⁶⁸Ga-Prostate-Specific Membrane Antigen Uptake as a Surrogate Biomarker of Neovascularity in Hepatocellular Carcinoma

Abstract

⁶⁸Ga-prostate-specific membrane antigen (⁶⁸Ga-PSMA) is expressed in the endothelium of tumor-associated neovasculature of various solid malignancies possibly due to tumor-associated angiogenic factors and endothelial cell sprouting. We report a case of a 45-year-old man with known colorectal cancer, cirrhosis, and hepatitis C. Contrast-enhanced computed tomography (CT) showed a hypervascular lesion in the liver, and ¹⁸F-*fluorodeoxyglucose* positron emission tomography (PET) did not show any suspicious hepatic uptake. ⁶⁸Ga-PSMA PET-CT showed predominantly heterogeneous perilesional uptake in a configuration similar to the arterial enhancement pattern on the diagnostic CT. ⁶⁸Ga-PSMA uptake in *hepatocellular carcinoma* appears to be primarily neoangiogenesis driven, and its morphological and functional characterization can subsequently influence the selection of anti-neoangiogenic chemotherapy agents as well as guiding radionuclide ligand therapy.

Keywords: ⁶⁸Ga-prostate-specific membrane antigen positron emission tomography/computed tomography, angiogenesis, hepatocellular carcinoma, positron emission tomography/computed tomography

A 45-year-old male, with an established history of hepatitis C and colorectal cancer treated with surgery 2 years back, showed a hepatic mass on ultrasonography suspicious for metastases. Carcinoembryonic antigen was normal with high alpha fetoprotein values. Contrast enhanced computed tomography (CECT), demonstrated a large predominantly hypodense lesion in segment VII [Figure 1i-k] with enhancement of the lesion in the arterial phase and rapid washout during the delayed phase, i.e., appearances highly suspicious of hepatocellular carcinoma (HCC). А subsequent *fluorodeoxyglucose* positron emission tomography/CT (FDG PET/CT) was negative, however, a 68Ga prostate specific membrane antigen (PSMA) PET CT [Figure 1a-h] showed heterogeneous uptake related to the mass. This was predominantly in a peripheral distribution, i.e., in a configuration quite similar to the enhancement pattern seen on arterial phase of CECT. Subsequent biopsy of the lesion confirmed HCC.

¹⁸F-FDG PET-CT has a limited role in HCC as only half of the cases are ¹⁸F-FDG avid.^[1] However, ⁶⁸Ga-PSMA uptake has

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

been reported in solid malignant tumors including breast cancer, HCC, and renal cell carcinoma^[2-4] and is thought to be in tumoral microvessels.^[5] Preliminary data indicate that the detection rate of

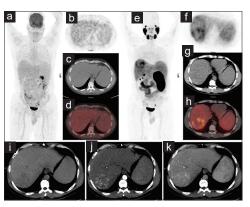


Figure 1: a) FDG MIP and b-d) Transaxial FDG PET-CT images show no abnormal FDG localization in the liver. Triple phase i) un-enhanced j) arterial and k) venous CT images showed a large predominantly arterial enhancing lesion in segment VII with imaging features of Hepatocellular Carcinoma (HCC) e) 68Ga-PSMA MIP f-h) Transaxial 68Ga-PSMA PET-CT images show heterogenous increase tracer uptake in segment VII in a peripheral pattern closely resembling pattern of enhancement on arterial phase imaging (j)

How to cite this article: Muzaffar S, Ahmed N, Rahman U, Al Kandari F, Usmani S. ⁶⁸Ga-prostate-specific membrane antigen uptake as a surrogate biomarker of neovascularity in hepatocellular carcinoma. Indian J Nucl Med 2021;36:90-1. Samreen Muzaffar, Najeeb Ahmed, Uzma Rahman, Fareeda Al Kandari¹, Sharjeel Usmani¹

Hull and East Yorkshire Hospitals NHS Trust, Hull, UK, ¹Kuwait Cancer Control Centre, Shuwaikh, Kuwait

Address for correspondence: Dr. Najeeb Ahmed, Jack Brignall PET/CT Centre, Hull and East Yorkshire Hospitals NHS Trust, Hull, UK. E-mail: najeeb.ahmed@hey. nhs.uk

Received: 24-02-2020 Revised: 28-03-2020 Accepted: 30-03-2020 Published: 04-03-2021

⁶⁸Ga-PSMA PET-CT is superior to ¹⁸F-FDG in HCC.^[6] A recent study by Tolkach *et al.*^[7] reported that HCC has high levels of PSMA expression on tumor vessels and canalicular membrane of tumor cells. PSMA plays a major role in regulating angiogenesis and is expressed in the endothelium of tumor-associated neovasculature in these solid malignancies possibly due to tumor-derived angiogenic factors and endothelial cell sprouting.^[8,9]

Our case highlights the advantage of ⁶⁸Ga-PSMA PET-CT in comparison to ¹⁸F-FDG PET-CT in characterizing focal hepatic lesions suspicious of HCC. These morphological features on CECT are usually secondary to abnormal handling of contrast material by newly formed vessels in a malignant lesion.^[10] Unsurprisingly, the typical pattern of enhancement on CECT imaging in HCC has been shown to correlate with microvessel density.^[11] The most interesting aspect of the current images is that the arterially enhancing peripheral component of the index liver lesion displaying higher ⁶⁸Ga-PSMA uptake indirectly reflects the positive correlation between increased ⁶⁸Ga-PSMA and lesion neovascularity.

This observation also highlights the potential of 68 Ga-PSMA PET-CT in guiding therapeutic options in HCC. This includes suitability and response assessment with antiangiogenic chemotherapy and as a potential guide to radionuclide legend therapy with α/β -emitters. Some recent studies have shown promising response rates of 177 Lu- 617 PSMAtargeted radioligand therapy, $^{[12,13]}$ and in the future, PSMA-targeted radioligand therapies can also be considered for other cancers including HCC.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

 Asman Y, Evenson AR, Even-Sapir E, Shibolet O. [18F] fludeoxyglucose positron emission tomography and computed tomography as a prognostic tool before liver transplantation, resection, and loco-ablative therapies for hepatocellular carcinoma. Liver Transpl 2015;21:572-80.

- Demirci E, Ocak M, Kabasakal L, Decristoforo C, Talat Z, Halaç M, *et al.* (68) Ga-PSMA PET/CT imaging of metastatic clear cell renal cell carcinoma. Eur J Nucl Med Mol Imaging 2014;41:1461-2.
- Sasikumar A, Joy A, Nanabala R, Pillai MR, Thomas B, Vikraman KR. 68Ga-PSMA PET/CT imaging in primary hepatocellular carcinoma. Eur J Nucl Med Mol Imaging 2016;43:795-6.
- Nomura N, Pastorino S, Jiang P, Lambert G, Crawford JR, Gymnopoulos M, *et al.* Prostate specific membrane antigen (PSMA) expression in primary gliomas and breast cancer brain metastases. Cancer Cell Int 2014;14:26.
- Kesler M, Levine C, Hershkovitz D, Mishani E, Menachem Y, Lerman H, *et al.* 68Ga-PSMA is a novel PET-CT tracer for imaging of hepatocellular carcinoma: A prospective pilot study. J Nucl Med. 2019;60:185-191. doi:10.2967/jnumed.118.214833.
- Taneja S, Taneja R, Kashyap V, Jha A, Jena A. 68Ga-PSMA Uptake in Hepatocellular Carcinoma. Clin Nucl Med 2017;42:e69-e70.
- Tolkach Y, Goltz D, Kremer A, Ahmadzadehfar H, Bergheim D, Essler M, *et al.* Prostate-specific membrane antigen expression in hepatocellular carcinoma: Potential use for prognosis and diagnostic imaging. Oncotarget 2019;10:4149-60.
- Conway RE, Petrovic N, Li Z, Heston W, Wu D, Shapiro LH. Prostate-specific membrane antigen regulates angiogenesis by modulating integrin signal transduction. Mol Cell Biol 2006;26:5310-24.
- Chang SS, Reuter VE, Heston WD, Bander NH, Grauer LS, Gaudin PB. Five different anti-prostate-specific membrane antigen (PSMA) antibodies confirm PSMA expression in tumor-associated neovasculature. Cancer Res 1999;59:3192-8.
- European Association for the Study of the Liver. EASL clinical practice guidelines: Management of hepatocellular carcinoma. J Hepatol 2018;69:182-236.
- 11. Muto J, Shirabe K, Sugimachi K, Maehara Y. Review of angiogenesis in hepatocellular carcinoma. Hepatol Res 2015;45:1-9.
- 12. Ahmadzadehfar H, Eppard E, Kurpig S, Fimmers R, Yordanova A, Schlenkhoff CD, *et al.* Therapeutic response and side effects of repeated radioligand therapy with 177 Lu-PSMA-DKFZ-617 of castrate-resistant metastatic prostate cancer. Oncotarget 2016;7:12477-88.
- Rahbar K, Bode A, Weckesser M, Avramovic N, Claesener M, Stegger L, *et al.* Radioligand therapy with 177 Lu-PSMA-617 as a novel therapeutic option in patients with metastatic castrationresistant prostate cancer. Clin Nucl Med 2016;41:522-8.