal, further research could investigate
alternate, and possibly, more prolonged dosing schedules of
IVIG (68).

CONCLUSIONS

Although several causes of myocarditis have been established,
etiology-specific treatment strategies are limited (1, 2).
Additionally, a critical void exists in understanding the
mechanistic pathway involved in the development of
myocarditis. The innovation of ICI has provided insight to
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understanding the immune profiles involved in myocarditis.
Specifically, studies have found CTLA-4 inhibition causes GCM
with a predominately CD4+ T cell infiltrate. Conversely,
PD-1 inhibition leads to LM, with a predominately
CD8+ T cell infiltrate. These distinct immune profiles
from CTLA-4 and PD-1 inhibition offer opportunities to
characterize the mechanism behind ICI-mediated myocarditis.
Further research is needed to explore T cell repertoire and
chemokine patterns involved that precipitate different forms
of myocarditis. These studies could result in promising

new avenues of therapeutic targets in the field of ICI and
non-ICI-mediated myocarditis.
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