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Abstract
Although ecological networks are typically constructed based on a single type of inter-
action, e.g. trophic interactions in a food web, a more complete picture of ecosystem
composition and functioning arises from merging networks of multiple interaction
types. In this work, we consider tripartite networks constructed by merging two bipar-
tite networks, one mutualistic and one antagonistic. Taking the interactions within
each sub-network to be distributed randomly, we consider the stability of the dynam-
ics of the network based on the spectrum of its community matrix. In the asymptotic
limit of a large number of species, we show that the spectrum undergoes an eigenvalue
phase transition, which leads to an abrupt destabilisation of the network as the ratio
of mutualists to antagonists is increased. We also derive results that show how this
transition is manifest in networks of finite size, as well as when disorder is introduced
in the segregation of the two interaction types. Our random-matrix results will serve
as a baseline for understanding the behaviour of merged networks with more realistic
structures and/or more detailed dynamics.
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1 Introduction

A central goal of community ecology is to identify the mechanisms that maintain
biodiversity in natural communities. One way to approach this problem is through
the lens of ecological networks — abstract representations of interactions between
taxa in a community (Montoya et al. 2006; Landi et al. 2018; Delmas et al. 2019).
Classically, studies of ecological networks have tended to focus on a single type of
interaction, e.g. trophic interactions in a food web (Pimm 1982; Dunne et al. 2002;
Dunne 2012) or mutualistic interactions in a plant-pollinator network (Bascompte and
Jordano 2013; Valdovinos 2019). Over the last decade or so, however, there has been
a growing recognition that further progress requires the construction and study of
networks that contain multiple interaction types (Ings et al. 2009; Fontaine et al. 2011;
García-Callejas et al. 2018) and even combining ecological with social interactions
(Felipe-Lucia et al. 2021).

In this paper we consider the stability of ecological networks based on the tripartite
structure of Fig. 1. These networks consist of three guilds (nominally plants, herbivores
and mutualists) interacting through two distinct sets of interactions, one antagonistic
and the other mutualistic. This tripartite structure represents a minimal example of
a merged network (Fontaine et al. 2011; Sauve et al. 2014), and reflects the large-
scale structure seen in empirical networks such as those discussed by Melián et al.
(2009), Pocock et al. (2012), Kéfi et al. (2016), Sauve et al. (2016), Miller et al.
(2021), Laha et al. (2022). In the framework of multi-layer networks (Pilosof et al.
2017), Fig. 1 could be viewed as a two-layer multiplex networkwith antagonists in one
layer, mutualists in the other and plants common to both. Two recent surveys analysed
structural features and robustness of a number of empirical tripartite networks from the
literature, including those with mutualist and antagonist partitions as considered here;
Timóteo et al. (2021) found that the importance of a species is positively correlated
between the two bipartite subnetworks, and Domínguez-García and Kéfi (2021) found
that the robustness (with respect to plant losses) of tripartite mutualist-antagonist
networks could be understood in terms of the robustnesses of the twobipartite networks
composing them.

The aim of the present contribution is to provide an analysis of the dynamical
stability of this network structure when the subnetwork interactions are described by
random matrices. The use of random matrices to shed light on ecosystem stability
has a long history (May 1972, 1974) and acts as a baseline scenario against which
more detailed and ecologically-motivated studies can be compared (Allesina and Tang
2012). The stability of networks comprising a mixture of antagonistic and mututalistic
interactions has previously been considered from a random-matrix viewpoint (Mougi
andKondoh2012; Suweis et al. 2014; Sellman et al. 2016).However, these studies have
been of (stochastically) homogeneous models, i.e. without the tripartite structure of
Fig. 1. The persistence and stability of an ecosystemwith this structure was considered
in Sauve et al. (2014) using numerical simulations for small networks. In contrast, the
focus of our work is on analytic results for ecosystems consisting of a large number
of species.

Specifically we investigate the stability of a community matrix with block-structure
that reflects Fig. 1 and with random interactions within the blocks. Using the results of
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Fig. 1 A tripartite ecological network consisting of NH herbivores and NM mutualists interacting with
a set of NP plants. Without disorder, all interactions between herbivores and plants are antagonistic (red
edges), whereas all interactions betweenmutualists and plants aremutualistic (blue). Taxa images are public
domain from http://www.phylopic.org (colour figure online)

Marčenko and Pastur (1967) and Benaych-Georges and Nadakuditi (2011) we give an
account of key spectral features of such matrices in the limit of large network size. We
show that the spectrum consists of a bulk component and a pair of eigenvalues of large
magnitude. The properties of these latter split the behaviour of the model into two
distinct phases. In the antagonist-dominated phase, the large eigenvalues are complex
and the stability properties of the model are determined by the bulk. In the mutualist-
dominated phase, the large eigenvalues are real and serve to destabilise the system. The
transition between these two phases represents an eigenvalue phase transition (Baik
et al. 2005) and can be driven, for example, by an increase in the relative fraction
of mutualists in the ecosystem. Whilst this phase transition strictly takes place in the
asymptotic limit, we also derive an expression for the stability-determining eigenvalue
valid at finite system size. Finally, we also consider a scenario in which we introduce
a degree of disorder into the network of Fig. 1 by exchanging the type of a certain
random fraction of interactions. We show that the phase transition can survive in the
presence of disorder, but vanishes if the disorder is too strong.

2 Tripartite networkmodel

We consider a system of NP plants (or producers), NM mutualists and NM herbivores
such that the total number of consumers (mutualists and herbivores) is NC = NM+NH.
We then define s = NC/NP as the ratio of consumers to plants and r = NM/NC as the
ratio ofmutualists to consumers.We assume that, close to equilibrium, the dynamics of
the populations is described by community matrix K = −D + A, where D describes
intraspecific competition and A describes interspecific interactions.As is conventional,
we assume D to have elements Di j = dδi j with δi j the Kronecker delta symbol and
d the competition strength. We then choose K to reflect the tripartite structure of
the network in Fig. 1. In the first instance, we take A to have the following block
structure
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A = 1√
NP

⎛
⎝

0 M −H
μMMT 0 0
μH HT 0 0

⎞
⎠ , (1)

in which the species have been ordered plants first, then mutualists and finally her-
bivores. The block M is of dimension NP × NM and describes the plant-mutualist
interactions; block H is of dimension NP × NH and describes plant-herbivore inter-
actions. We take all matrix elements of M and H to be positive such that the nature
of the interactions is encoded in the explicit signs shown in Eq. (1). Parameters μM

and μH are included to describe asymmetries in the two directions of each interaction
type. The forefactor N−1/2

P is included for mathematical convenience. We note that a
similar matrix block structure was considered by Johnson et al. (2014) but with sign
assignments appropriate to exclusively trophic interactions.

This overall structure is then supplemented by a random model for the matrix
elements of the blocks. Considering the mutualists, we set Mi j = eMi j mi j where
the interaction coefficients mi j are treated as independent identical random vari-
ables with mean m and variance σ 2

m , and where the factors eMi j describe the links

of the plant-mutualist sub-network: species that interact have eMi j = 1; those that

do not have eMi j = 0. The mutualist subnetwork connectance is therefore cM =∑NP
i=1

∑NM
j=1 e

M
i j /(NMNP). We assume a random structure for the plant-mutualist net-

work with eMi j chosen from a Bernoulli distribution with probability P(eMi j = 1) = cM
for all pairs i, j . The first and second cumulants of the matrix elements of M are thus

〈[M]〉 = cMm and 〈[M]2〉c = σ 2
M = cM

[
σ 2
m + (1 − cM )m2

]
. (2)

An analogous set-up and notation is employed for the matrix elements of H .

3 Eigenvalue spectrum

The stability of the equilibrium described by community matrix K is determined by
its NC + NP eigenvalues, ε, which obey Kv = εv. Writing eigenvector v in terms of
three vectors, one for each component of the system, v = (vP, vM, vH) and taking the
block structure of K into account we arrive at the set of three equations

N−1/2
P (MvM − HvH) = (ε + d) vP;

N−1/2
P μMMT vP = (ε + d) vM; N−1/2

P μHH
T vP = (ε + d) vH. (3)

Eliminating vM and vH from the first of these, we obtain the eigenvalue equation

WvP = λvP , (4)

in which

W = N−1
P

(
MMT − γ HHT

)
, (5)
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Fig. 2 The spectrum of matrix W as a function of mutualist ratio r . Panels (a) and (b) shows results for a
high ratio of consumers to plants, s = 6; (c) and (d) show results for a small ratio, s = 1/2. The lefthand
panels show a close up of the bulk part of the spectrum whilst the righthand panels show the same results on
an expanded scale in which large eigenvalues above and below the bulk are readily apparent. Blue symbols
are from numerical diagonalisation; red lines on the left are the analytic bulk spectrum edges from Eq. (18)
and Eq. (19); green lines on the right are the asymptotic macroscopic value NPθ from Eq. (21). Parameters
were NP = 200, cM = cH = 0.3, γ = 1, with non-zero matrix elements chosen from half-normal
distributions with m = h = 1 (colour figure online)

λ = (ε + d2
)
/μM and γ = μH/μM . The stability of community matrix K therefore

becomes a question of the spectrum of W with the eigenvalues of K related to those
of W through 1

ε = −d ±√μMλ. (6)

Accordingly, each positive eigenvalue λ > 0 contributes two real eigenvalues ε to the
spectrum of K , whereas a negative eigenvalue λ < 0 contributes an imaginary pair
to the spectrum of K . The number of zero eigenvalues of K depends on s, the ratio
of consumers to plants. For s > 1, i.e. more consumers than plants, matrix W is of
full rank and thus has NP non-zero eigenvalues λ �= 0, equating to 2NP non-zero
eigenvalues for K . Matrix K then has an additional NC − NP zero eigenvalues. On
the other hand, if s < 1, W is rank deficient and has only NC non-zero eigenvalues.
Matrix K then has a total of NP − NC zero eigenvalues.

The main features in the spectrum ofW can be appreciated from numerical diago-
nalisation. For concreteness, we draw the nonzero elements of M from a half-normal
distribution with probability density function

1 A slightly expanded community matrix with different competition strengths for plants and consumers

species (dP and dA respectively) has eigenvalues ε = 1
2

[
−dA − dP ±

√
(dA − dP )2 + 4μMλ

]
with the

same λ.
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f (m) = 2/(πm) exp
[
−m2/

(
πm2

)]
, for m ≥ 0. (7)

The standard deviation of this distribution isσm = m
√

π/2 − 1. The nonzero elements
of H are generated in a similar fashion but using parameter h. Figure 2 shows the
numerical spectrumof instances ofmatrixW across the range of values of themutualist
ratio r with NP and NC fixed. For s > 1 [Figs. 2a and b] the spectrum clearly separates
into a compact “bulk” spectrum located around λ = 0, plus up to two large eigenvalues
situated outside the bulk with magnitudes strongly dependent on r . The situation for
s < 1 [Figs. 2c and d] is similar, except that here the single bulk is replaced by two
disjoint lobes with a further collection of eigenvalues of zero. The large eigenvalues
are equally apparent in this case.

4 Eigenvalue phase transition

We now consider the spectrum ofW analytically and show that the largest eigenvalue
undergoes an eigenvalue phase transition in the NP → ∞ limit with the ratios s and
r held fixed. We begin by writingW = B + P with

B = N−1
P XT X T , (8)

where matrix X has dimensions NP × NC and elements

Xi j =
{(

Mi j − 〈[M]〉) /σM 1 ≤ j ≤ NM,(
Hi j − 〈[H ]〉) /σH NM + 1 ≤ j ≤ NC,

(9)

and with T = diag
(
τ1, τ2, . . . τNC

)
with

τi =
{

τM = σ 2
M 1 ≤ i ≤ NM,

τH = −γ σ 2
H NM + 1 ≤ i ≤ NC.

(10)

The second matrix in the decomposition ofW reads

Pi j = θ + 1

NP

NC∑
k=1

κk
(
xik + x jk

)
, (11)

with

θ = s
{
r〈[M]〉2 − γ (1 − r)〈[H ]〉2

}
, (12)

and

κi =
{

〈[M]〉σM 1 ≤ i ≤ NM,

−γ 〈[H ]〉σH NM + 1 ≤ i ≤ NC.
(13)

123



Stability-instability transition in tripartite merged … Page 7 of 18 20

The elements of matrixX are independent random variables each with zero mean and
unit variance. Moments beyond the second play no role in our results in the large-
NP limit, and thus we take all Xi j to be distributed identically. Turning to Eq. (11),
we observe that the second term is a summation over a large number of independent
variables, and thus gives a contribution of the order N 1/2

C for large NC. Overall, then,

this term scales like N−1/2
P and is therefore negligible in comparison with the first

term which scales like θ ∼ 1. Thus, for P , we obtain the approximate rank-1 form

P ∼ θ J (14)

with J the NP × NP matrix of ones.
Wefirst consider thematrixB by itself. Let its ordered eigenvalues beλ1(B) ≥ · · · ≥

λNP(B) and define the probability measure μB as the limiting empirical eigenvalue
distribution μB = limNP→∞ N−1

P

∑NP
j=1 δλ j (B). From Marčenko and Pastur (1967)

[see also Silverstein and Bai (1995)], the Stieltjes transform of μB is given by

GμB (z) =
∫

1

z − t
dμB(t) =

[
z −

∫
sτdν(τ)

1 − τGμB (z)

]−1

, (15)

where ν(τ) is the NP → ∞ probability distribution function of the values{
τ1, . . . , τNC

}
. For the case in hand, this reads

dν(τ) = [rδ(τ − τM) + (1 − r)δ(τ − τH)] dτ, (16)

and thus we obtain

GμB (z) =
[
z − rsτM

1 − τMGμB (z)
− (1 − r)sτH

1 − τHGμB (z)

]−1

, (17)

and its inverse

zμB (G) = 1

G
+
∫

sτdν(τ)

1 − τG
= 1

G
+ rsτM

1 − τMG
+ (1 − r)sτH

1 − τHG
(18)

Again fromMarčenko and Pastur (1967), the edges of connected components of spec-
trum can be obtained as b = zμB (Gb) where Gb is a solution of

dzμB
dG

∣∣∣∣
G=Gb

= − 1

Gb
2 + rsτ 2M

(1 − τMGb)2
+ (1 − r)sτ 2H

(1 − τHGb)2
= 0. (19)

In particular, this gives us b+ and b− the upper and lower edges of the bulk part of
the spectrum, i.e. the supremum and infimum of the support of μB. Figure 2 shows
the boundaries obtained from Eq. (19) superimposed on the numerical spectra. The
boundaries, including b±, give good approximation to the numerical bulk edges across
the entire range of r .
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Nowconsider the completematrix,W = B+P .ApplyingTheorem2.1 ofBenaych-
Georges and Nadakuditi (2011) to the rank-1 perturbation of Eq. (14), we have that in
the NP → ∞ limit the uppermost eigenvalue of W almost surely converges as

λ1(W) →
{
zμB

[
(NPθ)−1

]
if NPθ > 1/GμB (b+),

b+ otherwise.
(20)

Given that zμB is a monotonically decreasing function at the spectrum edge and that
NP is large, this becomes

λ1(W) → max[b+, NPθ ]. (21)

Thus, in the NP → ∞ limit, the largest eigenvalue of W undergoes an abrupt eigen-
value phase transition (Baik et al. 2005) from a value b+ ∼ (NP)

0 below the transition
to a value λ1 = NPθ that is “macroscopic” in the sense that it scales with the size of
the ecosystem. This transition occurs at NPθ = b+ but given the different scaling of
the two sides of this equation, the transition point is effectively given by θ = 0 in the
asymptotic limit. Thus, we see that the phase transition occurs when r = r� with the
critical mutualist ratio

r� = γ 〈[H ]〉2
〈[M]〉2 + γ 〈[H ]〉2 . (22)

The significance of this is that eigenvalue λ1(W) determines the stability of commu-
nity matrix K and is thus an order parameter for a phase transition in the stability
of the model. We note that the quantity NPθ is the row sum of matrix W , as
previously discussed by Allesina and Tang (2012) in the context of isolated eigen-
values of mutualist matrices. Considering the lowest eigenvalue, we similarly find
λNP(W) = min[b−, NPθ ]. This also exhibits a phase transition but this is of little
significance from a point of view of the stability.

Figure 2 shows the macroscopic value NPθ superimposed on the numerical spectra,
where it is seen to be close to numerically-obtained large eigenvalues when they lie
significantly outside the bulk. Deviations from this good agreement occur in the region
close to where NPθ and b± cross, and this is a consequence of the finite value of NP
in this figure.

Finally we note that there is a secondary, less dramatic stability transition implicit in
the above results and visible in Fig. 2. This transition occurs at the point b+ = 0. Below
this point, the spectrum of W is completely negative [see for example the lefthand
edge of Fig. 2a] and thus

√
μMλ will be imaginary for all eigenvalues. The stability

of community matrix K will, from Eq. (6), then be given purely by the intraspecific
competition term. Above this point,

√
μMλ will be real for some λ and this will then

start to reduce the stability.

5 Finite-size expression for the large eigenvalue

Whilst the above captures the emergence of a macroscopic eigenvalue, Fig. 2 shows
that at finite NP the uppermost eigenvalue goes smoothly over from the bulk edge at
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low r to themacroscopic disjoint value at high r . In this sectionwe derive an expression
for λ1 that captures this behaviour at large but finite NP. In doing so, we consider a
slightly more general model, namely

A = 1√
NP

⎛
⎜⎜⎝

0 M1 −H1

μMMT
2 0 0

μH HT
2 0 0

⎞
⎟⎟⎠ , (23)

where M1 and M2 are random blocks with relationship left unspecified, and similarly
for H1 and H2. This generalisation allows us to discuss the effect of disorder in
the next section. Clearly the model of the previous section is recovered by setting
M1 = M2 = M and H1 = H2 = H .

With the interaction matrix of Eq. (23), the NP × NP matrix equivalent of Eq. (5)
is

W = N−1
P

(
M1M

T
2 − γ H1H

T
2

)
. (24)

An approximate account of the spectrum of W can be obtained by considering this
matrix in the eigenbasis of its ensemble average 〈W 〉. Doing so allows us to identify the
scaling properties of different parts of thematrix and derive an approximate expression
valid for NP � 1. Details of this calculation are described in the Appendix with
the results as follows. The spectrum of W is seen to approximately contain NP − 2
eigenvalues at

φ = s {r〈[M1][M2]〉c − (1 − r)γ 〈[H1][H2]〉c} , (25)

in which 〈[M1][M2]〉c is the covariance between the matrix elements of M1 and M2
(and similarly for 〈[H1][H2]〉c). This set of eigenvalues is the approximate represen-
tation of the bulk in this calculation. More importantly, we also obtain two non-trivial
eigenvalues given by

λ± = NP

2

⎧⎨
⎩θ + 2φ

NP
±
√

θ2 + Ω2

NP

⎫⎬
⎭ , (26)

in which, similar to Eq. (12), we have

θ = s {r〈[M1]〉〈[M2]〉 − γ (1 − r)〈[H1]〉〈[H2]〉} , (27)

and where

Ω2 = 4s {r〈[M1][M2]〉c〈[M1]〉〈[M2]〉 + (1 − r)〈[H1][H2]〉c〈[H1]〉〈[H2]〉} . (28)

In the asymptotic limit, Eq. (26) gives λ+ → NPθ , which recovers the macroscopic
eigenvalues obtained previously, and λ− → φ which then becomes part of the bulk.
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Fig. 3 Largest eigenvalue λ1 of matrixW as a function of the mutualist ratio r for several values of the plant
number NP and fixed s = NC/NP = 1/2. Symbols show numerical results for a single random instances
of W; solid lines show the analytic result λ+ of Eq. (26); the dashed line shows the asymptotic result of
Eq. (21). Other parameters as in Fig. 2

Figure 3 compares the analytic expression λ+ with the maximum eigenvalue
extracted from numerical diagonalisation of W with M1 = M2 = M and H1 =
H2 = H as in Fig. 2. Results for a range of different values of plant number NP are
shown. Clear agreement between numerical and analytic results is observed, with the
degree of agreement increasing with NP as expected. The only significant deviation
between the two at large NP occurs at very small values of r , where λ+ overestimates
λ1. In this regime the scaling arguments leading to Eq. (26) break down.

One additional feature that is revealed by this finite-size analysis is the role of
correlations between the strengths of the two directions of the interactions (Tang
et al. 2014). The influence of these is manifest by the presence of the covariances
〈[M1][M2]〉c and 〈[H1][H2]〉c in 〈Ω2〉. Since this term enters the expression for λ±
with a N−1

P forefactor, correlations can only play a role at finite NP. In the maximally
correlated case, we recover the model of Sect. 2 for which 〈[M1][M2]〉c = 〈[M]2〉c
as in Eq. (2) and and similarly for H . In a scenario where the interaction strengths
are completely uncorrelated, we have 〈[M1][M2]〉c = 〈[H1][H2]〉c = 0 and 〈Ω2〉
vanishes. The prediction for λ1 in this case becomes the piecewise linear function
λ1 = max [φ, φ + NPθ ], similar to that found in Sect. 4 in the NP → ∞ limit. Thus
the “avoided crossing” that occurs in the correlated case at large but finite NP gives
way to an actual crossing when the degree of correlation is zero.

6 Interaction disorder

As defined by their interactions with plants, the consumers in Fig. 1 are either 100%
mutualist or 100% herbivore. In this section we look what happens when we move
away from this perfectly ordered scenario and swap the types of a random selection of
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the species interactions. We consider the same tripartite network as before, but with
a probability f M we swap the (++) signs of the mutualistic interactions to the (+−)
signs of an antagonistic one. For the antagonistic interactions, we do the opposite with
a probability f H. The end result is that the animal species no longer act with well
defined roles, but differently across their connected plant species. Mathematically,
this is incorporated into the framework of Sect. 5 by selecting the matrix elements of
Eq. (23) to be

[M1]i j = eMi j

[
(1 − f Mi j )mi j − f Mi j h

′
i j

]
[M2]i j = eMi j

[
(1 − f Mi j )mi j + γ f Mi j h

′
i j

]

[H1]i j = eHi j

[
(1 − f Hi j )hi j − f Hi j m

′
i j

]
[H2]i j = eHi j

[
(1 − f Hi j )hi j + γ −1 f Hi j m

′
i j

]
.

(29)

Here, mi j and hi j are random variables as before, m′
i j and h

′
i j are further independent

random variables chosen from the same distributions, and f (M,H)
i j ∈ {0, 1} are an

additional set of binary random variables that describe whether interaction i j in block
(M , H ) is flipped or not. These latter are set with probability P( f (M,H)

i j = 1) =
f (M,H).
Using the results of the previous section, we see that, in the asymptotic limit, the

largest eigenvalue of the matrix W is λ1 = max[0, NPθ ] with θ of Eq. (27) in terms
of the ensemble averages

〈[M1]〉 = cM
[
(1 − f M)m − f Mh

]
〈[M2]〉 = cM

[
(1 − f M)m + γ f Mh

]

〈[H1]〉 = cH
[
(1 − f H)h − f Hm

]
〈[H2]〉 = cH

[
(1 − f H)h + γ −1 f Hm

]
. (30)

Results are shown in Fig. 4 as phase diagrams in the plane defined by the mutualist
ratio r and the fraction of swapped interactions f M = f H = f .

When there is exact symmetry between the interactions strength, i.e. m = h and
γ = 1 (Fig. 4 middle), the behaviour observed in the fully coherent case, f = 0, is
preserved at finite f , up to a fraction f = 1/2. The transition still occurs at r = 1/2 and
the only change is that the size of order parameter in mutualist phase is diminished.
At the point f = 1/2 the dominant roles of the “antagonistic” and “mutualistic”
species swap and the two phases reverse accordingly. Away from this exact symmetry
we have more complicated behaviour. For m < h (assuming γ = 1) the mutualist
phase occupies a diminished area of the phase diagram. For values of f close to
1/2 the system remains in the antagonist phase across the whole range of r and no
instability transition takes place. In contrast, for m > h, it is the antagonist phase that
is diminished and for f close to 1/2 the system remains in the mutualist phase for all
r . Indeed, specifying for simplicity the case of cM = cH , f M = f H = f and γ = 1
(as in Fig. 4), we find the value of r for which θ = 0 to be

r� = h
2
(1 − f )2 − m2 f 2(

h
2 + m2

)
(1 − 2 f )

. (31)
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Fig. 4 Phase diagrams for the tripartite network of Fig. 1 in which a random fraction f of interactions
have their type (mutualistic or antagonsitic) switched. Shown is the asymptotic order-parameter eigenvalue
λ1 = max[0, NPθ ] with θ of Eq. (27) evaluated with the mean values of Eq. (30) as a function of f and
the mutualist ratio r . We have scaled λ1 by its maximum value (obtained at r = γ = 1 and f = 0) and
this removes the dependence on NP, s, and the connectance when cM = cH as here. Results are shown
for three values of the mutualist interaction strength: m = 0.75, 1, 1.5 from left to right with h = 1 and
γ = 1. The black regions correspond to the antagonistic phase with λ1 = 0 and the coloured regions, the
mutualistic phase λ1 > 0. The dashed line represents the phase boundary

For a phase transition to occur, we require that 0 < r� < 1, which gives

f

1 − f
<

h

m
<

1 − f

f
, (32)

as the condition on the interaction and disorder strengths for the existence of a phase
transition.

7 Discussion

We have studied the stability of a community matrix with random elements organ-
ised according to the tripartite structure of Fig. 1. This structure can be viewed as
the mergence of two bipartite networks with changes in the mutualist ratio r inter-
polating between them. At r = 0 we have a bipartite predator-prey model, whose
community matrix has purely imaginary eigenvalues (Johnson et al. 2014); at r = 1
we have a bipartite mutualist model, whose stability is determined by a single large
real eigenvalue (Allesina and Tang 2012). We have shown here that the emergence of
this macroscopic eigenvalue as a function of r is abrupt in the asymptotic limit, and
that this represents an eigenvalue phase transition that takes place when r reaches the
critical value r�. The behaviour of the model is thus split into two distinct regimes.
For r < r�, we obtain an “antagonistic phase” in which the community matrix K can
be stabilised by a small (i.e. order N 0

P ) value of the intraspecific competition d. In this
regime, changing the number of mutualists by a small amount does not appreciably
affect the stability of the system. In contrast, for r > r� we obtain a “mutualist phase”
in which stability is governed by the macroscopic eigenvalue such that the community
matrix requires a large intraspecific competition, d ∼ N 1/2

P , to stabilise it. Moreover,
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in this phase, small changes in the mutualist number lead to large changes in λ1 and
hence dramatic changes in the stability of the system. Whilst we have framed this
discussion in terms of the behaviour as a function of the ratio r , the phase transition
can also be driven by changes in other parameters, e.g. mean interaction strengths or
connectance. For example, setting θ = 0 for the ordered model of Sect. 2 shows that,
with all other parameters fixed, the phase transition will occur when the ratio of the
interaction strengths reaches a value

(
m̄

h̄

)2
= γ

r

1 − r

(
cH
cM

)2
. (33)

A large positive eigenvalue of the community matrix is associated with the growth
of populations away from the equilibrium values. The rapidity of growth seen here is
a consequence of the positive feedback of “mutual benefaction” associated with the
mutualistic interactions (Scheuring 1992). It should be born in mind, however, that the
community matrix represents a linearisation of a more complex/detailed dynamical
model. Thus, instability should not be interpreted as an uncontrolled growth, but rather
as the indication of the shift of the ecosystem away from its equilibrium to a different
one, the properties of which are outside the scope of the original model. This new
equilibrium may well include fewer species than in the starting community.

The scaling in Eq. (1) is chosen such that the bulk spectrum of K converges in the
NP → ∞ limit. This follows from the convergence of the spectrum of W with bulk
edges b± ∼ (NP)

0. In the spectrum of K , this leaves the scaling of the macroscopic
eigenvalue as ε = −d + √

μMNPθ ∼ √
NP. A slightly different choice would be

to replace the N−1/2
P forefactor out the front of Eq. (1) with N−1

P . This would make
extreme eigenvalue of K converge to ε = −d + √

μMθ ∼ NP
0 in the limit, whilst

the bulk would shrink to a point at ε = −d. Given the different scalings of the two
parts of the spectrum, we might also consider a slightly different model in which
this forefactor in Eq. (1) is omitted and we instead choose to scale the matrix-element
distribution such thatm ∼ N−1

P and σm ∼ N−1/2
P and similarly for the herbivores. This

situation would then be similar to the scaling in e.g. Bunin (2017), Galla (2018). This
choice invalidates the assumptions upon which above calculations are based (operator
P can no longer be approximated as above; the scaling arguments of Sect. 5 no longer
hold). However, because here (and unlike references just cited) the matrix elements
are strictly non-negative,mi j , hi j ≥ 0, the only way in which to obtain this scalingm,
h, σm and σh is with a distribution that is concentrated at values of m extremely close
to zero but which nevertheless has a very long tail. This scaling therefore converts
most of the interactions in the community matrix into vanishing small ones (with a
few very large ones to achieve the required mean) which seems rather at odds with the
set-up of the model.

Phase transitions of the type described here have been described in related ecolog-
ical models. Hogg et al. (1989) discussed an S × S community matrix with random
elements distributed homogeneously about a finitemean, and showed that this can give
rise to a macroscopic eigenvalue of size

√
S (in the scaling convention pursued here).

This model was also considered by Tang et al. (2014) and Tang and Allesina (2014)
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who described the emergence of a macroscopic eigenvalue as a phase transition from
stability to instability as the mean value of the matrix elements is increased. The con-
nection with the antagonist-mutualist system discussed here is that an increased mean
interaction strength could arise from an increase in the number of mutualistic interac-
tions. This scenario was discussed by Suweis et al. (2014) in another homogeneous
model, introduced by Mougi and Kondoh (2012), that consists only of antagonists
and mutualists. In these homogeneous models, the macroscopic eigenvalue can be
understood in terms of the row sum of the community matrix K (Allesina and Tang
2012). In contrast, in the structured model discussed here, it is the row sum of the
folded matrix W that is important.

Sauve et al. (2014) considered the same tripartite topology as discussed here. Their
conclusion was that stability was enhanced by the connectance and species diversity of
themutualistic subnetworkbut decreasedby the connectance anddiversity of the antag-
onistic one. This is opposite to the behaviour described here (where at best increased
mutualistic interactions can leave the stability unaltered in the strict asymptotic limit).
There are several reasons for this discrepancy. Sauve et al. (2014) consider a relatively
small number of species (compared with the limiting behaviour here) described by
a more detailed dynamical model with a particular subset of parameters chosen to
guarantee that the mutualist subsystem was independently stable. Perhaps even more
importantly is that the stability to which they refer is that of a final equilibrium state,
obtained through the time-evolution of the model. This will in general have fewer
species than the starting community and possess additional structure. It is also clear
that non-random structure can affect the stability of such networks, as Sauve et al.
(2016) show in their comparison of random and empirical networks.

It seems therefore that an important future direction is to look at the feasibility
of dynamical systems with interaction topology similar to that in Fig. 1. This would
also allow better connection with the persistence studies of Sauve et al. (2014) and
functional extinctions of Sellman et al. (2016). The dynamical cavity method has
proved very useful for studying feasibility in homogeneous models (Bunin 2017,
Galla (2018)), and it remains on open possibility that this approach can be extended to
structured models as studied here. Studying related few-species models, Ringel et al.
(1996) commented that the destablizing effect ofmutualisms “…ismore than canceled
by an increased chance of feasibility”, and it will be interesting to see whether this
also applies for large networks of interacting species and, in particular, in the presence
of a phase transition.

Finally we note that our analysis can be generalised to a more complex merged
networks, reminiscent of that in Pocock et al. (2012), which consist of a central guild
of NP species (plants in Fig. 1) that interacts with a set of G other guilds, all of
which are non-interacting with one another. Similar to Eq. (23), the interacting part of
community matrix will be of the block form
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A = 1√
NP

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 A1 A2 · · · AG

BT
1 0 0 · · · 0

BT
2 0 0 · · · 0

...
...

...
. . .

...

BT
G 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (34)

where Ai and Bi are random matrices of dimension NP × Ni with Ni the number
of species in guild i . In contrast to Eq. (23), the interaction signs [e.g. (+,−) for
antagonisms] here are given by the matrix elements, rather than being explicit in the
block structure. Similar to above, finding the spectrumof this K reduces to the problem
of finding the spectrum of W = ∑G

i=1 Ai BT
i . This model possess a maroscopic

eigenvalue, λ =∑G
i=1 Ni 〈[Ai ]〉〈[Bi ]〉 in the asymptotic limit, whose position relative

to the bulk around zero determines the stability. From the interaction signs, a guild
of mutualists gives a positive contribution to λ, whilst and antagonist give a negative
one. Competitive interactions in which elements of both Ai and Bi are negative would
then also give a positive contribution to λ, thus moving the system in the direction of
instability.
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A Finite-NP expression for the largest eigenvalue

In this appendix we provide details on how the approximate expression for λ1 in
Sect. 5 is obtained. Our starting point is the more general model of Eq. (23) and the
corresponding W matrix of Eq. (24). The ensemble average of W evaluates as

〈W〉 = φ1 + θJ, (35)

with φ and θ as in Eq. (25) and Eq. (27) and where 1 and J are the NP×NP unit matrix
and matrix of ones, respectively. The eigenvalues of 〈W〉 are φ+NPθ and φ, this latter
being (NP−1)-fold degenerate. The eigenvector u(1) belonging to eigenvalue φ+NPθ

has elements

u(1)
j = 1√

NP
; 1 ≤ j ≤ NP. (36)
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In the degenerate subspace, we choose the eigenvector set
{
u(α) : 2 ≤ α ≤ NP

}
with

elements

u(α)
j =

√
1

NP(NP − 1)

(
1 − NPδ j,α

) ; 1 ≤ j ≤ NP. (37)

These states are normalised, orthogonal to u(1) but not orthogonal to each other. Indeed
we have

u(α) · u(α) = 1; 2 ≤ α ≤ NP

u(1) · u(β) = 0; β ≥ 2

u(α) · u(β) = 1

1 − NP
; α �= β ≥ 2. (38)

These eigenvectors are easier to work with than orthogonalised ones, and since we
work in the NP limit, the effect of the finite overlap u(α) · u(β) is negligible.

Arranging u(α) as columns of matrix U , the full W matrix in this (ensemble-
averaged) basis is V ≡ UTWU , with matrix elements

V11 = u(1) · W · u(1) = 1

NP

∑
i j

Wi j ;

V1β = u(1) · W · u(α) = 1

NP
√
NP − 1

⎧⎨
⎩
∑
i j

Wi j − NP

∑
i

Wiβ

⎫⎬
⎭ ;

Vαβ = u(α) · W · u(β) = 1

NP(NP − 1)

⎧⎨
⎩
∑
i j

Wi j − NP

∑
i

(Wiβ + Wαi
)+ N 2

PWαβ

⎫⎬
⎭ ,

(39)

in which indices α, β ≥ 2. Considering the scaling of the ensemble averages of these
quantities, we find 〈V〉11 ∼ NP , 〈V〉α1 = 〈V〉1β = 0, 〈V〉αα ∼ N 0

P , and 〈V〉αβ ∼ N−1
P

forα �= β. Similarly, the variances scale asVar (V11) ∼ N 0
P , Var (Vα1) ∼ Var

(
V1β
) ∼

N 0
P , Var

(
Vαβ

) ∼ N−1
P . Thus, with NP large, we drop Vαβ for α �= β as being

negligible, and replace the diagonal elements with their ensemble averages, as their
fluctuations are negligible in comparison. Due to the vanishing of their mean, the
elements Vα1 and V1β are left as is. Taken together, this gives the approximation

V ≈

⎛
⎜⎜⎜⎝

φ + NPθ V12 . . . V1NP

V12 φ . . . 0
...

...
. . .

...

V1NP 0 . . . φ

⎞
⎟⎟⎟⎠ . (40)
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This can be diagonalised exactly. We obtain NP − 2 eigenvalues of value φ and two
nontrivial ones. These latter have the form of λ± from Eq. (26) with

Ω2 = 4

NP

NP∑
α=2

V1αVα1 = 4

N 3
P

⎧⎨
⎩NP

∑
i jk

Wi jW jk −
∑
i jkl

Wi jWkl

⎫⎬
⎭ . (41)

Evaluating the leading term in the ensemble average of Ω2 we find

〈Ω2〉 ∼ 4s {r〈[M1][M2]〉c〈[M1]〉〈[M2]〉 + (1 − r)〈[H1][H2]〉c〈[H1]〉〈[H2]〉} (42)

A similar calculation for the variance show that it scales like Var
(
Ω2
) ∼ N−1

P such
that the fluctuations about the mean vanish in the limit. We thus approximate Ω2 with
〈Ω2〉, thus giving the result stated in Eq. (28).
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