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Background: A compromised base excision repair (BER) promotes carcinogenesis by accumulating oxidative DNA-damaged
products as observed in MUTYH-associated polyposis, a hereditary colorectal cancer syndrome marked by adenomas and cancers
with an accumulation of 8-oxoguanine. Remarkably, DNA global demethylation has been shown to be mediated by BER,
suggesting a relevant interplay with early colorectal tumourigenesis. To check this hypothesis, we investigated a cohort of 49
adenomas and 10 carcinomas, derived from 17 MUTYH-associated polyposis patients; as adenoma controls, we used a set of 36
familial adenomatous polyposis and 24 sporadic polyps.

Methods: Samples were analysed for their mutational and epigenetic status, measured as global LINE-1 (long interspersed
nuclear element) and gene-specific LINE-1 MET methylation by mass spectrometry and pyrosequencing.

Results: MUTYH-associated polyposis adenomas were strikingly more hypomethylated than familial adenomatous and sporadic
polyps for both DNA demethylation markers (P¼ 0.032 and P¼ 0.007 for LINE-1; P¼ 0.004 and Po0.0001 for LINE-1 MET,
respectively) with levels comparable to those of the carcinomas derived from the same patients. They also had mutations due
mainly to KRAS/NRAS p.G12C, which was absent in the controls (Po0.0001 for both sets).

Conclusions: Our results show that DNA demethylation, together with specific KRAS/NRAS mutations, drives the early steps of
oxidative damage colorectal tumourigenesis.

Reactive oxygen species (ROS) can have a pivotal role in colorectal
tumourigenesis by promoting the accumulation of DNA oxidised
bases, mainly 8-oxoguanine (8-oxodG), preferentially repaired by a
postreplicative DNA glycosylase belonging to the DNA base excision
repair (BER), MUTYH. This enzyme, expressed in the nucleus and
mitochondria, specifically counteracts oxidative stress-induced DNA
damage by removing adenine misincorporated opposite to 8-oxodG
during DNA replication (Ohtsubo et al, 2000).

The involvement of the 8-oxodG:A mispairs in colorectal
tumourigenesis is demonstrated by the high risk of developing

colorectal cancer (CRC) in patients affected by MUTYH-associated
polyposis (MAP), a recessive inherited polyposis linked with
biallelic germline mutations of MUTYH (Al-Tassan et al, 2002).
The MAP phenotype resembles that of APC-linked attenuated
familial adenomatous polyposis (AFAP) with the appearance
of a limited number of adenomas (generally 30–100) in the fourth
to fifth decade of life. However, unlike AFAP, B60% of MAP
patients show colorectal cancer at presentation (Nieuwenhuis
et al, 2012). MUTYH-associated polyposis carcinogenesis displays
peculiar molecular features that characterise disease progression.
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Chromosomal instability (CIN) is detectable during the early stages
in MAP tumours (Cardoso et al, 2006) and the somatic molecular
fingerprint of this syndrome is an excess of KRAS c.34G4T
transversions, due to the failure of the impaired MUTYH to repair
the mismatches induced by the 8-oxoG variant base (Venesio
et al, 2013).

Globally acquired DNA hypomethylation is recognised to be an
early causal event in colorectal carcinogenesis (King et al, 2014). In
addition to the activation of oncogenes, this epigenetic alteration
preferentially affects the DNA’s repetitive sequences, such as long
interspersed nuclear elements (LINE-1 or L1), which represent
17% of the human genome, and leads to the onset of the CIN
phenotype (Baba et al, 2010). Over a longer time frame, the
hypomethylation-dependent inappropriate expression of hetero-
chromatic sequences and aneuploidy can contribute to the
progression of CRCs (Kitkumthorn and Mutirangura, 2011).

DNA demethylation processes were reported to interact with
the BER system by different mechanisms including oxidative
demethylation, substitution of methylated cytosine and deamina-
tion of 5-methyl cytosine (Niehrs, 2009).

Some studies describe a correlation between LINE-1 hypo-
methylation and colorectal carcinogenesis, reporting an association
with clinical, pathological and molecular features (Baba et al, 2010;
Sunami et al, 2011). More recently, LINE-1 hypomethylation was
recognised as an important feature of early-onset CRCs and a
prognostic biomarker for CRCs with a distinct molecular subtype
(Ogino et al, 2008; Antelo et al, 2012; Sahnane et al, 2015). Among
the specific genes potentially altered by LINE-1 hypomethylation,
the MET oncogene contains a LINE-1 sequence in its second
intron whose antisense promoter can drive the transcription of a
chimeric isoform of the MET gene, LINE-1 MET or L1-MET
(Weber et al, 2010; Wolff et al, 2010; Hur et al, 2014; Zhu
et al, 2014).

To define the early genetic and epigenetic features in colorectal
premalignant lesions characterised by oxidative DNA damage and
to assess their potential involvement in driving colorectal
carcinogenesis, we investigated a cohort of 49 colorectal adenomas
and 10 carcinomas derived from 17 MAP subjects and a control set
of 36 familial adenomatous polyposis (FAP/AFAP) and 24
sporadic polyps for their mutational and DNA methylation status.

MATERIALS AND METHODS

Patients and specimens. The study cohort consisted of 17 MAP
patients (M1–M17; 9 females, 8 males; median age of 47 years,
range 39–79 years) carrying different biallelic MUTYH germline
mutations, 17 FAP/AFAP subjects (F1–F17; 10 females and 7
males; median age of 37 years, range 21–61 years) with different
APC germline alterations and 21 cases (S1–S21; 10 females and 11
males; median age of 67 years, range 57–84 years) with sporadic
colorectal adenomas (Supplementary Tables S1–S4). After genetic
counselling, MAP and FAP/AFAP patients underwent MUTYH
and APC germline mutation analysis. Germline mutations are
reported in Supplementary Tables S1 and S2-–S4. Sixteen out of 34
MUTYH mutations were the most common pathogenic p.Y179C
and p.G396D; 10 were truncating and 8 were missense whose
pathogenicity was checked in the Leiden Open Variation Database
(http: //www.lovd.nl/MUTYH). MUTYH mutations have been
proven to be biallelic by family segregation. For the sporadic cases,
subjects were chosen among those individuals who had undergone
the endoscopic screening without a previous report of adenoma
detection. In addition, familiarity for polyposis or CRC was
excluded according to their clinical history by interview. The
present study was carried out according to the research rules
of our institutional medical ethical committees on human

experimentation, and appropriate written informed consent was
collected from all individuals included in the analysis.

All patients were of Italian origin and their corresponding tissue
samples were collected from the files of the Department of
Pathology of the Ospedale di Circolo-University of Insubria,
Varese, and from the archives of the Pathology Unit of Candiolo
Cancer Institute (FPO-IRCCS).

Overall, we analysed 49 adenomas and 10 carcinomas from
MAP patients, 36 adenomas from FAP/AFAP subjects and 24
polyps from sporadic individuals. In most of the MAP and FAP
cases, multiple adenomas from the same patient were investigated.
For MAP patients, we could analyse adenomas and carcinomas
derived from the same five subjects (cases M1, M6, M16 with
adenomas and one carcinoma each, and cases M4 and M9 with
adenomas and two carcinomas each), only adenomas in nine cases
(M2, M3, M5, M7, M8, M10, M12, M14 and M15) and only
carcinoma in three patients (M11, M13 and M17) (Supplementary
Tables S1–S4). The histopathological revision was performed by an
expert pathologist (C.R.) according to the WHO classification of
colorectal tumours (Hamilton et al, 2010). High-grade dysplasia
was observed in 7% of MAP adenomas, 6% of FAP/AFAP
adenomas and 17% of sporadic adenomas, respectively. The
remaining cases showed low-grade dysplasia. A tubular architec-
ture was observed in 71 adenomas (30 MAP, 27 FAP/AFAP and 14
sporadic polyps), while 38 samples were tubulovillous (19 MAP, 9
FAP/AFAP and 10 sporadic). Molecular analyses were performed
on formalin-fixed, paraffin-embedded (FFPE) tissue sections using
three representative 8-mm-thick sections of tissue samples. The
pathologist selected adenoma and carcinoma areas with more than
50% of dysplastic or tumour cells. DNA was extracted after manual
dissection using a QIAamp DNA FFPE Tissue Kit (Qiagen, Hilden,
Germany) according to the manufacturer’s protocol and quantified
using the Qubit 2.0 Fluorimeter (Life Technologies/Thermo Fisher
Scientific, Wilmington, DE, USA) following the protocol of High
Sensitivity DNA Kit (Life Technologies, Eugene, OR, USA).

Mutational analyses. All the 109 adenomas and the 10 MAP
adenocarcinomas were checked for mutations in KRAS, BRAF,
NRAS and PIK3CA genes using the mass spectrometry matrix-
assisted laser desorption ionisation time of flight method with the
MassARRAY System (Agena Bioscience, Hamburg, Germany) with
Myriapod Colon Status (Diatech Pharmacogenetics, Jesi, Italy).

L1 and L1-MET methylation studies. The methylation status of
global and local LINE-1 sequences was evaluated by bisulfite-PCR
and pyrosequencing in 15 samples of histologically normal colonic
mucosa derived from healthy individuals obtained from the files of
the Department of Pathology of Ospedale di Circolo-University of
Insubria (Supplementary Tables S5), and in all MAP, FAP/AFAP,
sporadic adenomas and MAP carcinomas. DNA bisulfite conver-
sion was performed using the Epitect Kit (Qiagen, Hilden,
Germany) according to the manufacturer’s instructions. Global
LINE-1 methylation status was assessed through the quantification
of the mean methylation percentage of four consecutive CpG sites
in the LINE-1 promoter region (GenBank accession number:
X58075), as reported previously (Yang et al, 2004; Stefanoli et al,
2014). Intragenic levels of LINE-1 methylation were analysed using
the L1-MET assay: the forward PCR primer (50-GAGATGAATT-
TAGTATTTTAGATGGAAATG-3) was located inside the LINE-1
promoter, and the reverse primer (50-biotin-ACAACTCCCATC-
TACAACTCCCA-30) was designed within the MET gene intron
between exons 2 and 3. The sequencing primer (50-TTTAGATG-
GAAATGTAGAAATTAT-30) amplified a product that includes
three CpG sites whose mean methylation percentage was
quantified (GenBank accession number: NG_0089961). Each
sample was loaded two times for pyrosequencing and fully
methylated and unmethylated DNA (Millipore, Billerica, MA,
USA) were used as positive and negative controls in each

BRITISH JOURNAL OF CANCER DNA hypomethylation in compromised BER adenomas

794 www.bjcancer.com | DOI:10.1038/bjc.2017.9

http: //www.lovd.nl/MUTYH
http://www.bjcancer.com


experiment. Run-run variation was 2.1% for each assay and high-
resolution melt analysis was performed to validate the pyrosequen-
cing results.

Statistical analyses. Data analysis was carried out with the
GraphPad Prism V5.0 software (GraphPad Software, La Jolla,
CA, USA). Association analyses were performed using the Fisher’s
exact test and the independent-sample t-test, whereas Pearson’s
correlation coefficient (r) was used to measure correlation.

RESULTS

Gene mutation analyses. The cohort was preliminary charac-
terised by the mutational status of the most frequently altered
colorectal cancer genes, namely KRAS, NRAS, BRAF and PI3KCA.
As expected for the KRAS gene (Venesio et al, 2013), alterations
were more common in MAP adenomas (37%) compared with that
in FAP/AFAP (23%) or sporadic (25%) polyps, whereas NRAS
mutations were observed in only 8% of MAP adenomas and no
mutations were found in BRAF and PI3KCA genes. Taking into
consideration all the alterations, the frequency of MAP-mutated
adenomas increased up to 45% (P¼ 0.042 and P¼ 0.1, with respect
to FAP/AFAP and sporadic polyps) (Figure 1A and Supplementary
Tables S1–S3).

The spectrum of KRAS/NRAS mutations was different in the three
sets of premalignant lesions: 77.5% of the MAP-mutated adenomas
exhibited the c.34G4T transversion in KRAS or NRAS. In particular,
this substitution was observed in 83% of KRAS mutations and 50% of
NRAS mutations in MAP adenomas. By contrast, this mispair was
totally absent in FAP/AFAP and sporadic groups (Po0.0001), which
were both enriched for KRAS p.G12V and p.G12D mutations
(Figure 1B and Supplementary Tables S1–S3).

As for the mutational distribution, 79% of the MAP patients
with adenomas showed at least one mutated polyp compared with
35% of the FAP/AFAP (P¼ 0.029) and 29% of the sporadic cases
(P¼ 0.006) (Figure 2). In particular, 9 out of 14 MAP patients
exhibited one or more KRAS/NRAS p.G12C-mutated lesions
(Supplementary Table S1).

KRAS/NRAS alterations were found in both tubular and
tubulovillous MAP adenomas. However, tubular polyps of this
group were more frequently mutated than FAP/AFAP or sporadic
adenomas with the same morphology (P¼ 0.006 and P¼ 0.035,
respectively; Supplementary Figure S1).

To assess the role of KRAS/NRAS mutations in MAP
progression, 10 CRCs from 8 MAP patients were also profiled
for the status of the same genes analysed in adenomas
(Supplementary Table S4). Mutations were detected in 90% of
the examined cases and were mostly due to KRAS p.G12C subs-
titution (89% of the mutated samples; Supplementary Figure S2).
None of the carcinomas exhibited NRAS mutations, while five
MAP patients (M1, M4, M6, M9 and M16) showed KRAS p.G12C
in both adenomas and carcinomas. In addition, three CRCs (M1,
M6 and M17) were mutated for KRAS p.G12C and PI3KCA
(p.Q546K or p.R38H) (Supplementary Table S4).

DNA hypomethylation profiles. To assess a potential relationship
between a compromised BER mechanism and a change in the
DNA methylation of MAP lesions, we carried out LINE-1 and L1-
MET assays on all the adenomas and MAP carcinomas using
normal colonic mucosa samples as controls.

In line with previous reports (Baba et al, 2010; Sahnane et al,
2015), the percentage of LINE-1 methylation in normal mucosa
ranged from 60% to 70% with both assays (Figure 3). By using the
lowest methylation value of normal mucosa (60%) as the
methylation threshold, MAP adenomas exhibited a significantly
higher frequency of hypomethylated samples (38.8% and 51.1% of
cases with LINE-1 and L1-MET analyses, respectively) compared

with FAP/AFAP adenomas (16.7% and 18.2% of cases; P¼ 0.032
and P¼ 0.004, respectively) and to sporadic polyps (8.3% and 4.2%
of samples; P¼ 0.007 and Po0.0001, respectively) (Figure 3).
A correlation between LINE-1 and L1-MET methylation levels was
also assessed (r¼ 0.6; Supplementary Figure S3). Considering the
distribution of LINE-1 and L1-MET percentages in the adenomas
of each patient, methylation variability was higher in MAP cases
than in FAP/AFAP and sporadic patients (Figure 4). Notably, we
found that at least one hypomethylated adenoma was detected in
most (13 of 14) of the MAP patients with respect to FAP/AFAP
(5 of 17) and sporadic (3 of 21) subjects. This finding was observed
using the LINE-1 (86% of MAP vs 23.5% of FAP/AFAP and 9.5% of
sporadic patients; P¼ 0.001 and Po0.0001, respectively) and/or the
L1-MET assay (79% of MAP vs 19% of FAP/AFAP and 5% of sporadic
patients; P¼ 0.003 and Po0.0001) (Figure 4). Moreover, in the cases
with CRCs (M1, M4, M6, M9 and M16), the mean methylation level
of adenomas was mostly comparable to that of each patient’s tumour
(P¼ 0.4 for LINE-1 and P¼ 0.5 for L1-MET; Figure 4).

With regards to the histology, MAP adenomas with tubular
architecture were more frequently hypomethylated than FAP/
AFAP (P¼ 0.1 for LINE-1 and P¼ 0.02 for L1-MET analysis) or
sporadic polyps with the same morphology (P¼ 0.039 for LINE-1
and P¼ 0.015 for L1-MET assays). No statistical association was
found between the hypomehylation level and the site or the
dysplasia grade of MAP adenomas.

Although the demethylation was not directly associated with the
presence of KRAS/NRAS p.G12C mutations, we found the co-
occurrence of mutations and hypomethylation in the same
adenoma in several MAP patients (M1, M3, M4, M6, M9 and
M10 for LINE-1; M4, M5, M6, M9 and M16 for L1-MET), and at
least one mutated and/or one hypomethylated polyp was found in
all cases (Figure 4).

DISCUSSION

Oxidative DNA damage is considered a way to promote
tumourigenesis and we chose to study colorectal adenomas derived
from patients affected by a defective BER system as an appropriate
model to investigate the molecular mechanisms underlying this
type of carcinogenesis.

In this study, comparing adenomas from a novel cohort of
MAP, FAP/AFAP and sporadic patients, we definitely confirmed
that the type and frequency of MAPK gene mutations can
substantially vary in different models of colorectal carcinogenesis;
moreover, in line with previous reports (Jones et al., 2002; van
Puijenbroek et al, 2008; Venesio et al, 2013; Aimé et al, 2015), we
support the KRAS p.G12C mutation as the somatic hallmark of
oxidative DNA damage in MAP disease.

In our cohort, the KRAS p.G12C mutation was by far the most
frequent alteration in MAP polyps, and never detectable in
comparable lesions from the other subsets. KRAS p.G12C was
frequently identified in both adenomas and carcinomas derived
from the same MAP patients, suggesting that the adenoma cell
clones carrying this specific mutation are positively selected for the
adenoma to carcinoma transition. As a consequence, the detection
of these alterations in MAP adenomas could be used as a molecular
marker for discriminating those patients at higher risk of
developing colorectal cancer (Venesio et al, 2013; Rashid et al,
2015). Moreover, the recent development of KRAS p.G12C-specific
inhibitors potentially opens new promising prospects for the
treatment of patients affected by CRC with this somatic alteration
(Ostrem et al, 2013; Patricelli et al, 2016).

Our findings reflect the well-known repair specificity of the
MUTYH enzyme and the increased susceptibility to oxidative
damage at the first base of the GGT sequence in KRAS codon 12.
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The peculiarity of the p.G12C mutation in this genomic region is
further supported by the same transversion in the homologous
BLAST-aligned nucleotide sequence of NRAS gene being detected
in two of our MAP wild-type adenomas. So far, no other
reports have documented the presence of NRAS mutations in
MAP lesions. Although these alterations can be found in 10% of
sporadic CRCs, they were shown to regulate homeostasis of colonic
cells differently to KRAS alterations (Haigis et al, 2008) and were
only occasionally detected in sporadic colorectal adenomas (Vagaja
et al, 2015).

As reported by Rashid et al, 2015, we detected a two-fold higher
level of somatic mutations in MAP adenomas with respect to FAP/
AFAP or sporadic polyps, suggesting that a deficiency of MUTYH
could lead to a mutator phenotype. This evidence is supported by
the co-occurrence of both KRAS p.G12C and PI3KCA mutations in
more than one-third of the examined MAP carcinomas and is
consistent with a higher colorectal cancer risk in MAP, even in the
presence of a few adenomas (Nieuwenhuis et al, 2012).

Regarding phenotype, KRAS/NRAS mutations were more
frequent in MAP adenomas with tubular architecture than in the
controls with the same morphology. This can be another
characteristic of MAP carcinogenesis since in a survey concerning
colorectal sporadic adenomas, KRAS mutations were mainly
evidenced in tubulovillous and villous adenomas (Yadamsuren
et al, 2012).

Interestingly, MAP adenomas of our cohort were more often
hypomethylated than the other groups, for both global genomic
and intragenic sequences, as measured by LINE-1 and L1-MET.
Although MAP adenomas were heterogeneous for methylation
levels of LINE-1 and L1-MET, their mean percentages were
generally comparable to the level of the CRCs derived from the
same patients, suggesting that DNA demethylation is acquired
early and retained in the adenoma–carcinoma transition. Our
results are in agreement with studies reporting that DNA global
hypomethylation is an early event in colorectal and gastric
carcinogenesis (Suter et al, 2004; Kim et al, 2016). For the first
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time, we demonstrated that significant lower LINE-1 methylation
levels may be observed in specific models of colorectal adenomas
and that a novel link between a BER defect and DNA
hypomethylation may be established in CRC tumourigenesis.

The mechanisms of how oxidative stress decreases DNA
methylation have been proposed (Franco et al, 2008). Oxidised
DNA lesions that are induced by ROS, such as 8-OHdG in CpG
dinucleotides, have been shown to strongly inhibit methylation of
adjacent cytosine residues (Weitzman et al, 1994). Moreover, in
an oxidative stress condition, with decreased availability of
S-adenosylmethionine, depletion of the methyl pool in folate-
deficient models has been shown to cause DNA hypomethylation
(Miller et al, 1994). Additionally, an unfixed 8-OHdG may
introduce a G4T transversion resulting in the loss of CpG
dinucleotides (Kuchino et al, 1987). Recently, Kloypan et al (2015)
demonstrated that in colorectal cancer LINE-1 hypomethylation
is associated with the oxidative stress-mediated activation of the
ten-eleven translocation hydroxylase enzymes that cooperate
with BER in controlling the formation and replacement of
5-hydroxymethylcytosine (5 hmC). Finally, ROS are considered

to be responsible for aberrant DNA methylation in different cancer
models (Campos et al, 2007; Lim et al, 2008; Quan et al, 2011;
Ziech et al, 2011; Kloypan et al, 2015) and during chronic
inflammation and inflammation-associated carcinogenesis, such as
ulcerative colitis and Crohn’s disease (Iborra et al, 2011; Hartnett
and Egan, 2012). All these data suggest that increased oxidative
DNA damage and/or lack of DNA repair are strongly correlated
not only with genetic but also with aberrant DNA methylation in
cancer.

Our study demonstrates that LINE-1/L1-MET hypomethylation
is not associated with the presence of KRAS p.G12C or any other
mutation. Similarly to KRAS/NRAS mutations, also DNA hypo-
methylation was more frequent in MAP adenomas with tubular
architecture than in FAP/AFAP or sporadic polyps with the same
morphology. This observation reinforces the idea that both
epigenetic and genetic alterations occur very early in MAP
tumourigenesis and is consistent with previous data reported by
Cardoso et al (2006), demonstrating that low-grade dysplasia
adenomas show higher incidence of aneuploidy in MAP compared
with FAP polyps. LINE-1 hypomethylation is suggested to be a key
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event in cancer development because it results in retrotransposi-
tion throughout the genome leading to CIN (Yamada et al, 2005;
Rodriguez et al, 2006; Ewing et al, 2015). Moreover, an activated

LINE-1 promoter can initiate sense or antisense transcription
through either proto-oncogenes or tumour suppressor genes
having the potential to induce the illegitimate transcription of
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the LINE-1 chimeric product (Weber et al, 2010; Wolff et al, 2010;
Hur et al, 2014; Zhu et al, 2014). Hypomethylation of the LINE-1
inserted in the second intron of the MET gene has been shown to
drive expression of a truncated isoform of the gene with a negative
prognostic value in CRC (Hur et al, 2014). In this work, we provide

the first evidence for the high frequency of L1-MET hypomethyla-
tion in MAP adenomas.

However, to establish DNA hypomethylation as a potential
specific molecular marker of MAP carcinogenesis, a higher number
of hereditary and sporadic adenomas should be analysed for their
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epigenetic status. This could deal with the drawback of comparing
adenomas from patients who genetically developed polyps at
different ages. In this regard, although global DNA hypomethyla-
tion has been reported associated with age-related diseases,
colorectal cancer-specific changing in LINE-1 methylation was
shown not to be affected by aging (Bollati et al, 2009; Baba et al,
2010). In addition, future studies using genome-wide methylation
profiling as well as in vitro MAP cell modelling might be useful to
demonstrate that repair-based mechanisms are involved in
physiological models of DNA demethylation.

In conclusion, our data indicate that, in addition to well-
assessed specific mutations, the early steps of oxidative DNA
damage-induced colorectal carcinogenesis are characterised by
decreased DNA global methylation and specific L1-MET hypo-
methylation. Finally, our results emphasise the idea that genetic
and epigenetic mechanisms strengthen each other in driving
colorectal tumourigenesis. Because of the clinical recommenda-
tions for recently established aspirin-based chemoprevention
strategies (Burn et al, 2011), these results appear to be interesting
in improving the identification of individuals who are most likely
to benefit from a prophylactic aspirin regimen.
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