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Abstract: Dynamic functional network connectivity (dFNC) analysis is a widely used approach for 
studying brain function and offering insight into how brain networks evolve over time. Typically, dFNC 
studies utilized fixed spatial maps and evaluate transient changes in coupling among time courses 
estimated from independent component analysis (ICA). This manuscript presents a complementary 
approach that relaxes this assumption by spatially reordering the components dynamically at each 
timepoint to optimize for a smooth gradient in the FNC (i.e., a smooth gradient among ICA connectivity 
values). Several methods are presented to summarize dynamic FNC gradients (dFNGs) over time, 
starting with static FNC gradients (sFNGs), then exploring the reordering properties as well as the 
dynamics of the gradients themselves. We then apply this approach to a dataset of schizophrenia (SZ) 
patients and healthy controls (HC). Functional dysconnectivity between different brain regions has been 
reported in schizophrenia, yet the neural mechanisms behind it remain elusive. Using resting state fMRI 
and ICA on a dataset consisting of 151 schizophrenia patients and 160 age and gender-matched healthy 
controls, we extracted 53 intrinsic connectivity networks (ICNs) for each subject using a fully automated 
spatially constrained ICA approach. We develop several summaries of our functional network 
connectivity gradient analysis, both in a static sense, computed as the Pearson correlation coefficient 
between full time series, and a dynamic sense, computed using a sliding window approach followed by 
reordering based on the computed gradient, and evaluate group differences. Static connectivity analysis 
revealed significantly stronger connectivity between subcortical (SC), auditory (AUD) and visual (VIS) 
networks in patients, as well as hypoconnectivity in sensorimotor (SM) network relative to controls. 
sFNG analysis highlighted distinctive clustering patterns in patients and HCs along cognitive control 
(CC)/ default mode network (DMN), SC/ AUD/ SM/ cerebellar (CB), and VIS gradients. Furthermore, we 
observed significant differences in the sFNGs between groups in SC and CB domains. dFNG analysis 
suggested that SZ patients spend significantly more time in a SC/ CB state based on the first gradient, 
while HCs favor the DMN state. For the second gradient, however, patients exhibited significantly higher 
activity in CB/ VIS domains, contrasting with HCs’ DMN engagement. The gradient synchrony analysis 
conveyed more shifts between SM/ SC networks and transmodal CC/ DMN networks in patients. In 
addition, the dFNG coupling revealed distinct connectivity patterns between SC, SM and CB centroids in 
SZ patients compared to HCs. To recap, our results advance our understanding of brain network 
modulation by examining smooth connectivity trajectories. This provides a more complete 
spatiotemporal summary of the data, contributing to the growing body of current literature regarding the 
functional dysconnectivity in schizophrenia patients. By employing dFNG, we highlight a new 
perspective to capture large scale fluctuations across the brain while maintaining the convenience of brain 
networks and low dimensional summary measures. 
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1. Introduction 

Functional connectivity (FC) refers to the functional coactivation of brain activity between spatially 
segregated brain regions regardless of their apparent physical connectedness [1]. FC is most often 
measured during resting state fMRI as a statistical relationship (e.g., correlation) based on temporal 
similarities to study functional brain networks [1],[2],[3]. Building on the same concept, functional 
network connectivity (FNC), refers to the interaction between spatially separable, overlapping, 
temporally coherent brain networks (also known as intrinsic connectivity networks or ICNs) [4]. 
Traditionally, functional connectivity assumes a constant connectivity pattern over the data acquisition 
time period [5]. However, dynamic functional connectivity analysis has shown that far from being static, 
the functional networks captured with fMRI reveal brain fluctuations on the scale of seconds to minutes. 
These changes are often summarized as movements from one short term state to another, rather than 
continuous shifts [5], though such measures can also be easily represented via smoothly varying 
transitions [6], or as overlapping dynamic movies [7]. Dynamic functional connectivity has also 
demonstrated that the blood oxygenation level dependent (BOLD) signals measured during resting state 
include important spatio-temporal dynamic properties [8],[9]. Many studies have replicated such 
reproducible patterns of network activity that move throughout the brain [5], [9],[10]. 

The emergence of dynamic functional connectivity has revolutionized our ability to study underlying 
brain systems by providing information about the temporal evolution of brain connectivity and various 
types of brain dynamic properties [9]. There has been a growing interest in studying the temporal 
reconfiguration of brain functional connectivity suggesting that the spatial and temporal properties of 
neural activity interact through several spatiotemporal scales [11],[12]. The spatial dynamics of the brain 
constitute a multifaceted domain of inquiry within neuroscience. These dynamics pertain to the intricate 
patterns of functional connectivity and organization that underlie cognitive processes and behaviors 
[9],[13]. Functional networks, composed of spatially distributed brain regions, form the basis of these 
dynamics, and their organization reflects the underlying neural architecture [13]. Understanding the 
spatial dynamics of the brain is pivotal not only for advancing our fundamental knowledge of brain 
function but also for elucidating the etiology of neurological and psychiatric condition. 

Alongside these endeavors, recent years have witnessed empirical studies focused on a novel 
approach investigating the temporally static spatial topography of brain connectivity known as spatial 
gradients [14]. Recent research has also underscored the importance of cortical gradients [14], which 
reveal smooth transitions in connectivity patterns across the cortex. These gradients provide valuable 
insights into the spatial organization of the brain's functional networks, shedding light on their interplay 
and facilitating the identification of individual differences and alterations associated with neurological 
disorders [15],[16]. Adopting a macroscale perspective on cortical organization has already provided 
insights into how cortex-wide patterns relate to cortical dynamics [17]. 

Building upon this understanding, we propose two innovative approaches in our study. Firstly, we 
introduce subject-specific reordering of independent component analysis (ICA) networks (i.e., ICNs) 
based on the inter-component functional connectivity gradient (i.e., FNG). Cortical gradients help us 
understand the spatial organization of functional connectivity patterns across the brain. The use of low-
dimensional representations of functional connectivity provides a unified perspective to efficiently 
explain core organizing properties of the human cerebral cortex, linking specific regions, networks, and 
functions. Cortical gradients establish a framework to study brain organization and the covariation 
between spatial and temporal factors [15] through quantifying topographic principles of macroscale 
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organization [18], thus provide an insight into the neural basis of brain especially in terms of mental 
disorders [19]. By leveraging higher order statistics and spatial constraints, we automatically separate 
canonical networks and subsequently re-order them based on smooth gradients at the individual subject 
level. To put it simply, we initially identify the well-known brain networks, and then, we organize them 
in a way that ensures a seamless and gradual transition between these networks using gradients, all while 
considering the unique connectivity patterns of each individual subject's brain. This process allows us to 
create a more personalized and precise understanding of how these brain networks function in each 
person, considering individual variability. These two strategies are complementary, as ICA naturally 
identifies and separates reliable and replicable overlapping spatial networks (regardless of their 
topological smoothness) using higher order statistics, whereas gradient approaches focus on smoothly 
varying patterns which are typically orthogonal and ordered by variance. This approach enables a more 
spatially precise and personalized characterization of brain connectivity patterns while also leveraging 
higher order statistics in the original network determination. 

Secondly, we present the novel concept of dynamic gradient reordering, recognizing the need to study 
how the brain's functional organization changes over time. Most dynamic functional network studies 
assume fixed spatial maps and evaluate transient changes in coupling among independent component 
time courses [4],[20]. In contrast, cortical gradients offer an insight into the smooth and continuous 
transition of states across the brain by representing brain connectivity in a continuous, low-dimensional 
space to identify the brain functional hierarchies. Furthermore, they identify spatially distributed patterns 
of connectivity which reflect the underlying architecture of the brain [14], and how it dynamically 
reconfigures in response to different cognitive process, suggesting that the temporal dynamics tend to be 
shaped by the functional geometry [21]. By examining the dynamic nature of cortical gradients, we aim to 
open a window into the temporal dynamics of atypical macroscale organization across clinical conditions 
and provide insights into the flexibility and adaptability of brain networks. These innovations can 
potentially pave the way for a comprehensive investigation of the spatiotemporal organization of the 
human brain, offering a deeper understanding of its functional dynamics and potential implications for 
various neurological and psychiatric conditions.  

In addition, incorporating both spatial and temporal properties into the summarization step of 
functional connectivity analysis can be especially important in the context of complex mental illnesses 
such as schizophrenia since the dynamic nature of brain disruptions can be captured, accounting for 
inter-individual variability, and monitoring treatment responses, offering comprehensive insights into 
the disorder's pathophysiology and potential biomarkers. Schizophrenia is one of the most debilitating 
psychiatric disorders characterized by hallucinations, delusions, and trouble in thinking [22],[23],[24]. A 
growing body of evidence unraveled the alterations of functional connectivity within and between brain 
networks associated with the illness [20],[23],[25]. 

Traditional static functional connectivity analysis using task-based and resting-state functional 
magnetic resonance imaging has provided valuable insight into the aberrant connectivity caused by 
schizophrenia [26],[27]. These studies have identified disrupted connectivity within and between 
different functional networks, including the default mode network, salience network and executive 
control network [28]. However, these approaches have used static functional connectivity, omitting 
different states of brain dynamics. Furthermore, the alterations in task-related connectivity are often 
related to impaired task performance. 

Previous approaches to resting state dynamic functional connectivity in schizophrenia have shown 
significantly stronger connectivity between the thalamus and sensory network, and reduced connectivity 
between putamen and sensory network [20],[24],[4]. However, most existing studies regarding 
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schizophrenia focus on specific brain regions or networks rather than the whole brain or disregard the 
dynamic properties of the brain. 

In the context of schizophrenia, applying gradient-based approaches to dynamic functional network 
connectivity analysis holds great potential for expanding our understanding of the disorder [19]. By 
exploring the dynamic functional network connectivity gradients (dFNGs), we aim to uncover links 
between schizophrenia and the hierarchical organization and transition of functional brain networks. 

In this study we proposed a novel approach which aimed to investigate the temporal dynamics of 
functional network connectivity gradients and explore the alterations in connectivity gradients in a group 
of individuals with schizophrenia (SZ) in comparison with healthy controls (HC) matched with the 
patients in terms of age and gender. To our knowledge, no fMRI studies have focused on the dynamics of 
the whole brain organization using gradient-based approach, nor have they combined smoothly varying 
gradients with whole brain networks defined via ICA. To this end, we first compute the reordered FNC 
in static and dynamic sense, ordered by the variance explained in the initial functional connectivity 
matrix. k-means clustering is used to cluster the reordered dFNG into a set of distinct states, and finally 
several global dynamic metrics are computed and compared between groups.  
 
2. Materials and Methods 
2.1.  Participants 

We evaluate our framework on resting-state functional magnetic resonance imaging (rs-fMRI) data of 
a cohort consisting of 160 healthy controls (115 males, 45 females, mean age 37.03) and 151 age and 
gender-matched individuals with schizophrenia (115 males, 36 females, mean age 38.76). The subjects 
were recruited across seven different sites in the United States as a part of the Functional Imaging 
Biomedical Informatics Research Network. All patients included in the study had been diagnosed with 
schizophrenia based on the Structured Clinical Interview for DSM-IV-TR Axis I Disorders (SCID-I/P). 
Exclusion criteria for both schizophrenia patients and healthy volunteers included a history of major 
medical illness, contraindications for MRI, poor vision even with MRI compatible corrective lenses, an IQ 
less than 75, a history of drug dependence in the last five years, or a current substance abuse disorder. 
Patients with extrapyramidal symptoms and healthy volunteers with a current or past history of major 
neurological or psychiatric illness (SCIS-I/NP) or with a first-degree relative with Axis-I psychotic 
disorder diagnosis were also excluded. All the participants provided written informed consent prior to 
scanning in accordance with the Internal Review Boards of corresponding institutions.  
 
2.2. Neuroimaging Data and Preprocessing 

Imaging data were acquired on a Siemens Tim Trio 3T scanner at six of the seven sites, and the one 
other site used a 3T General Electric Discovery MR750 scanner for acquiring the data. A total of 162 
volumes of BOLD rs-fMRI were collected using echo planner imaging sequences (TR/TE = 2 s/ 30 ms, 
FOV = 220 mm, FA = 770, 32 sequential ascending axial slices of 4 mm thickness and 1 mm skip). All 
participants were instructed to keep their eyes closed during the scanning.  

rs-fMRI data were preprocessed using the statistical parametric mapping 
(SPM12, http://www.fil.ion.ucl.ac.uk/spm/) toolbox within Matlab 2020b. The first five scans were 
removed for the signal equilibrium and participants’ adaptation to the scanner’s noise. We performed 
rigid body motion correction using the toolbox in SPM to correct subject head motion, followed by the 
slice-timing correction to account for timing differences in slice acquisition. The rs-fMRI data were 
subsequently warped into the standard Montreal Neurological Institute (MNI) space using an echo-
planar imaging (EPI) template and were slightly resampled to 3 × 3 × 3 mm3 isotropic voxels. The 
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resampled fMRI images were further smoothed using a Gaussian kernel with a full width at half 
maximum (FWHM = 6 mm). 

 

2.3. Spatially Constrained Independent Component Analysis 

Independent component analysis (ICA) is a data-driven method capable of recovering a set of 
maximally independent sources from multivariate data [29]. This ability has contributed to the use of ICA 
as a widely-used exploratory tool to study functional brain networks [29]. However, one of the challenges 
that is found in the standard ICA is “order ambiguity”, which indicates that the order of the independent 
components (ICs) estimated by the standard ICA is arbitrary [30]. Additional prior information can 
contribute to the solution to this problem. Spatially constrained independent component analysis uses 
anatomical priors or templates to extract functional brain networks which are similar to the templates and 
maximally independent [31]. Spatially constrained ICA is thus a hybrid approach which allows 
individual subject ICA analysis while also providing component ordering and correspondence among 
subjects. This approach leverages the inherent spatial information to guide the decomposition of 
functional data into meaningful spatially coherent components [31], [32]. 

After data preprocessing, spatially constrained ICA was run on functional data for both control and 
patient groups using the Neuromark fMRI 1.0 template as implemented in the GIFT toolbox 
(http://trendscenter.org/software/gift) [8] and also available for direct download 
(http://trendscenter.org/data), resulting in 53 intrinsic connectivity networks (ICNs). The Neuromark 
fMRI 1.0 is an automatic ICA-based template which is capable of estimating brain functional networks 
from functional magnetic resonance imaging to identify reproducible fMRI markers of brain disorders 
[33]. Figure 1 indicates the seven subcategories into which the ICNs are partitioned: subcortical (SC), 
auditory (AUD), visual (VIS), sensorimotor (SM), cognitive control (CC), default mode network (DMN) 
and cerebellar (CB) components. 
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Figure 1. Composite maps of the 53 identified intrinsic connectivity networks (ICNs), divided into seven functional domains. 
subcortical (SC), auditory (AUD), sensorimotor (SM), visual (VIS), cognitive control (CC), default mode network (DMN) and 
cerebellar (CB) network. 

2.4. Functional Network Connectivity Gradients 

We computed the static functional network connectivity (sFNC), described as the covariation between 
ICN full timeseries for each subject, resulting in a 53x53 matrix. Gradients along the sFNC space were 
computed using the diffusion map approach [18] implemented within the BrainSpace toolbox 
(https://brainspace.readthedocs.io/en/latest/), which generates efficient representation of complex 
geometric structures [34], followed by resorting the matrix based on its gradient value. A gradient is an 
axis of variance along which areas fall in a spatially continuous order [18]. Areas that resemble each other 
with respect to the feature of interest occupy similar positions along the gradient [35]. Using a diffusion 
map embedding algorithm that reduces data dimensionality through the nonlinear projection of the 
vertices into an embedding space, we identified gradient components, estimating the low-dimensional 
embedding from the high-dimensional connectivity matrix.  
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Recent empirical studies propose a non-static nature of functional connectivity among different brain 
regions [9]. To date, the most widely used strategy for examining dynamics in resting state functional 
network connectivity has been a sliding window approach [8],[5],[10]. This approach involves dividing a 
continuous timeseries of brain activity into overlapping or non-overlapping windows of fixed duration. 
By sliding the window along the timeseries, functional connectivity can be computed within each 
window, capturing the temporal evolution of brain dynamics [8],[10],[36]. Windowed functional network 
connectivity (windowed-FNC) is computed for each subject using a sliding window approach with a 
window size of 44 seconds (22 TRs) and strides of 2 seconds (1 TR) [10]. Similar to the static analysis, 
cortical gradients were computed for each windowed-FNC using the BrainSpace toolbox and reordered 
subsequently using the diffusion map associated with each time window.  

Furthermore, we also developed an approach to track the reordering trajectory, allowing us to create 
an inter-component ordering synchrony associated with each component for each subject. In our 
analytical procedure, we begin by generating a sort order matrix for each subject, providing information 
on the ordering of independent component networks (ICNs), capturing the temporal dynamics of ICN 
reordering. To assess the level of synchronization across these dynamic changes, we compute cross-
correlations across all time lags, followed by extracting the maximum of all lags. This extracted value is 
subjected to a comparative analysis, allowing us to discern potential differences in the temporal 
reconfiguration of ICNs between patients and control subjects. 

2.5. Clustering and Dynamic Functional Network Connectivity Gradient Measures 

We used k-means algorithm to cluster the dFNG timepoints, partitioning the data into five distinct 
clusters. The optimal number of clusters was estimated using the elbow criterion, consisting of 
computing the explained variance as a function of the number of clusters and picking the elbow of the 
curve [20]. The whole procedure is depicted in Figure 2. k-means clustering is a widely used 
unsupervised algorithm, aimed to partition a given dataset into k distinct clusters based on the similarity 
of data points. The core concept of k-means clustering involves finding the centroids of k clusters and 
assigning the data points to the nearest centroid. 

Each FNC gradient represents a weighted combination of the component maps; however, the 
computed gradients should be corrected for sign ambiguity, since the gradients computed separately 
from different individuals may not be directly comparable due to sign ambiguity of the eigenvectors. To 
this end, we utilize group-average gradient matrix as a reference and reverse the sign of each gradient to 
induce positive correlation before applying clustering analysis. To visualize the weighted combination of 
the component maps, a spatial map for static functional connectivity gradient (sFNG) was created by 
thresholding and normalizing each component map (i.e., the largest voxel value equal to one), multiplied 
by its sign-corrected gradient value and summing them together. We then repeat for all windows to 
create the dFNG spatial maps. Using the gradient vectors associated with each time point and each 
subject as the input to k-means clustering, we identified clusters with similar sorting profiles and used 
the normalized cluster centroids as the weight for the component maps to create spatial maps. 

Complementary to examining dynamic changes in connectivity patterns, typical dynamic summary 
measures [8] such as occupancy, dwell time, and periodicity were calculated to capture the key aspects of 
dFNG. Occupancy quantifies the number of timepoints each subject spends in each state, providing 
insight into the stability of a functional state. Dwell time measures the duration of time spent in each state 
continuously before transitioning to another state, reflecting the temporal persistence of a particular 
functional state. Periodicity, however, allows us to assess the oscillatory behavior across brain states.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2024. ; https://doi.org/10.1101/2024.03.06.583731doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.06.583731
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

Figure 2. Schematic depicting the proposed method. The fMRI data was preprocessed using standard procedures, and then spatially 
constrained ICA was run on the data using the Neuromark fMRI 1.0 template, resulting in 53 ICNs. Next, FNC was calculated using 
sliding window approach. A diffusion map (gradients) was computed for each windowed-dFNC. Each dFNC matrix was reordered 
based on its gradient, followed by k-means clustering of the reordered dFNC. This resulted in 5 dynamic FNC gradients (dFNGs). 

 

3. Results 

We propose a novel approach to leverage the use of higher-order statistics to capture brain networks, 
coupled with the calculation of gradients to identify a network ordering which maximizes the 
smoothness in the connectivity. This is then extended to a dynamic connectivity approach, capturing the 
changes in connectivity over time. We also propose several summary measures and compare these 
between schizophrenia patients and healthy controls. 

 
3.1. Group Differences in static Functional Network Connectivity Gradient (sFNG) 

After computing the sFNC for each subject, defined as the temporal correlation between ICNs full 
time courses, as well as the sFNG, the average sFNC and sFNG for 151 schizophrenia patients (SZ) and 
that of 160 healthy controls (HC) are computed. Differences in sFNC and sFNG between schizophrenia 
patients (SZ) and healthy controls (HC) were assessed via two-sample t-test. Figure 3 is illustrative of the 
average of original sFNC for all subjects (a) and the average of reordered FNC based on gradient 1 (b) 
and gradient 2 (c). 
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Figure 3. The average of a) original static FNC, b) reordered FNC based on gradient 1, and c) reordered FNC based on gradient 2. 

 

 

The average of the sign-corrected cortical gradients was computed for patient (SZ) and control (HC) 
groups and plotted in 2D space and assigning them color. These colors can be informative about the 
multidimensional interaction between gradients. For HC the three lines correspond to VIS (green), 
SC/AUD/SM/CC/DMN/CB (blue) and CC/DMN (red) networks. Regarding the SZ, the three lines 
correspond to VIS (green), SC/AUD/SM/CB (blue) and CC/DMN (red) networks. Figure 4 provides 
information about the first two cortical gradient interactions. 
 

(a) (b) (c) 

 
  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2024. ; https://doi.org/10.1101/2024.03.06.583731doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.06.583731
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure 4. Visualization of the interaction between the average of the first two cortical gradients for a) patients (SZ) and b) control 
(HC) groups in 2D view. The three lines correspond to VIS (green), SC/AUD/SM/CC/DMN/CB (blue) and CC/DMN (red) networks 
for HC and VIS (green), SC/AUD/SM/CB (blue) and CC/DMN (red) networks for SZ. 
 
 
Regarding the sFNC analysis, compared to the HC, the SZ group showed significant stronger 
connectivity between SC, VIS, and SM networks; However, significantly weaker connectivity was 
observed between AUD, SM and VIS networks. As depicted in Figure 5, the schizophrenia patients (SZ) 
showed significantly weaker connectivity in the subcortical (SC) and cerebellar (CB) domains. 
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Figure 5. a) The average reordered FNC based on the first gradient associated with schizophrenia patients (SZ), b) the group 
differences between schizophrenia patients (SZ) and healthy controls (HC) defined as −10	 log!"(𝑝𝑣𝑎𝑙𝑢𝑒) × 𝑠𝑖𝑔𝑛(𝑡𝑣𝑎𝑙𝑢𝑒), and c) the 
spatial map associated with the difference between HC and SZ. Regarding the sFNG analysis, the SZ group showed 
hypoconnectivity in subcortical (SC) and cerebellar (CB) domains. 
 
 

3.2. Group Differences in dynamic Functional Network Gradient (dFNG) 

Figure 6 represents the cluster centroids associated with dFNC, and dFNGs based on the first and 
second gradient. A two-sample t-test was applied to investigate the difference in occupancy and dwell 
time of each state.  

 
 

(a) (c) 

 

 

(b) 
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Figure 6. Schematic depicting the state transition (cluster centroids) for a) original dFNC, b) dFNG based on gradient #1, and c) 
dFNG based on gradient #2.  
 

As is evident in Tables 1 and 2, regarding the dFNG based on the first gradient, the patients (SZ) tend 
to spend significantly higher duration in state 3 (SM), yet the HCs show a significantly higher occupancy 
and dwell time in state 4 (CB). However, the second gradient results showed a significantly higher 
occupancy of the HC group in state 1 (CB), whereas the SZs spent significantly longer duration in state 5 
(DMN). All significant results are shown in bold, with those survived after FDR correction are identified 
with an asterisk.  
 
Table 1. Statistical Results associated with dFNG based on gradient #1 

dFNG (gradient #1) 
Mean Standard Deviation Statistic 

SZ HC SZ HC t-value p-value 

O
cc

up
an

cy
 State 1 24.8344 26.2563 12.1937 11.5368 -1.0566 0.2915 

State 2 26.3642 22.9938 16.4458 15.2478 1.8784 0.0618 

State 3 10.8278 21.4625 17.3154 27.5117 -4.0524 6.42e-05* 

State 4 48.7682 38.6750 26.3351 23.1616 3.5939 3078e-04* 

State 5 26.2053 27.6125 12.4725 11.7093 -1.0262 0.3056 

D
w

el
l-t

im
e 

State 1 16.1788 17.8125 9.2413 9.2186 -1.5601 0.1198 

State 2 24.5629 21.4563 16.4534 14.9338 1.7425 0.0824 

State 3 10.6878 21.2688 17.1799 27.4076 -4.0513 6.44e-05* 

State 4 46.2583 36.4125 26.6542 23.2226 3.4785 5.76e-04* 

State 5 17.9868 19.6313 9.6540 10.0186 -1.4725 0.1419 

* Significant at p < 0.05 FDR corrected 
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Table 2. Statistical Results associated with dFNG based on gradient #2 

dFNG (gradient #2) 
Mean Standard Deviation Statistic 

SZ HC SZ HC t-value p-value 

O
cc

up
an

cy
 State 1 59.4172 50.9312 21.184 19.0326 3.72 0.0002* 

State 2 35.1324 37.3062 16.1285 16.3534 -1.1794 0.239 

State 3 15.5496 17.3312 7.5733 7.3891 -2.0995 0.0365* 

State 4 15.6887 17.25 6.4406 6.6389 -2.1030 0.0362* 

State 5 11.2119 14.1812 7.9712 8.9659 -3.0798 0.0023* 

D
w

el
l -t

im
e  

State 1 54.8013 45.9938 22.0436 19.7543 3.7149 0.0002* 

State 2 32.2980 34.6125 16.1352 16.1471 -1.2638 0.2072 

State 3 7.7682 8.7063 5.3968 5.4997 -1.5170 0.1303 

State 4 7.2252 8.5 4.7975 5.2974 -2.2202 0.0271* 

State 5 7.7947 10.6188 7.1380 8.0820 -3.2587 0.0012* 

* Significant at p < 0.05 FDR corrected 

 

Figures 7 and 8 show a surface-based visualization of the spatial maps associated with each state of 
dFNG based on first and second gradient respectively. We also provide a montage view of the 3D spatial 
maps based on the first and second gradient associated with each state in the appendix. 
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Figure 7. The 3D spatial maps associated with each state based on gradient #1. A spatial map of the dFNGs was created by 
thresholding and normalizing each component map, followed by using the normalized cluster centroids obtained from gradient #1 
k-means clustering as the weight for the component maps to create spatial maps. 
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Figure 8. The 3D spatial maps associated with each state based on gradient #2. A spatial map for dFNG was created by thresholding 
and normalizing each component map, followed by using the normalized cluster centroids obtained from gradient #2 k-means 
clustering as the weight for the component maps to create spatial maps.  
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3.3. Group Differences in Typical Dynamic Functional Network Connectivity Gradient Measures 

Regarding the sort order analysis, no significant differences were found in periodicity between SZ and 
HC. However, the inter-component ordering synchrony analysis showed significant differences between 
groups. Figure 9 revealed the dynamic gradient ordering vectors associated with one of the healthy 
controls and the inter-component ordering synchrony plot for component #53. 

 
Figure 9.  (top) Dynamic gradient ordering vectors for a healthy subject (bottom), dynamic gradient ordering associated with 
component #53 (middle), and the associated inter-component ordering synchrony plot for component #53. 

 

 
Figure 10 provides information about the difference between schizophrenia patients (SZ) and healthy 

controls (HC) in terms of inter-component ordering synchrony. The middle components (DMN/CC/SM) 
showed significantly higher values in healthy controls in comparison with patients; however, the cross 
correlation between the end components (SC/CB) were significantly lower in schizophrenia patients. 
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Figure 10.  The group difference map associated with inter-component ordering synchrony plot defined as − log!"(𝑝value) 	×
	sign	(tstatistics) for a) gradient #1 and b) gradient #2. After demeaning and smoothing the index order to create inter-component 
ordering synchrony plot associated with each component for each subject, the cross correlation across all lags is computed, followed 
by taking the maximum lag for each subject and comparing between patients and healthy controls. The DMN/CC/SM showed 
significant higher value in healthy controls in comparison with patients, however, the cross correlation between end components 
(SC/CB) were significantly lower in schizophrenia patients. 
 
 

The dwell time/occupancy results for the first and second gradient is provided in Table 3 and 4. After 
computing the gradients followed by k-means clustering, the dwell time and occupancy associated with 
each state is computed. A two-sample t-test is applied to investigate the group differences. All significant 
results are shown in bold, with those survived after FDR correction are identified with an asterisk.  

 
 
Table 3. Statistical Results associated with unsigned gradient #1 

dFNG (gradient #1) 
Mean Standard Deviation Statistic 

SZ HC SZ HC t-value p-value 

O
cc

up
an

cy
 State 1 (VIS) 40.8278 45.0937 32.6271 28.5149 -1.2295 0.219 

State 2 (SC) 15.2582 21.8187 15.1078 19.2438 -3.3309 0.0009* 

State 3 (SM) 26.8145 22.8125 23.9792 17.7112 1.6806 0.093 

State 4 (CB) 12.298 19.25 15.4578 19.8988 -3.4267 0.0006* 

State 5 (DMN) 41.8013 28.025 31.5480 24.7236 4.2992 2.3 e-05* 

D
w

el
l-t

im
e  

State 1 (VIS) 39.9337 44.0375 32.5245 28.600 -1.1832 0.237 

State 2 (SC) 14.1589 20.5875 14.9381 19.0726 -3.2961 0.001* 

State 3 (SM) 25.8543 21.9187 23.7532 17.5531 1.6681 0.096 

State 4 (CB) 11.6622 18.3937 15.24680 19.6023 -3.3667 0.0008* 

State 5 (DMN) 40.5761 26.9937 31.6253 24.6069 4.2403 2.95 e-05* 

* Significant at p < 0.05 FDR corrected 
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Table 4. Statistical Results associated with unsigned gradient #2 

dFNG (gradient #2) 
Mean Standard Deviation Statistic 

SZ HC SZ HC t-value p-value 

O
cc

up
an

cy
 State 1 (CB) 18.0132 22.1750 16.6741 16.6089 -2.2043 0.028* 

State 2 (SC) 26.0198 23.7687 15.6087 14.7976 1.3056 0.192 

State 3 (SM) 29.8410 28.2125 16.5328 14.7573 0.9175 0.3595 

State 4 (VIS) 28.7483 32.8375 15.0891 14.2770 -2.4557 0.014* 

State 5 (DMN) 34.3774 30.00625 16.6247 16.0335 2.3603 0.018* 

D
w

el
l -t

im
e  

State 1 (CB) 16.5232 20.4813 16.2693 16.1654 -2.1513 0.0322 

State 2 (SC) 23.7881 21.4063 15.5395 14.5811 1.3945 0.1642 

State 3 (SM) 27.5828 26.0125 16.1610 14.5226 0.9022 0.3676 

State 4 (VIS) 26.5430 30.40 15.0806 14.4545 -2.3029 0.0219 

State 5 (DMN) 31.4305 27.2688 16.6259 15.7671 2.2657 0.0242 

* Significant at p < 0.05 FDR corrected 

 

The cross correlation between the cluster centroids (states) were also computed for HC and SZ. Figure 
11 provide information about the difference in correlation between the gradient centroids. The HC-SZ 
plot showed that the connectivity between the second centroid (SC) with SM and CB is positive in 
controls and negative in patients for both the third centroid (SM) and the fourth centroid (CB). 
 

 
Figure 11.  The cross correlation between cluster centroids for a) healthy controls (HC), b) patients with schizophrenia (SZ), and c) 
healthy controls – patients (HC – SZ). The HC-SZ map is representative of the positive connectivity between the second centroid 
with SM and CB in controls and negative connectivity in patients for both the third centroid (SM) and the fourth centroid (CB). 
 

4. Discussion 

Recent growing empirical studies has been shifting toward studying the temporal reconfiguration of 
functional connectivity and dynamic properties of the brain [9],[37], suggesting that the spatial and 
temporal properties of neural activity interact through several spatiotemporal scales [5],[9], in parallel 
with an increase of new approaches focused on temporally static spatial topography (e.g., spatial cortical 
gradients) of brain connectivity [15],[38],[39]. Gradient-based approaches provide an organizational 
framework for capturing the complex large-scale structural and functional organization of the brain 

a) b) c) 
HC SZ HC-SZ 
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[39],[40]; However, brain activity is ever changing and the functional topography may change 
accordingly [41]. Furthermore, there has not yet been a focus on studying the degree to which these 
gradients might fluctuate over a short time frame, and how this might provide insights into the spatio-
temporal behavior of fMRI data and its application to understand the pathophysiology of schizophrenia. 

This study highlights the potential of dFNGs as a powerful method for understanding the 
spatiotemporal dynamics of brain function. We investigate the smooth transition caused by dFNGs from 
ICNs, as well as sFNG. In parallel with the proposed approach, the effects of cortical gradient were also 
studied in a group of 151 schizophrenia patients (SZ) in comparison with age and gender-matched 
healthy controls (HC). Our main findings suggest that: 1) Inspecting gradients together on a 2D plot to 
get an idea of the multidimensional interactions between the first two gradients showed that the values of 
each network are relatively clustered along three lines of red (CC/ DMN), blue (SC/ AUD/ SM/ CB) and 
green (VIS) for both schizophrenia patients (SZ) and healthy controls (HC). 2) We also found a significant 
difference in sFNG between SZ and HC in the SC, CB, and DMN. Regarding the dFNG results we 
observed: 4) a higher occupancy of state 2 and 4 (SC/CB) in schizophrenia patients in comparison with 
healthy controls based on the first cortical gradient, 5) a higher occupancy of state 1 and 4 (CB/VIS) in SZ 
in comparison with HC based on the second cortical gradient. 6) the patients are shifting more between 
the end (SC/ SM) and middle components (CC/ DMN) based on the inter-component ordering synchrony 
analysis, and 7) a positive connectivity between the second centroid with SM and CB region in healthy 
controls and negative connectivity for both the third (SM) and forth centroids (CB) regarding the gradient 
centroids cross correlation results. 

These findings highlight the significance of sFNG and dFNG in characterizing the global organization 
of functional brain networks and unravelling the dynamic changes in brain connectivity respectively. 
Dynamic analyses have revealed fluctuations in gradient strength and variability over time, reflecting the 
flexible reconfiguration of brain networks. In addition to the emerging consensus that gradients may 
represent important patterns of intrinsic brain organization [21],[40], it remains to be investigated how far 
these patterns constrain state-to-state variation in brain function.  In line with previous task-evoked 
studies, the magnitude of regional activity is high in unimodal networks (e.g., primary sensorimotor 
regions), but low in transmodal regions (e.g., DMN) in healthy controls [40]. Also pointing to hierarchy-
dependent shifts in localized vs distributed processing. Recent advances in neuroimaging methods 
enable us to use the cortical gradient as a dimensionality reduction method. Gradient approaches have 
been able to find the main axes of variance in the data through embedding techniques. The original 
dimensions of the data are replaced by a set of new dimensions, so that most of the variance in the data is 
captured by just a few of these dimensions [40],[42]. Each dimension is a large-scale cortical gradient. To 
put it simply, each dimension can be representative of one aspect or network of cortical organization. In 
line with our results regarding the multidimensional interaction between the computed gradients which 
seems to be aligned along three lines of VIS, SC/AUD/SM/CB and CC/DMN networks. Furthermore, 
utilizing dynamic rs-fMRI analysis, Yousefi and colleagues demonstrate how intrinsic functional activity 
propagates along macroscale functional gradients [43], suggesting that these axes may play a role in 
constraining functional dynamics.  

The observed differences between SZ and HC in SC, CB, and DMN extends recent reports using ICA 
[20],[22],[44]. By investigating the whole brain functional connectivity, stronger connectivity between the 
thalamus and sensory networks (auditory, motor and visual), as well as weaker connectivity between 
sensory networks were reported [20]. Using seed-based connectivity, Woodward and colleagues also 
reported stronger functional connectivity between the subcortical and somatosensory regions in patients 
with schizophrenia compared to healthy controls [45]. Our sFNG results also suggest the weaker 
connection between SC and CB ICNs in patients. This, apparently novel, finding is present in data from 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2024. ; https://doi.org/10.1101/2024.03.06.583731doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.06.583731
http://creativecommons.org/licenses/by-nc-nd/4.0/


almost all sites. The identification of this group difference, along with connectivity differences related to 
subcortical areas, speaks to the strength of our whole-brain, data-driven approach, which is not limited 
by the selection of any specific regions of interest.  

Using a dynamic analysis based on sliding windows and k-means clustering of cortical gradients, we 
identified five different states (Figure 7 and 8), and found that patients spend significantly longer 
duration in state 2 and 4 as well as 1 and 4 based on gradient 1 and gradient 2 respectively, which are 
associated with SC, CB and VIS, consistent with previous studies which identified reproducible neural 
states in a data-driven manner and demonstrated that the strength of connectivity within those states 
differed between SZs and HCs [44]. 

4.1. limitations 
While the presented study offers valuable insights into brain network dynamics using a novel 

approach of dynamic functional network connectivity gradient analysis, several limitations should be 
acknowledged. First, the generalizability of the findings may be constrained by the specific dataset 
utilized, consisting of 151 schizophrenia patients and 160 age and gender-matched healthy controls. 
Larger and more diverse samples could provide a broader representation of the population and enhance 
the robustness of the results. Furthermore, due to the use of the cross-sectional research design, we did 
not establish the developmental trajectories of altered cortical hierarchy in schizophrenia. Future 
longitudinal studies may evaluate the development of cortical hierarchy in schizophrenia across time. 

In conclusion, while the study advances the field by introducing a novel approach to characterizing 
brain network modulation, these limitations underscore the need for further research. Addressing these 
challenges could enhance the reliability, validity, and clinical relevance of dFNG analyses in the context 
of mental disorders and beyond. 

5. Conclusions 

The present study investigated the static and dynamic functional network connectivity using spatial 
gradients instead of assuming fixed spatial maps for evaluating the transient changes in coupling among 
independent component time courses. A summary of the sFNG, the dFNG and its reordering properties, 
and the dynamics of the gradients themselves were evaluated. This approach was applied to a dataset of 
schizophrenia patients and controls to investigate group effects, replicability, and the clinical application 
of these findings. Regarding the sFNG analysis the gradients interaction showed the gradient values are 
relatively clustered along three lines of red (CC/ DMN), blue (SC/ AUD/ SM/ CB) and green (VIS) for both 
schizophrenia patients (SZ) and healthy controls (HC). Significant differences in the sFNGs were 
observed in SC and CB regions. dFNG analysis suggests a longer duration in cerebellar network (CB). 
Furthermore, the ordering index cross-correlation of each component line plot was representative of the 
patients shifting between the end (SC/ SM) and middle components (CC/ DMN), and the cross-
correlation between the gradient centroids of healthy controls showed aberrant pattern in connectivity 
pattern of second centroids with DMN and SC. Finally, by employing the dFNG from ICA, we leverage 
both higher order statistics and spatial smoothness, to provide a more complete spatiotemporal summary 
of the resting fMRI data. 
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Appendix 

 
Figure A1.  The 2D Spatial maps associated with each state based on the gradient #1. A spatial map of the dFNG was created by 
thresholding and normalizing each component map, followed by using the normalized cluster centroids obtained from the gradient 
#1 as the weight for the component maps to create spatial maps. 
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Figure A2.  The 2D Spatial maps associated with each state based on the gradient #2. A spatial map of the dFNGs was created by 
thresholding and normalizing each component map, followed by using the normalized cluster centroids obtained from the gradient 
#1 as the weight for the component maps to create spatial maps. 
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