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Abstract

We performed large-scale numerical simulations using a composite model to investigate the

infection spread in a supermarket during a pandemic. The model is composed of the social

force, purchasing strategy and infection transmission models. Specifically, we quantified the

infection risk for customers while in a supermarket that depended on the number of custom-

ers, the purchase strategies and the physical layout of the supermarket. The ratio of new

infections compared to sales efficiency (earned profit for customer purchases) was com-

puted as a factor of customer density and social distance. Our results indicate that the social

distance between customers is the primary factor influencing infection rate. Supermarket

layout and purchasing strategy do not impact social distance and hence the spread of infec-

tion. Moreover, we found only a weak dependence of sales efficiency and customer density.

We believe that our study will help to establish scientifically-based safety rules that will

reduce the social price of supermarket business.

Introduction

Coronavirus 2019 disease (COVID-19), which is caused by the severe acute respiratory syn-

drome coronavirus 2 (SARS-CoV-2) was first reported in humans in late 2019 and the World

Health Organization declared it a pandemic in March 2020. By May, 2021 it had infected over

170 million globally, including a reported about 34 million in USA, 28 million in India and 17

million in Brazil [1].

The coronavirus spreads by contact and through airborne respiratory droplets and a com-

plete lockdown, which enforces isolation and social distancing, is the most effective means to

slow the spread. Unfortunately, the economic impact of such lockdowns is devastating and

lockdowns are untenable for extended periods of time. Additionally, a complete lockdown is

impractical since people need to purchase food, medicines and basic supplies. Many types of

stores are considered essential service providers during a pandemic including supermarkets,

smaller markets, and pharmacies. These stores, while providing necessary services, should also

be allowed to earn a profit that benefits the economy. However, while these stores should

remain open, they must conduct their business in the most efficient manner to reduce the
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spread of the infection. Thus, how these essential businesses function is a trade off between

earned profit and potential for increased infection. We propose a model that examines scientif-

ically-based safety rules for the supermarket business and assesses the social price of such an

economic activity.

Fortunately, the general mechanisms of the disease transmission are presently well docu-

mented allowing rules governing visits to places (like supermarkets) that may become crowded

[2, 3]. The most existing models regarding human behavior and infection spread analyze the

global aspect of an epidemic, that is, the infection spread “in average” or on a “geographic”

space-scale, see for example [4–13]. Neither the statistics of inter-personal contacts, nor a par-

ticular geometry of a place where people may be infected, have been studied. Naturally, safety

rules should be deduced from a microscopic model of inter-personal contacts [14, 15]; still

such microscopic models are presently lacking, see e.g. the review Ref. [16] for the current

state of mathematical epidemiology.

Here we elaborate a microscopic model of the infection transmission. It explicitly accounts

for individual inter-personal contacts and a geometry of a space—a supermarket. We explore

how safe it could be to visit a supermarket. That is, we pose a question, how many people

could simultaneously visit a supermarket, keeping an acceptable infection rate. This may be

done using an adequate mathematical model describing the behavior of customers and the

infection transmission between them. Quantitatively speaking, we need to assess the probabil-

ity for a visitor to get infected, depending on a number of customers in a supermarket and on

a percentage of infected among them. This quantity may also depend on the purchasers behav-

ior, and on the geometry of the place.

The purchasers behavior comprises two different components: (i) mutual interactions

between purchasers and (ii) their strategy in the supermarket. The mutual interactions may be

rather adequately modeled by the so-called “social force model”, proposed by Helbing et al.

[17]. It realistically reproduces various phenomena in people flows [18], including lane forma-

tion in bidirectional pathway, oscillations at bottlenecks, blocked states in emergency situa-

tions and self-organization of a crowd. Moreover, the behavior of a crowd in a complex

geometry, and even three-dimensional interactions at staircases [19, 20] may be also repro-

duced. The social-force-based simulations require a relatively small number of parameters and

prove to be applicable for a wide range of social situations [18] (see [21] for a recent review).

On the contrary, the strategy of a customer is associated with a particular place. It will be

different in a supermarket or in a small store, in a restaurant or in an airport. Therefore, the

development of a model, that realistically mimics a strategy of a customer in different places, is

an important component of the such models, which dictates the safety rules. Presently a num-

ber of models of a customer strategy is available, starting from the old intervening-opportuni-

ties model, first proposed by Stouffer in 1940 [22]. These models, as well as their modifications

have been used in numerous applications, including the analysis of intra-city mobility, inter-

state migration, etc., see e.g. [23–26]. The other class of model are the so-called gravity [27–29]

or radiation [30–32] models. A comprehensive review of the application of the different mod-

els to the customer mobility in supermarkets may be found in Ref. [33]. All these models, how-

ever, being efficient in solving many problems, lack some features, important for modeling the

infection transmission. Namely, the features that determine how long a customer resides in a

supermarket and what is the distribution of inter-customer distances. In the present study we

develop a model that possess the needed features. In short, it mimics the purchase goals and

psychological aspects of a customer which is detailed in the next sections.

Finally, a microscopic person-to-person infection transmission model is to be formulated.

In a recent study [15] a simple model has been proposed that relates the probability of getting

infected with the duration of time spent by a healthy person in a zone around an infected one.
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Here we introduce a similar, but a somewhat more realistic model. It takes into account that

the probability of getting infected depends both, on the time interval, as well as on the distance

between people; we use a continuous function to describe this dependence.

Since direct experimental data for the infection spread on microscopic (i.e. individual) level

are presently lacking, we are not able to calibrate our model. Nevertheless, the model allows

to perform a general analysis and answer the following important questions: (i) what is the

probability for a customer to get infected in a supermarket and how it depends on a number of

customers in the store and on the percentage of infected visitors; (ii) how sensitive is this prob-

ability to the social distance between the customers and what is the optimal social distance,

and finally, (iii) what is the impact of a supermarket geometry on the probability to get

infected. To answer the above questions we have performed large-scale simulations based on

the above composite model. The results will help to answer, what could be done to reduce the

infection rate and hence the social price of the supermarket business.

The rest of the article is organized as follows. In the next section we consider results, includ-

ing the elaborated model and outcomes of numerical simulations. In third section we discuss

and summarize the obtained results. Technical details are presented in the Materials and

Methods and S1 Appendix.

Composite model

Social forces

To describe the customer motion we use the concept of social forces applied to model pedes-

trian fluxes [17, 34]. The main idea of this concept is that pedestrians change their velocity

depending on the location and velocity of the surrounding objects, which may be other pedes-

trians, walls, columns, etc. The change of the velocity, that is the acceleration, may be put in a

form of the Newton’s second law with fictitious “forces”. This yields the equations of motion

for ith pedestrian:

dri

dt
¼ vi ð1Þ

dvi

dt
¼ Fdes

i þ Fsoc
i þ Ffluc

i þ Fchir
i þ Fobs

i : ð2Þ

Here ri and vi are, respectively, the radius vector and velocity of the pedestrian (customer).

The total force is comprised of different parts, which mimic the most prominent features of a

pedestrian behavior, with the parameters calibrated on observations, see e.g. [17, 34]. The first

term of the right hand side of Eq (2) Fdes reflects the tendency of a pedestrian (we skip the

index i for brevity) to move with a certain desired velocity:

Fdes ¼ t� 1ðvdes � vÞ; ð3Þ

where τ is the relaxation time, vdes is a vector of the desired velocity, which absolute value is

fixed and the direction may change subjected to the strategy; for physiological reasons the

desired velocity is limited from the above, vdes� vmax. Here we use the calibrated values of τ =

0.5 s and vdes = 1.34 m/s with vmax = 1.3 � vdes from Ref. [17, 35].

The second term describes interactions between pedestrians at locations (xi, yi) and (xj, yj)

[17, 34]:

Fsoc
x ¼ Ae� �=B 1

2

xi � xj

d
1 � cx

xi � xj

d

� �
ð4Þ
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Fsoc
y ¼ Ae� �=B 1

2

yi � yj

d
1 � cy

yi � yj

d

� �
ð5Þ

where d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi � xjÞ
2
þ ðyi � yjÞ

2
q

, � = d − 2R and R gives the “social radius” of a pedestrian.

cx ¼ vxi=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

xi þ v2
yi

q
, cy ¼ vyi=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

xi þ v2
yi

q
are the dimensionless components of the velocity vec-

tors of ith pedestrian. Following the Ref. [17] we use B = 0.3 m for the relaxation distance and

A = 2.1 m/s2 for the force amplitude. Here we vary the social radius R, which mimics the ten-

dency of people to keep larger inter-personal distance during the pandemic; the value of

R = 0.2 m was used in Ref. [17].

The third term Ffluc quantifies unavoidable randomness of the pedestrian motion, modeled

by a fluctuation force—a Gaussian white noise with zero mean. That is, hFfluc
i i ¼ 0 and

hFfluc
i ðtÞF

fluc
j ðt

0Þi ¼ �F2dijdðt � t0Þ; here we use �F2 ¼ 0:01.

The fourth term of the social force refers to the chirality of inter-personal interactions

which allows to explain lane formation [36]. We assume that if pedestrians are approaching

each other, each of them tends to turn right, avoiding the collision:

Fchir ¼ wYðvij � rijÞYð� vi � vjÞYðD � dÞN; ð6Þ

where Θ(x) is the Heaviside step function, N is a unit vector, perpendicular to the inter-pedes-

trian distance rij = ri − rj; it shows the direction of motion corresponding to the turn to the

right. The first step function in the r.h.s. of the above equation guarantees that two pedestrians

approach each other, the second function—that they move in opposite directions. Finally, the

third step function indicates that the pedestrians are within the range distances where the chi-

rality force acts. The unit vector N may be written as N = (rij × vij) × rij/|(rij × vij) × rij|. In our

simulations we assume that the chirality factor is χ = 0.14 m/s2 and the according distance is

D = 4 m [36].

The last term in the r.h.s of Eq (2) describes interactions of a customer with walls and obsta-

cles. In Ref. [17] the following form of the force from a wall or an obstacle has been proposed:

Fobs
i ¼ � rri w

Ui wðjri wjÞ;

where riw = ri − rw and rw is the position of that part of the wall, which is the nearest to ith
pedestrian. Uiw(r) is the according potential of the wall, modeled as an exponential [17].

Real walls or obstacles, however, correspond to a hard-core potential, hence a realistic

modeling requires a rather steep potential Uiw(r). This is not computationally convenient as it

requires too small time step when a pedestrian is close to a wall. Therefore, instead of modeling

the interaction of a pedestrian with a wall with a smooth potential, Uiw(r), we consider “colli-

sions” of pedestrians with the walls or obstacles. This significantly simplifies computations and

corresponds to the so-called “event-driven” modeling of granular matter, instead of force-

driven modeling, see e.g. [37]. We implemented the collision rule as follows. Let ri(t) be the

position of ith customer at time t, and the calculated position at time t + dt be ri(t + dt) (dt is

the computational time step). Let ri(t + dt) belong to an inaccessible area. Then the position

persists, ri(t + dt) = ri(t), while the velocity is updated according to the collision rule:

viðt þ dtÞ ¼ ðviðtÞ � tÞt � xðviðtÞ � nÞn; ð7Þ

where 0< ξ< 1 is the velocity recovery factor, N is the unit vector of external normal to the

wall and t is the tangential one. In our simulations we use ξ = 0.1. Eq (7) describes a damped
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reflection of the normal component of the velocity and persistence of the tangential compo-

nent; in the context of granular matter it corresponds to inelastic collision of a smooth particle

[37]. A schematic diagram of the terms in the equations of motion Eq (2) is given in Fig 1.

Note that the social forces model assumes the homogeneity of customers in terms of their

social distancing practices. Certainly this is an oversimplification, since humans differ in their

actions. Still, as long as average properties of a large group of people are addressed, this is not

important: variations in the individual behavior, associated e.g. with the inter-personal dis-

tance, are averaged out. Hence for the aims of our study, the social force model, calibrated on

numerous real-life phenomena, is adequate.

Customer strategy

For realistic simulations of customers behavior in a supermarket it is necessary to formulate a

customer strategy. The strategy comprises a set of locomotion rules which govern the agents to

change or to keep the direction of the desired velocity vdes. The rules depend on a couple of

factors, which we discuss in what follows.

The dependence of vdes on the location. The first set of rules prescribes a customer direc-

tion and a magnitude of vdes for different zones:

1. vdes in the entrance zone is directed along the entrance lanes used to enter the supermarket

(North direction for the studied setup, see Fig 2). In addition, the magnitude of vdes in the

entrance zone is scaled by a factor kE = 0.05 (that is, we use kE vdes in this zone). Such a

small scaling factor for the velocity vdes in the entrance zone is used to simulate individuals

queueing to enter; this prevents also crowding at the entrance when the visitor flux becomes

too high.

2. vdes in the zone of queue at the cashier desks is directed along the line of exit from the

supermarket (West direction for the studied setup, see Fig 2). The factor for the magnitude

of vdes in a queue is kQ = 0.03.

Fig 1. Illustration of the components of the composite mode: (a) Social force model—a schematic diagram of the terms of Eq (2). (b) Sketch of the customers

strategy—the behavior in the crossroad zones and near shelves. The examples of the desired (not actual) trajectories are shown. The notations are: red area—

crossroad zone, blue dashes—slow motion zone (near the shelves). Gray cylinders indicate walls, light-blue—shelves with goods. The colour of visitor (cylinders)

encodes the desired direction of motion: North (blue), South (red), East (yellow), and West (green), see also S1 Appendix.

https://doi.org/10.1371/journal.pone.0253835.g001
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3. In order to account for the slowdown in the customers movement near the shelves with

products, a scaling factor kS = 0.3 was used for desired velocity vdes.

4. vdes in all other places is uniformly distributed over the four cardinal directions (North,

East, South and West) and is not scaled.

The change of the vdes direction occurs, if a customer approaches a wall or an obstacle, if

he/she enters the “crossroads” zones (which are mainly the crosses, see Fig 2), or if he/she is

not able to move with the desired velocity. The change of the vdes depends also on the purchas-

ing stage detailed below.

Purchasing behavior and purchasing stage. The purchasing stage may be either com-

plete (C) or incomplete (Ic). In the former case all planned purchases have been made, in the

later one—some purchases are still to be done. The purchasing behavior obeys a set of rules.

Each customer which enters the supermarket receives an individual shopping list—a ran-

dom number of purchases πi to buy. This Gaussian distributed number, with the mean hπi
and standard deviation σπ, is defined for each visitor. The counter of purchases cpi is also

defined for each i and initially set to zero. Furthermore, if point of predicted position rp(t + tp)

= r(t) + vdestp is a shelving with goods, the purchases counter increases cpi :¼ cpi þ 1. The initial

purchasing stage of a customer is incomplete (Ic). When, however, cpi ⩾ pi, the purchasing

stage is converted to become complete (C). Customers in different stages C or Ic obey different

rules for changing vdes, as it discussed below. In our model, the mean number of purchases is

hπi = 40 units, and the standard deviation is σπ = 20 units.

Rules for the change of vdes. The change of the vdes direction takes place when

1. A customer approaches a wall or obstacle.

Each time step a customer predicts his/her future position after time tp rp(t + tp) = r(t) +

Fig 2. Snapshots of the studied system for different customer density ρ—The average number of visitors per unit area and desired social distance r0 for 2

minutes and 4 hours after the system initialization. The percentage of initially infected people I0 is 2%. Color code for pedestrian: blue—vdes is directed to North

(N), red—South (S), yellow—East (E), green—West (W), deep purple with black cap—initially infectious visitor, and with black cap—infected.

https://doi.org/10.1371/journal.pone.0253835.g002
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vdestp. If this point belongs to an area beyond a wall or inside an obstacle, the customer

revises the direction of his/her movement. With the probability of 0.4 the customer decides

to turn left, with the same probability to turn right, and with the probability of 0.2—to

make an U-turn. The forward prediction time tp = 1.5 s was used in our simulations.

2. A customer, in a purchase stage Ic, enters “crossroads” zones (Rules A)

If a pedestrian that continues the purchasing, enters a crossroad zone, he/she decides with

some probability Pcd to change the direction. Namely, he/she turns right, or left with the

equal probabilities 1

2
Pcd, or continues to go straight ahead with the probability (1 − Pcd). If

the decision to change the direction is made, then this is performed in two steps. Firstly,

when the customer enters the crossroad zone—the desired velocity vdes changes by 45˚ in

the direction chosen. Secondly, when he/she exits the crossroad zone—the direction of vdes

additionally changes by 45˚; this results in a complete turn by 90˚. This is illustrated in Fig

1, see also S1 Fig in S1 Appendix. The modulus of the vector vdes remains unchanged. We

used Pcd = 2/3 in our model. Examples of desired, as well as actual customers trajectories

are shown in S1 Fig in S1 Appendix.

3. A customer, in a purchase stage C, enters “crossroads” zones (Rules B)

If a customer that has completed the purchasing, enters a crossroad zone, he/she obeys the

following rules. If a customer enters a crossroad zone from the southern (S) or northern

(N) direction (recall that the cashier desks are located at the West border, see Fig 2), he/she

makes a decision with a probability of Pcd = 2/3 to turn towards the cashier desks, otherwise

he/she continues to move straight. If a customer enters the crossroad, moving away from

the cashier desks, he/she turns by 90˚ to the left or to the right (i.e. to S or to N), with the

probability of Pcd; otherwise with the probability (1 − Pcd) he/she turns towards the cashier

desks (i.e. toward W) and exits. If a customer enters the crossroad zone, moving towards

the cashier desks and exits (i.e. toward W), he/she turns by 90˚ left or right (i.e. to S or N)

with the probability of Pcd, or persists moving with the probability (1 − Pcd) in the same

direction.

4. A customer lacks patience to stand and wait, or to move too slowly.

For a more realistic description of people’s behavior in a case of congestion, which hinders

their motion in the desired direction, we have introduced a counter of customer patience. It

is implemented as follows:

• A float-value counter of patience Pi is defined for each ith pedestrian, the unit of patience

Pi is a time unit (second), an initial value is zero.

• At each timestep t the scalar product of ith customer actual speed vi and the desired one

vdesi is calculated. If at the current step the inequality

ðvi � vdesi Þ < kdðvdes
i Þ

2
; ð8Þ

where the coefficient kd < 1 is a downtime factor, is satisfied, then the patience counter Pi

of ith is increased by timestep dt (Pi ≔Pi + dt), else the counter is reset to zero Pi ≔ 0.

• If the patience of the customer is overflowed, i.e. reaches a threshold value Pmax, the cus-

tomer revises the direction of his/her movement vdesi : Equally with, a probability of 1/4, the

pedestrian either continues trying to move in previously desired direction, or chooses a

new one from the other of the three remaining cardinal directions. After that the patience

counter of ith pedestrian is reset to zero Pi ≔ 0.

The introduction of such a counter into the model allows a pedestrian which stuck in a
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congestion to “change their mind” and go back or go around it. We believe that this is an

important feature of a customer strategy, which allows an adequate modeling, especially,

when the number of customers in a supermarket is not small. The downtime factor kd =

0.2 and Pmax = 7 s were used in our simulations.

5. A customer gets to the end of the queue to the cashier or arrives at the exit

In this case the customer is removed from the supermarket and another customer randomly

added to the entrance, to keep the average density of customers constant.

The elements of the customer strategy are illustrated in Fig 1.

Model of the infection transmission

We assume that initially I0% of customers in the supermarket are infected and can infect other

visitors. Let jth pedestrian be infective. We propose the following model of the infection trans-

mission for two pedestrians with the coordinates ri, rj and velocities vi, vj:

Pinf ¼ ½Ainf
iso þ Ainf

anisoYð� ðvj � viÞ � rijÞ�kmask
j e� rij=k; ð9Þ

where Pinf is the probability to transmit the infection per unit time (i.e. Pinf dt gives the proba-

bility to get infected during the time interval dt). It comprises two components—the isotropic

and anisotropic one, and Ainf
iso , Ainf

aniso are the respective non-negative coefficients. The former

term, with Ainf
iso , describes the isotropic spread of infection, independently of the relative veloci-

ties of two individuals. The latter one, with Ainf
aniso, describes the enhanced infection transmis-

sion when the pedestrians move towards each other; in this case the unit Heaviside step

function Θ(�) is non-zero. rij = ri − rj denotes the inter-pedestrian vector and vij = vi − vj—

their relative velocity. The coefficient kmask
j quantifies the reduction of the infection transmis-

sion by a medical mask (mask factor). It equals 1, if an infectious pedestrian j does not wear a

mask and and kmask
j ¼ cmask < 1, if the mask is used. Finally, κ is the characteristic infection-

transmission length.

The above model is physically motivated and based on the airborne transmission mecha-

nism, which has a strong support for the case of COVID-19 [3, 38, 39]. Indeed, the probability

to get infected depends on the amount of the infectious substance received by a healthy person

in a contact with an infectious one. The infectious person exhales permanently air with aerosol

droplets containing the virus. Hence, the amount of transmitted infectious substance (droplets

with virus) is proportional to the duration of the inter-person contact [15] and concentration

of the infected aerosol inhaled by the healthy person. Obviously, this concentration decays

with the increasing distance rij from the infectious individual. To obtain a functional form of

this dependence is very challenging, as multiple random processes are involved. Therefore, we

adopt here a computationally convenient exponential model. That is, we assume that the prob-

ability to get infected per unit time (associated with the concentration of inhaled aerosol)

decreases with the increasing inter-personal distance rij exponentially. The characteristic

length κ quantifies this decay. Furthermore, according to the available statistics, the wearing a

medical mask reduces the probability of contracting various respiratory infections, including

COVID-19, by a factor of about 1.8 [40]. Based on this we set the mask factor cmask = 0.5.

As it commonly accepted now, respiratory infections can be transmitted through droplet

particles which diameter is order of micrometers (μm) [41]. The droplet particles with a size

less than 5 μm can remain in the air for a long period of time, transmitting the infection over

distances more than 1 m, while larger particles with a diameter of the order� 10 μm (so called,

“respiratory droplets”) can transmit the infection if the inter-personal distance is about 1 m or

less [42]. Data on COVID-19 transmission indicates that the virus is primarily transmitted
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between people through respiratory droplets and contact routes [38, 39, 43, 44]. For this rea-

son, the characteristic distance of person-to-person infection transmission, we used in our

model, has an order of 1 m. For the sake of simplicity and due to the lack of data to parameter-

ize the infection transmission we also used Ainf
iso ¼ 0:01, Ainf

aniso ¼ 0. Note that neglecting the

anisotropic term we do not expect that it has a significant impact. Moreover, we expect that

the contribution of this term may be accounted by re-normalizing the isotropic factor Ainf
iso .

With the chosen characteristic length κ = 2/ln 100� 0.4343 m the probability to transmit

an infection decreases by a factor of 100 at 2 m distance. Additionally, a cutoff distance for

infection transmission rinfcut ¼ 4 m was utilized, since respiratory droplets can hardly overcome

such a distance.

Only initially infected people can infect other visitors of the supermarket, and newly

infected people are not infectious. In our simulations approximately half of infectious visitors

wear medical mask.

Although the above parameters of the infection transmission model are not calibrated to

COVID-19 we expect that with the use of these parameters the most prominent features of the

infection transmission in crowded places may be revealed. Indeed, the chosen parameters

comply with the observed characteristic lengths for spreading of aerosol droplets carrying the

infection.

Simulation detail

We considered the system with a constant number of people N in the supermarket. Hence

the average number density of customers ρ = N/Sshop (Sshop is the total area of the supermar-

ket excluding shelf and wall areas) is constant, ρ = const. At the first stage of the system ini-

tialization, the number of visitors N = ρ Sshop was set, corresponding to the chosen values of

density ρ.

We designed three supermarket models having different geometry; a typical supermarket

geometry used in our simulations is depicted in Fig 2. The other schemes and their detailed

description are provided in the S3 and S4 Figs in S1 Appendix. At the initialization stage the

customers are uniformly distributed over the free area of the supermarket.

For the numerical integration of the equations of motion (1) the simple Euler algorithm has

been used. This algorithm is fast and not computationally expensive, since the pedestrian

velocity is limited by 1.3 of vdes and the forces are relatively soft. Program realization of the

algorithm including post-processing was made using C/C++ programming language (the

developed code with all necessary data files are available via link https://github.com/

AATsukanov/Infection-Transmission-Model-2021), a 3D-visualization of the results was per-

formed with OVITO package [45].

Each point in the plot(s) corresponds to a single run of 144 000 time steps with dt = 0.1 s,

which corresponds to the modelling of the supermarket for about 4 hours. The reported values

are typically the time-averaged quantities over the last half of a simulation run.

Simulation detail and the values of the parameters of the model can be found in Table 1 as

well as in S1 Appendix.

Results and discussion

The distribution of inter-customer distances

The average distance between customers is one of the key factors to control the infection trans-

mission. This distance is mainly determined by the social radius R and pedestrian density ρ.

Recall that the social radius R in Eqs (4) and (5) determines the strength of the inter-person
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repulsion, that is, an intention of a person to keep apart from another one. Due to many factors

the interpersonal distance is a randomly varying quantity. Hence it is worth to analyze its sta-

tistical distribution. It is quantified by g2(r), so that the average number of customers within

the distance interval (r, r + dr) from a randomly chosen customer reads ρg2(r)dr. This function

is defined in the same way as a pair distribution function in the condensed matter physics, see

e.g. [46]. For the two-dimensional case, addressed here, this function was computed as follows.

For each customer i (i = 1, . . ., N) a number n of other customers j (i 6¼ j) inside a ring of radius

r and thickness dr, have been computed and divided by the area of the ring. The averaging

over all customers i was then performed. The peak of g2(r) at r = r0 characterizes the most

probable distance between two nearest customers. In what follows we call r0 the “social dis-
tance”. Note that while R is a model parameter, r0 may be measured in experiments, therefore

the value r0 will be used in the discussion below, instead of R. Fig 3 illustrates the dependence

of g2(r) and r0 on the density and social radius.

As it may be seen from the Fig 3, at the intermediate customer density ρ = 0.1 m−2 the most

probable distance between customers increase with the social radius. The mean-least square fit

yields the linear dependence,

r0ðRÞ ’ 1:9 R for r ¼ 0:1 m� 2:

At the same time a rather weak dependence of r0 on the density has been observed: While the

Table 1. Parameters of the composite model.

Parameter Value Description

τ 0.5 s velocity relaxation time, Eq (3)

vdes 1.34 m/s2 module of the desired velocity, Eq (3)

vmax 1.3 � vdes maximal actual velocity

kE 0.05 factor for vdes in the entrance zones (“E”)

kQ 0.03 factor for vdes in a queue (“:”)

kS 0.3 factor for vdes in slow motion zones (“.”)

ξ 0.1 velocity recovery factor, Eq (7)

A 2.1 m/s2 inter-person repulsion force amplitude, Eqs (4) and (5)

B 0.3 m inter-person relaxation distance, Eqs (4) and (5)

χ 0.14 m/s2 magnitude of the chirality force, Eq (6)

D 4 m chirality force cutoff distance, Eq (6)

hπi 40 units mean number of purchases in the purchase list

σπ 20 units standard deviation for number of purchases

tp 1.5 s forward prediction time (see Rules for the change of vdes)

P 0.4 probability to turn left/right, approaching wall or obstacle

Pcd 2/3 probability to change the direction in a crossroad zone

kd 0.2 downtime factor for a customer patience, Eq (8)

Pmax 7 s the threshold level of a customer patience

Ainf
iso

0.01 coefficient for isotropic term, Eq (9)

Ainf
aniso

0 coefficient for anisotropic term, Eq (9)

κ 0.4343 m characteristic infection-transmission length, Eq (9)

cmask 0.5 mask factor, Eq (9)

probability to transmit infection, Eq (9)

rinfcut 4 m a cutoff distance for infection transmission

dt 0.1 s integration time step

T 4 h simulation run duration (144000 timesteps)

https://doi.org/10.1371/journal.pone.0253835.t001

PLOS ONE How risky is it to visit a supermarket during the pandemic?

PLOS ONE | https://doi.org/10.1371/journal.pone.0253835 July 1, 2021 10 / 18

https://doi.org/10.1371/journal.pone.0253835.t001
https://doi.org/10.1371/journal.pone.0253835


density varies by a factor of more than 3 (from ρ = 0.06 m−2 to ρ = 0.20 m−2), the values of r0

varies only by about 5% (see the inset in Fig 3b).

Note, that from everyday observations one expects that the average distance between cus-

tomers would be inversely proportional to their density. This expectation refers, however, to

the case of large densities, when it is not possible to maintain a comfortable social distance

inside a crowd. In pandemic times, such high densities are not achieved due to imposed

restrictions on the number of customers in a shopping area. For this reason, we limited density

ρ from above by 0.2 m−2, which generally speaking, is marginal with respect to safety. In this

range of densities, the desired social distance rmax
0

is practically independent on ρ, which is

clearly seen in the inset of Fig 3b.

Time spent in a supermarket

The time spent by a customer in a supermarket is an important factor for the infection spread.

Hence it is worth to know its dependence on various parameters. Besides, this quantity may

indicate the adequacy of the model. Indeed, it may be compared with the everyday observation

value, expected to be of the order of tens of minutes. The time spent in a supermarket com-

prises a time spent in shopping room and a time spent at the cash desk, including a queue.

For fixed parameters, such as the geometry and area of the shopping room, number of

cashiers and time spent at the cash desk, the average time T0 is some function of the density ρ
and desired social distance r0. Similarly, the distribution of T0 (as the random quantity) is also

a function of these quantities. The graphs in the Fig 4a illustrate the according dependence

T0(ρ) at different r0.

As it may be seen from Fig 4a the average time T0 spent in the store increases with increas-

ing density and social distance. For instance, for the desired social distance r0 = 1.5 m a three-

fold increase of density ρ from 0.06 to 0.20 m−2 results in the increasing time from 24 to 47

minutes. This outcome reflects the fact that the desire of the customers to keep far apart from

each other slows down the purchasing process.

Fig 3. The distribution of inter-customer distances specified by the radial distribution function g2(r) for different social radii R. (a) The g2(r) for the typical

density ρ = 0.1 m−2; hm indicates the passage width. (b) The dependence of the peak location r0 (indicated in panel (a)) on R. The least square fit gives r0’ 1.9 R for

ρ = 0.1 m−2. With increasing density ρ the peak location slightly shifts towards smaller distances, which may be neglected for the addressed range of parameters (see

the inset).

https://doi.org/10.1371/journal.pone.0253835.g003
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In Fig 4b the distribution of the time spent by the purchasers in the supermarket are pre-

sented for ρ = 0.2 m−2, r0’ 1.5 m. The distributions have non-symmetric form with a long tail

for large T0. The results also indicate that the simulation time of 4 hours is long enough to

obtain the representative quantities.

The analysis of the mean time T0 for different supermarket geometries shows similar

dependencies, which indicates that the geometry is not a key property for the studied quanti-

ties (for more detail see S5 Fig in S1 Appendix).

The customer flow

The customer flow defines the economic efficiency of a supermarket. Therefore it is important

to understand the factors which impact the current to avoid the unnecessary restrictions which

can reduce it. The total number of customers is constant in our simulations. Hence, whenever

a purchaser leaves the store, an additional customer appears at the entrance zone, that is, the

flux out and the flux in, are equal. In our model we compute the time-average customer flux as

the total number of visitors leaving the store (from all checkouts) divided by the entire simula-

tion time J = Nout/T, as well as the instant current Jins(t) = ΔNout(t, Δt)/Δt. Here ΔNout(t, Δt)/Δt
is the number of visitors, leaving the store during the time interval [t, t + Δt] (Δt was taken 10

min). We are mainly interested in the average flux J, depicted in Fig 4c; data for the instant flux

Jins(t) is given in S6 Fig in S1 Appendix. Fig 4c illustrates the dependence of J on the customer

density for different social distances. As it follows from the figure, the average customer cur-

rent monotonically increases with the customer density and decreases with the social radius.

Such qualitative dependence has been expected. Still, one comes to an interesting conclusion.

When the density, and hence the number of customers in the supermarket doubles, the cus-

tomer current increases only slightly, in the range of 10–20% (see also S6a Fig in S1 Appendix).

From the fundamental point of view such a weak dependence of the flux on density is in a

sharp contrast with the analogous process of common matter—the effusion of a gas into vac-

uum. Here the flux is proportional to the density (see e.g. [47]). From the practical point of

view, these findings imply that the presence of a large number of customers in a shopping area

is not optimal, neither for sales efficiency nor for the safety at the pandemic conditions.

The infection spread in a supermarket

Now we analyze the impact of the key parameters, such as density and the desired social dis-

tance on the infection spread in the shopping area. We assume that I0 is a fraction of initially

Fig 4. The average time T0, spent by a customer in the supermarket. (a) T0 as a function of density ρ for different social distances r0. The star indicates the

parameters corresponding to the distribution of average times in panel (b). (b) Distribution of a time spent in the supermarket for ρ = 0.2 m−2, r0’ 1.5 m; the

arrow indicates the mean time T0. (c) The average customer flux J as a function of the customer density ρ for different social distances r0. Error bars for r0 = 1.5 m

illustrate the typical accuracy for J.

https://doi.org/10.1371/journal.pone.0253835.g004
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infected visitors, who may transmit the infection to a healthy person. Hence the number of ini-

tially infected customers is NI0 and of initially healthy—N(1 − I0). In a course of time some

healthy visitors become newly infected due to contacts with the initially infected ones; they

however do not spread the infection further. In the simulations we keep the fraction I0 con-

stant—when an initially infected customer leaves the supermarket, a similar customer appears

at the entrance. When an initially healthy customer leaves the place, a healthy visitor enters,

independently, whether the predecessor got infected or not. We observe that after a transient

time of about 80 minutes the system attains a steady state (for more detail see S7 Fig in S1

Appendix). In this state the number of infected customers—the initially infected and newly

infected, remains constant. Referring for detail to the supplementary sections IV and V in S1

Appendix we present here the probability to get infected X, defined as a ratio of newly infected

and initially healthy visitors:

X ¼
Nnew

infected

N ð1 � I0Þ
:

The value of X quantifies the risk to go to a supermarket; that is, it gives the probability that a

healthy person returns home infected. It is important to know how this risk depends on

parameters as r0 and ρ. The dependence of X on the customer density and social distance is

given in Fig 5a and 5b.

To assess the effect of wearing medical masks in comparison with the masks absence we

performed additional simulations for completely lacking masks for the case of ρ = 0.18 m2.

The results are presented by the green dashed line in Fig 5a. As it may be seen from the figure,

the absence of the medical masks leads to about two-fold increase of the risk to get infected.

Another important quantity, which characterizes the infection spread, is the number of cus-

tomers that get infected from a single initially infected visitor—the infection spread rate Λ:

L ¼
Nnew

infected

NI0

:

The dependence of this quantity on r0 and ρ is shown in Fig 5c.

All the results depicted in Fig 5 clearly indicate that the threshold value of the social distance

is r�
0
’ 1:5 m. For r0 � r�

0
both the probability get infected and the infection spread rate sharply

increase with increasing density. At the same time for larger social distances, r0 > r�
0
, a very

Fig 5. Kinetics of the infection spread in a supermarket. (a) Probability to get infected X as a function of social distance r0 for different customer densities. Full

lines—half of the customers wear medical masks; dashed line—the masks are lacking. Error bars, shown for ρ = 0.18 m−2, indicate a typical simulation accuracy. (b)

Two-dimensional diagram for the probability to get infected X versus r0 and ρ. It coincides with the diagram for the social price S(r0, ρ) for the unit profit

coefficient, a = 1 EUR. For other values of a a linear re-scaling is applied (for more explanation see the text). (c) The infection spread rate Λ as a function of ρ for

different r0.

https://doi.org/10.1371/journal.pone.0253835.g005
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weak dependence of X and Λ on density is observed. The practical consequence of this obser-

vation is the following: As long as the condition for the social distance r0� 1.5 m is fulfilled

the density does not have a noticeable impact on the infection spread. Note that the particular

r�
0

value is a product of the choice of model parameters, primarily such as the characteristic

length κ and the factor Ainf. Although it should not be taken as a result for immediate applica-

tion in real practice, we expect that the “true” value will not differ much from this one.

An impact of the supermarket geometry

To assess an impact of the supermarket geometry on the infection spread we explore two

additional supermarket models with different spatial organization. Namely, we vary such

important spatial elements as the number of crossroads and width of the thinner passages

(“bottleneck” width). The detailed maps are presented in the S1 Appendix. The probability to

get infected X as a function of density for different r0 is shown in Fig 6 for the three studied

geometries. As it follows from the figure, for r0 > r�
0
¼ 1:5 m the infection spread does not

depend on the geometry of the shopping place. However for smaller social distances the

dependence of X on density becomes significant for the densities larger than 1.3 m−2. This is

another very important conclusion which may be useful for the elaboration of safety rules for

crowded places—the geometry of a place is of a minor importance, provided the optimal social

distance is kept.

We have also checked an impact of the customer strategy. Namely, we consider the case

when the purchase state C (a purchase list is completed) is ignored and a customer always fol-

lows the rules associated with the purchase state Ic (a purchase list is not completed). The latter

Fig 6. Probability of getting the infection, visiting a model supermarket as a function of ρ and r0 as parameter. The results are presented for different

supermarket models: map 1—base (a), map 2 (b) and map 3 (c). Schemes of all the supermarket models are presented in S2–S4 Figs in S1 Appendix. Dashed lines

represent results, obtained for simulations without a changing of purchasers behavior in crossroads to Rules B (as if purchases list is infinite πi =1). Significant

increase of X with growing ρ is observed in all three cases for smallest social distance r0 = 0.4 m and turned on Rules B. This result can be explained by

comparatively large local density of customers near the cashier desks.

https://doi.org/10.1371/journal.pone.0253835.g006
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implies that the preferred direction towards the exit, associated with the state C is excluded.

While the strategy is not important for large social distances r0 > r�
0
¼ 1:5 m, it becomes

important for the smaller ones. This may be explained by the increasing density in the cashier

zone due to the customers in the state C. For small social distances this causes the increase of

the infection spread. Similar conclusion may be done for the dependence of the social price in

the geometry. It is of minor importance as long as the conditions for the optimal social dis-

tance are fulfilled, see S1 Appendix.

The social price

The social price for the supermarket business may be defined as a number of infected people

per a unit earned profit. For a customer flux J, the average amount of money spent by all cus-

tomers per unit time reads, Jhπ, where p is the average price of one purchase and hπi is the

average purchase list per a customer. Then the profit earned per unit time by the supermarket

is αJhπ, where the coefficient α relates the earned money to the profit. At the same time, the

number of newly infected customers per unit time is given by X(1 − I0)J, which reflects that

only initially healthy customers may be infected. Hence the social price may written as

S ¼
Xð1 � I0ÞJ
a p J hpi

¼ a ð1 � I0ÞX � aX; ð10Þ

where I0 has an order of a few percent and we introduce a profit coefficient a−1 = αphπi. The

dependence of the social price on the social distance and customer density, due to the small

value of I0 in comparison with 1, is almost equal to X(r0, ρ) up to a constant profit coefficient

a. The social price as a function of the social distance and customer density S(r0, ρ) coincides

with X(r0, ρ) for the unit profit coefficient, a = 1 EUR, see Fig 5b. This figure suggests the pol-

icy, how the supermarket business should be organized in order to pay the minimal social

price. For instance, if the social price of S = 0.01 inf/EUR seems to be acceptable, the customer

density ρ should not exceed 0.12 m−2, together with social distance r0, not less than 1.5 m.

When the average density increases up to 0.2 m−2, the social distance should be not less than

�1.8 m, etc. Certainly, high densities are not recommended, as with increasing densities it is

very difficult for the customers to maintain the desired social distance.

Conclusions

An infection spread in a crowded place—supermarket was investigated, using a composite

model comprising three key components: (i) model of inter-customer interactions within a

paradigm of social forces, (ii) model of customer purchasing strategy, and (iii) model of the

infection transmission. An extensive numerical simulations were performed with the use of

standard social force model, which describes the intention of a person keep apart from another

one. It mimics his/her perception of the inter-personal distance and the according actions to

keep the distance above a desired threshold. This distance is determined, in its turn, by the

parameter of the social force R—the social radius. The larger R the larger the threshold dis-

tance. In our simulations we explore a wide range of R—from the standard value, to much

larger values, which mimics the conscious intention of people to be further from one another

for the safety reason.

We introduce a model-independent, objective criterion—the social distance r0, which may

be experimentally measured. It is defined by the location of the first peak of the distribution

function g2(r) of the inter-customer distances. We observe that for the range of parameters

used in our study r0 is mainly determined by the social radius R and hence is under a conscious

control of the customers.
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Three main qualitative conclusions follow from our study. Firstly, the infection spread rate

is determined by the desired social distance r0 (which is under a customer control) and only

weakly depends on the spatial density of customers. This holds true for a wide range of densi-

ties, provided the social distance is larger than the optimal one, which is r�
0
’ 1:5 m for our

model. Secondly, the infection spread rate is practically independent of the geometry of the

public space and of the purchase strategy, provided the social distance exceeds the optimal

one. Thirdly, the customer flux through the supermarket—the quantity characterising sales

efficiency depends rather weakly on the number of customers in the supermarket. This implies

the possibility to increase the safety of the customers, by decreasing their number in the super-

market, without sacrificing the business. We introduce the parameter which quantifies the

social price for supermarket business; it is equal to the ratio of the number of infected per unit

time supermarket visitors to the earned per unit time profit due to all supermarket visitors.

The dependence of this quantity on the social distance and customer density is also explored.

Although a complete statistical data for the model calibration is presently lacking, we

believe that the chosen parameters are quite realistic. We also believe that the qualitative results

reported here are important and will be the base for the elaboration of the scientifically-justi-

fied safety rules for other public places, such as transfer/transport hubs, airports, hospitals,

offices, etc.

Supporting information

S1 Appendix. Supporting information file—Contains all the supporting schemes and dia-

grams (S1–S7 Figs).

(PDF)
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