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Abstract
Soft tissue mechanical characterisation is important in many areas of medical research. Examples span from surgery training, 
device design and testing, sudden injury and disease diagnosis. The liver is of particular interest, as it is the most commonly 
injured organ in frontal and side motor vehicle crashes, and also assessed for inflammation and fibrosis in chronic liver dis-
eases. Hence, an extensive rheological characterisation of liver tissue would contribute to advancements in these areas, which 
are dependent upon underlying biomechanical models. The aim of this paper is to define a liver constitutive equation that is 
able to characterise the nonlinear viscoelastic behaviour of liver tissue under a range of deformations and frequencies. The 
tissue response to large amplitude oscillatory shear (1–50%) under varying preloads (1–20%) and frequencies (0.5–2 Hz) is 
modelled using viscoelastic-adapted forms of the Mooney–Rivlin, Ogden and exponential models. These models are fit to the 
data using classical or modified objective norms. The results show that all three models are suitable for capturing the initial 
nonlinear regime, with the latter two being capable of capturing, simultaneously, the whole deformation range tested. The 
work presented here provides a comprehensive analysis across several material models and norms, leading to an identifiable 
constitutive equation that describes the nonlinear viscoelastic behaviour of the liver.

Keywords  Liver rheology · Biomechanics · Nonlinear mechanics · Viscoelasticity

1  Introduction

Biomechanical characterisation of tissues is essential 
in medical research. New surgery techniques, implants 
or devices are being tested in silico, in vitro and in vivo 
(O’Toole et al. 1995; Marescaux et al. 1998; Rosen et al. 
2008; Clin et al. 2010; Gonzalez-Blohm et al. 2015). In 
these tests, it is critical to know the liver’s response to a 
range of factors, such as puncturing, cutting, deformations 
and displacements. For diagnosis purposes, elastography is 
a technique that depends on the underlying tissue properties 

in order to assess the presence of disease (Fovargue et al. 
2018). In vivo magnetic resonance elastography (MRE) has 
shown that the existence of liver inflammation and fibrosis 
gives higher stiffness measurements (Huwart et al. 2006; 
Sinkus et al. 2018). However, coexisting diseases (Mueller 
et al. 2010) and the bias introduced by large deformations 
on elastography measurements (Capilnasiu et al. 2019) can 
further complicate the diagnosis. Comprehensive liver mod-
els could also benefit other research areas like transportation 
safety (Viano et al. 1989; Yoganandan et al. 2000), where 
biomechanical tests for abdominal injury tolerance limits 
provide essential information in developing safer vehicles 
(Kemper et al. 2010). With the liver being the most fre-
quently injured organ in frontal and side impacts (Yoga-
nandan et al. 2000), a finite element (FE) model could be 
used for prediction purposes, provided that it incorporates 
local and global liver tissue response to mechanical testing. 
Hence, improved knowledge of the nonlinear viscoelastic 
behaviour of the liver is needed.

Over the past decades, a range of rheological tests have 
been employed to characterise liver tissue, the most com-
mon being uniaxial deformation (either as small sample 
loading or indentation on the full organ) and shearing. Both 
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oscillatory shear and uniaxial deformation tests show that, at 
low strains, the liver exhibits quasi-linearity, with the non-
linear behaviour being exposed at higher strains (Liu and 
Bilston 2000; Gao et al. 2010; Tan et al. 2013). Addition-
ally, loading–unloading tests reveal that hysteresis effects 
are taking place (Jordan et al. 2011), with the response being 
rate dependent (Liu and Bilston 2000; Miller 2000). Multi-
frequency soft tissue measurements of the shear modulus 
G∗ indicate a fractional-order dependence on the angular 
frequency in the form of G∗ ∝ �� (Holm and Sinkus 2010), 
with � ∈ [0.2, 0.35] [e.g. � ≈ 0.23 (Liu and Bilston 2000), 
� ≈ 0.26 (Jordan et al. 2011; Sinkus et al. 2018), � ≈ 0.32 
(Asbach et al. 2008)]. Other biomechanical properties of the 
liver have also been investigated, such as relaxation (Liu and 
Bilston 2006; Chatelin et al. 2011) and creep (Wang et al. 
1992).

Liver tissue rheology measurements have lead to a range 
of biomechanical models. Hyperelasticity is often assumed, 
with polynomial, exponential and logarithmic forms being 
employed for compression and elongation data (Chui et al. 
2004; Gao et al. 2010). The general findings indicate that 
the exponential, logarithmic and power law models offer 
more flexibility in capturing the different regions of the 
stress–strain curves. In order to probe viscoelasticity, cyclic 
deformations or relaxation tests usually need to be investi-
gated. Some studies employed relaxation (Liu and Bilston 
2006), shear oscillations (Nicolle and Palierne 2015) or 
cyclic indentation (Jordan et al. 2011) over a range of fre-
quencies, thus offering a broader picture of the biomechani-
cal behaviour of liver. Among these, the K-BKZ model was 
proposed due to its awareness of the complete past time 
history and was validated against small amplitude oscil-
latory shear and strain ramp (Nicolle and Palierne 2015). 
Alternatively, viscoelasticity was modelled by introducing 
a Maxwell element. A complex differential model, with 
ten model parameters, was investigated by Liu and Bilston 
(2006) against the relaxation behaviour at four strain levels. 
Ayyildiz et al. (2015) also proposed a Maxwell-based model 
with 13 parameters for capturing the viscoelastic behaviour 
of liver at a range of uniaxial preloads, frequencies and strain 
rates. There, large preloads (20%) and shear strains (5%) 
were employed simultaneously in the testing protocol. How-
ever, the results focus on the effect of preload, strain rate and 
frequency on the normal force and torque response, while 
the combined effect of large preloads and shear strains is 
not addressed. Jordan et al. (2011) considered increasingly 
complex networks of springs and dashpots, arranged both in 
series and in parallel, in order to model the liver behaviour 
under cyclic indentation at different strain rates and relaxa-
tion. A power law model considering solid-phase compress-
ibility was employed by Perepelyuk et al. (2016), who, at 
large preload strains and small oscillatory shear, measured 
the storage modulus G′ . While these models significantly 

contribute to our understanding of separate aspects of the 
viscoelastic behaviour of the liver, there remains a need for 
a comprehensive 3D model which can describe the tissue 
response under various deformation types and frequencies.

In this paper, we present a comparison of liver constitu-
tive models based on the tissue’s response to a range of large 
deformations and frequencies. A cross testing of uniaxial 
preloads (1–20%), shear strains (1–50%) and frequencies 
(0.5–2 Hz) is considered (Tan et al. 2013), thus emphasis-
ing the rate-dependent, nonlinearly viscoelastic behaviour 
of the liver. The testing protocol displays a strain softening 
effect, which is addressed by proposing a new error norm 
that allows for some degree of flexibility in fitting the linear 
parameters of the models. This analysis and model-fitting 
procedure lead to the identification of simplified constitutive 
models, which retain the essential components needed for 
characterising the above-mentioned properties of the liver 
exhibited under combined deformation and various fre-
quencies. To the authors’ knowledge, this is one of the first 
liver studies that investigates combined large uniaxial and 
shear loading, at various frequencies, and the first study that 
proposes a three-dimensional nonlinear viscoelastic model 
which can capture the large amplitude oscillatory response 
across a range of preloads and frequencies.

In what follows, a brief introduction to kinematics 
(Sect.  2.1) precedes the outlining of the experimental 
design and modelling assumptions (Sect. 2.2). Three differ-
ent constitutive models are proposed, which are then fit to 
the data using a set of error norms that infer different model 
properties. Throughout Sect. 3, the results of the model-
fitting process are going to be presented grouped by the 
norm investigated (Sects. 3.1–3.3), with the three models 
being compared within each subsection. This is followed 
by a discussion reviewing the findings and potential future 
applications (Sect. 4).

2 � Materials and methods

The aim of this work is to characterise the constitutive 
behaviour of the liver under a range of combined deforma-
tions and frequencies. In order to achieve this, Sect. 2.1 
outlines the kinematics metrics that are needed throughout 
this paper (see Taber 2004; Bonet and Wood 2008). Sec-
tion 2.2 explains the testing protocol and its modelling char-
acteristics. Three different types of models are proposed in 
Sect. 2.3, which are due to be fit to the data using the meth-
ods described in Sect. 2.4.

2.1 � Kinematics background

Let the region 𝛺0 ⊂ ℝ
3 define a solid body which can be 

deformed in space and time using a displacement field 
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U ∶ �0 × [0, T] → ℝ
3 . A point in the reference domain, 

X ∈ �0 , corresponds at time t ∈ [0, T] to a point in the 
physical domain �t , by the mapping

The deformation gradient tensor F relates the reference and 
physical domains via

The volumetric changes between the two states are quan-
tified by the determinant J = detF , with J = 1 implying 
incompressibility. From the deformation gradient F , the 
right and left Cauchy Green strains are defined as

or, in their isochoric form (Bonet and Wood 2008), here 
indicated by the “ ̂  ” symbol, as

Some tensor quantities that remain unchanged under rota-
tions are the first and second invariants (Bonet and Wood 
2008), obtained using the double contraction “:”

where A is a general m × m tensor. For clarity, in index nota-
tion, this is equivalent to

Constitutive equations can be used to describe a material’s 
behaviour under deformation. Let W(C) denote a strain 
energy function which depends on strain metrics, here in 
particular on C . The corresponding second Piola–Kirch-
hoff (PK2) tensor is obtained by taking the derivative of 
the strain energy function with respect to C , as S = 2∇CW 
(Bonet and Wood 2008). For a viscoelastic material descrip-
tion, fractional-order viscoelastic models have been success-
fully employed in modelling soft tissue behaviour (Kiss et al. 
2004). Thus, here let S be defined as the sum of an elastic, 
fractional viscoelastic and hydrostatic part, as

The elastic and viscoelastic parts are derivatives of elastic 
and viscoelastic strain energy functions (i.e. Se = 2∇CWe 
and Sv = 2∇CWv ), and the hydrostatic part is defined as 
Sp = JPC−1 , where P is the hydrostatic pressure. The frac-
tional-order derivative, as defined by Caputo (1967), is

(1)x = U(X, t) + X, x ∈ �t.

(2)F = ∇Xx =
�x

�X
, Fij =

�xi

�Xj

.

C = FTF, B = FFT,

F̂ = J−1∕3F, Ĉ = F̂
T
F̂, B̂ = F̂F̂

T
.

(3)IA = A ∶ I, IIA = A ∶ A,

(4)IA =

m∑
i=1

m∑
j=1

Aij�ij, IIA =

m∑
i=1

m∑
j=1

AijAij.

(5)S = Se + D�
t
Sv + Sp.

with � = 0 leading to a hyperelastic contribution and � = 1 
leading to a purely viscous contribution in the form �tSv . In 
order to separate the deviatoric and hydrostatic stress com-
ponents, we introduce the deviatoric operator

which ensures that Dev[A] ∶ C = 0 . Having defined the PK2 
tensor in the context of constitutive modelling, the Cauchy 
stress tensor can be related to the PK2 tensor using

2.2 � Nonlinear viscoelastic characterisation of liver 
tissue

In this paper, combined loading experiments are used to 
investigate the behaviour of liver tissue. The data presented 
here have been previously published in Tan et al. (2013). 
Here, we focus on the large amplitude oscillatory strain 
(LAOS) tests and briefly review the protocol.

2.2.1 � Sample preparation

Fresh healthy bovine liver was collected from an abattoir, 
with the samples being tested within 6 hours post-mortem. 
During transport, the livers were wrapped in saline-soaked 
gauze and transported on ice in a sealed container. Cylindri-
cal samples were cut to approximately 10 mm radius and 
3 mm height. During testing, in order to ensure hydration, 
the samples were maintained in a 100% humidity chamber, 
which is a part of the rheometer. The temperature was con-
trolled to be 25 °C. For more complete preparatory details, 
see the original protocol published in Tan et al. (2013).

2.2.2 � Rheological experimental design

Tissues were tested using a rotational rheometer (Kinexus 
Pro KNX 2100, Malvern, United Kingdom), as illustrated 
in Fig. 1. The cylindrical samples were fit in between two 
serrated plates of 20 mm diameter, to avoid slipping. The 
bottom plate was fixed, while the upper plate was vertically 
adjusted and oscillated around the cylindrical axis. Torque 
measurements were acquired in combined loading tests, with 
shear strains of 1, 10, 25 and 50% being investigated under 
different uniaxial preload levels—1, 10 and 20%, at a strain 
rate of 1 Hz. Additionally, shear strains of 1, 10 and 25%, 
at a preload of 10%, were investigated at strain rates of 0.5 

(6)D�
t
Sv =

1

� (1 − �) ∫
t

0

1

(t − z)�
�tSv(z) dz,

(7)Dev[A] = A −
A ∶ C

3
C−1,

(8)� =
1

J
FSFT.
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and 2 Hz. Table 1 summarises the loading, shearing and 
frequency protocols employed.

A total of 18 tests were carried out—12 at 1 Hz and 3 at 
0.5 and 2 Hz, respectively. For each test, the data were aver-
aged between at least four liver samples. For each test, the 
first eight cycles were used for preconditioning purposes, 
with the data being recorded from the ninth cycle. Precon-
ditioning was carried out sequentially and not directly at 
the maximum deformation level in order to avoid damaging 
tissue (e.g. eight preconditioning cycles at shear strain 1% 
and then three data cycles, followed by eight preconditioning 
cycles at shear strain 10% and then three data cycles, etc). 
Originally, two more shear strain levels were acquired—80 
and 100% (Tan et al. 2013), but these data were excluded 
here due to potential tissue damage.

2.2.3 � Modelling the experiment

Compressive and shear deformations were imposed onto the 
liver samples in order to investigate their 3D biomechanical 
response. Thus, denoting by H and R the undeformed height 
and radius of a sample, let h and r denote the height and radius 

deformed by compression. Let the ratio of the deformed to 
undeformed height be � = h∕H , which corresponds to each 
compression strain (CS) level via CS = 1 − � . Here, ideal 
compression is assumed, which leads to the radius being 
deformed as r = R∕

√
�.

The shear strain, � , is defined as the ratio between top 
plate rotational part of the displacement and inter plate gap, 
� = d∕h , with the rotational displacement depending on the 
angular displacement and radius. Having a predefined � level, 
at frequency f the angular displacement on the top of the sam-
ple is given by

with the maximum angular displacement being reached 
at � = h�∕r . Let � (t,X3) define the angular displacement 
throughout the sample, as

Hence, the compression and shearing lead to a body defor-
mation (Taber 2004) defined by

Incorporating the above form into Eq. 2, the corresponding 
deformation gradient takes the form

(9)�(t) =
sin(2�ft)h�

r
,

� (t,X3) =
�(t)

H
X3.

(10)x(t) =

⎡
⎢⎢⎢⎢⎢⎣

X1√
�
cos

�
� (t,X3)

�
−

X2√
�
sin

�
� (t,X3)

�

X1√
�
sin

�
� (t,X3)

�
+

X2√
�
cos

�
� (t,X3)

�

�X3

⎤
⎥⎥⎥⎥⎥⎦

.

Fig. 1   Illustration of the experi-
mental setup. (Top left) Liver 
tissue in the oscillatory rheo-
logical instrument. The plates 
were serrated, with the lower 
plate being fixed, while the 
upper plate could move verti-
cally and rotate around the axis. 
(Bottom left) Axis and bounda-
ries defined with respect to the 
liver sample. (Right) Example 
of angular displacement trace 
(sinusoidal) and torque response 
(non-sinusoidal) at CS 10%, � 
50%, 1 Hz

Table 1   Testing protocol across frequencies, compression and shear 
deformations

SS 1% SS 10% SS 25% SS 50%

CS 1% ○ ○ ○ ○

CS 10%
⨁ ⨁ ⨁

○

CS 20% ○ ○ ○ ○

Legend | 0.5 Hz ○ 1Hz −  2Hz
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where angle � is related to spatial position and is given by 
�(t) = arctan

(
X2∕X1

)
+ � (t,X3) and rx is the radial position 

throughout the sample. On the top surface, the deformation 
metrics can be found by replacing � (t,X3) with �(t).

In every test, torque measurements are acquired at the top 
plate level. Here, the torque on the top surface �t (as identi-
fied in Fig. 1) is computed as

where n = [0, 0, 1]T is the normal to the top surface. Since 
the rotational forces are acting in plane, symmetrically 
around the Z-axis, then the only nonzero torque component 
is

where the Cauchy stress components can be found from 
Eq. 8. Although the hydrostatic pressure P does not affect 
the torque computation, note that its value can be retrieved 
due to the zero normal traction on the wall boundary �w . By 
combining Eqs. 5 and 8 into

and knowing that t = � ⋅ n = 0 , P can be determined by bal-
ancing out the elastic and viscoelastic components in the 
traction normal on the wall, �w.

2.3 � Constitutive modelling of liver tissue

In this study, the nonlinear liver behaviour is investigated 
under combined large compressions and shear strains. An 
example of angular displacements employed is shown in 
Fig. 1. For modelling purposes, it is assumed that in the ref-
erence configuration the bovine liver samples are stress free 
and isotropic. The observed torque behaviour is modelled 
using a viscoelastic adaption of three hyperelastic models 
commonly applied in soft tissue mechanics, with the aim 
of drawing a comparison between their suitability to model 
the data: polynomial (a modified form of the Mooney–Rivlin 
model, which will be indicated by vMR∗ ), Ogden (vOG) and 
exponential (vEXP).

(11)

F(t) =

⎛
⎜⎜⎜⎜⎜⎝

cos� (t,X3)√
�

−
sin� (t,X3)√

�
−
�(t)

H
rx sin �(t)

sin� (t,X3)√
�

cos� (t,X3)√
�

�(t)

H
rx cos �(t)

0 0 �

⎞
⎟⎟⎟⎟⎟⎠

,

(12)� = ∫
�t

r × td� = ∫
�t

r × (� ⋅ n) d �t,

(13)�3 = ∫
�t

r1�23 − r2�13 d�t,

� = F(Se + D�
t
Sv)F

T + JPI,

2.3.1 � Viscoelastic modified Mooney–Rivlin model

The simplest model considered here is a modified 
Mooney–Rivlin strain energy function, which comprises 
two parts: W1 = (IĈ − 3)∕2 and W2 = (IIĈ − 3)2∕8 . The first 
part is a linear neo-Hookean term, whereas the second term, 
compared to the original Mooney–Rivlin model, is quadratic, 
in order to trigger a more accentuated nonlinear response. 
This modified form has been previously employed in captur-
ing polymer hyperelasticity (Capilnasiu et al. 2019), as the 
classical Mooney–Rivlin form was found to be unsuitable 
to model liver tissue hyperelasticity at large strains (Chui 
et al. 2004). In this form, the PK2 tensors are derived to be 

The above form provides a purely elastic part, with S1
e
 

leading to a linear response in shear and S2
e
 leading to a 

nonlinear response. Viscoelasticity is introduced by taking 
a fractional-order derivative on the S1

e
 tensor, as described 

in Eq. 5. Initially, a more extensive Mooney–Rivlin-based 
model was considered (“Appendix 1”, Eq. 31), but it did not 
perform much better than a model with fewer parameters. 
Hence, the total PK2 tensor for the vMR∗ law considered 
here is

with C, � (Pa), and � (unitless) being material parameters. 
Note that C and � act as linear scalings on the model compo-
nents, whereas � triggers a nonlinear response (hence it will 
be referred to as a nonlinear parameter, with the understand-
ing that it leads to a nonlinear torque response).

2.3.2 � Viscoelastic Ogden‑based model

The second type of model considered is the Ogden 
model, described by the strain energy function 
W = (�b

1
+ �b

2
+ �b

3
− 3)∕(2b), and the corresponding PK2 

tensor

Here, power b is a nonlinear parameter (i.e. the torque 
depends nonlinearly on it), �i are the three principal 
stretches, and vi are the corresponding eigenvectors of ten-
sor C . A more comprehensive Ogden-based model was ini-
tially considered (“Appendix 1”, Eq. 32); however, it did not 

(14a)S1
e

=
1

J2∕3

(
I −

IC

3
C−1

)
,

(14b)S2
e

=
1

J4∕3

(
IIĈ − 3

)(
C −

IIC

3
C−1

)
.

(15)S = CS2
e
+ �D�

t
(S1

e
) + Sp,

(16)Sb
e
=

3∑
i=1

𝜆b−1
i

vi ⊗ vi.
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perform significantly better than a single-component model 
and made the parametrisation non-unique. Thus, the total 
PK2 stress considered here includes only a viscoelastic and 
a hydrostatic part:

where � (Pa) is a linear scaling parameter, while the frac-
tional-order derivative � and the eigenvalue power b (unit-
less) parameters act nonlinearly (and hence will be referred 
to as nonlinear parameters). This model will be referred to 
as the viscoelastic Ogden model vOG.

2.3.3 � Viscoelastic exponential model

The last type of model considered here is the isotropic 
exponential Fung-type model, described by the strain 
energy function W = (exp(b(IIC − 3)) − 1)∕(4b) . The cor-
responding elastic PK2 tensor is derived to be

with power b being a nonlinear scaling parameter. As before, 
viscoelasticity is introduced by the fractional-order deriva-
tive D�

t
Se . For this model, in order to ensure that the devia-

toric and hydrostatic parts are separated after applying the 
time derivative, let the PK2 tensor be defined as

where � (Pa) is a linear scaling parameters and b (unit-
less) is a parameter that acts nonlinearly. Hence, Eq. 19 
defines the viscoelastic exponential model vEXP. A more 
comprehensive form of the exponential model was also 
considered (“Appendix 1”, Eq. 33). However, similarly to 
the Ogden-based model, the extensive form did not per-
form significantly better and it led to non-unique parameter 
identification.

2.4 � Data analysis and model fitting

Parameters from all models were tuned to match the exper-
imental data. In this case, torque measurements ( �d ) were 
compared against the torque corresponding to the models 
( �m ). In order to obtain �m , the PK2 stress tensor for each 
individual model (vMR∗—Eq. 15, vOG—Eqs. 17, and 
vEXP—Eq. 19) was used in Eq. 8 in order to quantify the 
Cauchy stress and in Eq. 13 to quantify the torque. Then, 
the model parameters were adjusted to match the data by 
solving a minimisation problem. Three different objective 
functions were employed, which will be described later 
in this section.

(17)S = �D�
t
(Sb

e
) + Sp,

(18)Sb
e
= exp(b(IIC − 3))C,

(19)S = �Dev[D�
t
Sb
e
] + Sp,

2.4.1 � Minimisation problem

Let y denote a set of M parameters that matches a model 
to the data. In order to find y , a minimisation problem of 
the form

is posed, where J  is a function to be minimised. For the 
models presented here, y comprises the nonlinear parameter 
� and, where applicable, b, C and � . However, the m linear 
parameters can simply be found by inverting a system of 
linear equations, as it will be seen shortly. This leads to a 
simplified minimisation problem

where y∗ spans the nonlinear parameters only ( � and, if 
applicable, b).

In this work, the minimisation problem �∗ is solved 
by carrying out a parameter sweep over the nonlinear 
parameters. Specifically, the fractional order � is iterated 
between 0.05 and 1 (with a step of 0.05), to ensure that 
the whole spectrum from elastic to viscous is captured. 
In the interval [0.15, 0.4], which is close to the literature 
range estimated for � , a finer step of 0.01 was used. Simi-
larly, power b is examined over a range—[0.1, 14] for the 
vOG model and [0.1, 3] for the vEXP model, with coarse 
refinements, to see trends. Then, we focused on the range 
[1, 14] for the vOG model, with refinements of 0.5, and 
on [1, 1.5] for the vEXP model, with refinements of 0.1, 
to isolate parameter values.

For each combination of � and b considered, the best 
linear parameters C and � can be found by solving a linear 
system of equations

with the understanding that A = A(�, b) and x = x(�, b) . The 
matrix A and vector b

comprise the elastic (if applicable) and viscoelastic torque 
model components and the torque data measurements, 
respectively. Subscripts 1 to N indicate the tests considered, 
which are vertically concatenated. Each block 

[
�
m,e

i
�
m,v

i

]
 

comprises multiple time points. Vector x = [C �]T contains 
the unknown linear parameters to be found. For further use 
throughout the section, subscript i denotes the block cor-
responding to test i, i.e.

(20)� = argmin
y∈ℝM

+

J(y, �d)

(21)�∗ = argmin
y∗∈ℝM−m

+

J
∗(y∗, �d),

(22)Ax = b,

(23)A =

⎡
⎢⎢⎢⎣

�
�
m,e

1
�
m,v

1

�
�
�
m,e

2
�
m,v

2

�
⋮ ⋮�
�
m,e

N
�
m,v

N

�

⎤
⎥⎥⎥⎦

b =

⎡
⎢⎢⎢⎣

�
�d
1

�
�
�d
2

�
⋮�
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The model components �m were computed across a circular 
surface of radius r, at time points corresponding to the data 
readings. Spatial integration of the modelled torque across 
the top face of the cylindrical sample was carried out using 
a triangular mesh with 765 elements. For the time integra-
tion, a discrete time step was set so that it matches the data 
points, using dt = 1

fT
 , where f is the frequency and T is the 

number of points in an oscillatory period. Specifically, dt = 
0.0059, 0.0049 and 0.0049 s for the samples at 0.5, 1 and 2 
Hz, respectively.

Three different norms were employed in order to quan-
tify the model fit to the data. Firstly, the classical L2 norm 
is investigated. Further on, a point-wise scaling norm is 
introduced, which is an adaption of the L2 norm. Lastly, a 
parameter scaling norm is designed, where some constraints 
on the linear parameters are relaxed. The norms presented 
are constructed such that the error is 0% for a perfect fit 
and 100% when the linear parameters are set to 0 Pa. The 
contrasting nature of the norms leads to gathering different 
insights about the data and thus contributes to an overall 
better understanding of the liver tissue.

2.4.2 � L
2
 norm

The first norm relies on the MATLAB-implemented linear 
solver “lsqnonneg”. The linear parameters are found by min-
imising the remainder in a least squares (lsq) sense, using 
the L2 norm ( || ⋅ ||2 ), i.e.

While straightforward, this norm favours the tests that 
employ larger deformations and thus attain higher torque 
amplitudes.

2.4.3 � Point‑wise norm

An alternative to the classic L2 norm is to scale values to 
ensure that all points carry equal importance in the fitting 
process. To achieve this, each point in the data and model is 
scaled by its corresponding amplitude in the data (point-wise 
scaling). In general form, this can be written as

where tol is a nonzero tolerance level, to avoid division by 
zero. Thus, the error measure, which is also the function to 
be minimised, becomes

Ai =
[
�
m,e

i
�
m,v

i

]
and bi =

[
�d
i

]
.

(24)J
∗
lsq

=
||Ax − b||2

||b||2 .

(25)(a;b)pw =
∑
k

(
ak

max(tol, |bk|)
)2

,

This adapted norm leads to potentially higher L2 norm 
errors, but it also ensures that the curve trends (e.g. the non-
sinusoidal torque response in Fig. 1) are better matched, 
irrespective of their amplitude.

2.4.4 � Parameter scaling norm

Parameter variability can be encountered when analysing sam-
ples collected from different livers or different locations in the 
liver. Furthermore, the parametrisation process can be affected 
by shear softening—an effect which might be observed when 
a material is sheared at successive increasing levels (Perepe-
lyuk et al. 2016). Here, in order to accommodate for param-
eter variability due to sample location or shear softening, we 
introduce a norm that allows for flexibility in the linear scaling 
parameters.

Since a single frequency was investigated per sample (either 
0.5, 1 or 2 Hz), this is not sufficient to allow for variability 
in the fractional order � . Moreover, it is observed that the 
shape of the data curves tends to be preserved across samples, 
whereas the amplitude scaling changes. Hence, presuming 
that the nonlinear parameters govern the shape of the torque 
curves, � and b (if applicable) are assumed to be consistent 
across samples and shear softening. By contrast, the linear 
scaling parameters C and � are assumed to vary, and their dis-
tribution will be examined in order to understand the ampli-
tude behaviour of the data.

Firstly, consider the normalised

which make up normalised matrix A∗ and vector b∗ . Here, ni 
is the number of data points in test i. Additionally, let

be a set of unique linear parameters [C∗ �∗] which can be 
transformed into the test-specific parameters xi by employ-
ing the scaling �i . In order to find x∗ and � , an iterative 
process is employed, starting with each �i = 1:
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The above sequence of minimisation equations is repeated 
until there is no change in the error J∗

sc
,

Although the set of linear parameters xi is different for every 
test considered, note that this is different than solving each 
test individually, as this norm ensures that the nonlinear 
parameters are fixed across all tests. Solving each test indi-
vidually would yield the similar results only if � and b were 
known a priori.

3 � Results

This work is based on data acquired at a range of compres-
sion preloads, oscillatory shear strains and frequencies. At 
compression preloads of 1%, 10% and 20%, the averaged 
measured normal force is 0.07 N, 0.2 N and 0.7 N. At the 
smallest shear strain (1%), the data are close to linear vis-
coelasticity, with the nonlinearity becoming more evident 
at increased shear strains. Increasing the frequency also 
enhances the nonlinear behaviour of the liver tissue samples. 
Hysteresis effects manifest during all tests employed, and 
they tend to increase slightly with increasing shear strain. 
Strain rate dependence is observed, as both nonlinearity and 
hysteresis increase with frequency. These observations point 
towards a strain rate dependent, nonlinearly viscoelastic liver 
tissue behaviour.

When investigating the acquired data, a strain softening 
effect is observed. That is, the more strained the tissue sam-
ple is, the less force is required to produce a strain incre-
ment. This is exemplified in Fig. 2 for shear strain (CS 10%, 
1Hz), but a similar trend is exhibited for compressive strain 
as well. The curves capture the mean loading and unloading 
response, and it can be seen that the tangent of the torque 

(29)�i = argmin
�i

||||A∗
i
x∗ − b∗

i
�i
||||2.

(30)J ∗
sc
=

�∑N

i=1
����A∗

i
x
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∗
i
����22

�1∕2

����b∗����2
.

versus shear strain decreases as the maximum strain ampli-
tude increases.

3.1 � Viscoelastic models tailored with the L
2
 norm

Figure 3 presents the L2 error norm for each � value inves-
tigated for the optimal set of all remaining parameters, 
with larger markers denoting the minimum. The data were 
grouped by compression strain and frequency, with each 
group comprising the corresponding shear strain tests (e.g. 
CS 10%, 1 Hz, � = 1, 10, 25, 50% ). The best parameter set 
for each data group is presented in the corresponding tables.

Figure  4 illustrates examples of the three models—
vMR∗ , vOG and vEXP—fit to the data tests at 1 Hz and 
CS 10%. The three model curves were produced using the 
best fit parameters obtained when fitting the whole shear 
strain range (1–50%). Figure 5 shows the Lissajous plots 
(torque readings depending on the angular displacement) 
corresponding to CS 10%, 1Hz. The continuous lines show 
the data readings, while the dashed lines show the vEXP 
model fit.

3.2 � Viscoelastic models tailored with the point‑wise 
norm

The point-wise error norm behaviour with � is shown in 
Fig. 6 for the vMR∗ (top), vOG (middle) and vEXP (bottom) 
models. The larger error markers identify the overall best 
parameter fit, obtained for the parameters presented in the 
corresponding tables.

Figure 7 presents the best models fit to the data acquired 
at 1 Hz, CS 10%. The models’ parameters can be found in 
Fig. 6. The same dataset and the vEXP model fit are also 
conveyed in Lissajous curves in Fig. 8.

3.3 � Viscoelastic models tailored with the parameter 
scaling norm

Figure 9 shows the minimum parameter scaling error norm 
corresponding to the models (vMR∗ , vOG, vEXP), for every 
fractional order � investigated. All 18 tests were considered 
simultaneously, hence a single curve corresponding to each 
model, compared to the previous analogue Figs. 3 and 6, 
where subgroups of the data tests were considered. The 
smallest error across the � range is identified by the larger 
markers, and the set of parameters corresponding to these 
minima are found in the corresponding table.

Figures 10 and 11 show all data tests acquired, and the 
three model fits. Figure 10 shows all datasets acquired 
at a frequency of 1 Hz, while Fig.  11 shows datasets 
acquired under a compression strain of 10%. Example Lis-
sajous curves are shown, for the data and vEXP model at 
1 Hz, in Fig. 12. The top row shows all four shear strains 

Fig. 2   Mean loading and unloading torque response versus angular 
displacement at 1 Hz, CS 10%
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(1–10–25–50%), while the bottom row zooms in on the 
1 and 10% shear strains. Compression strain increases 
from the left column (1%) to middle (10%) and right 
(20%). In these figures, the models’ curves were obtained 
by employing the starred parameters from Fig. 9, scaled 
according to Eq. 27. The test-specific linear parameters 
can be seen, for all models, in Fig. 13, and their mean and 
standard deviation are shown in Fig. 9.

3.4 � Viscoelastic models tailored with the parameter 
scaling norm in the case of non‑ideal 
compression

In this study, for rapid model evaluation, the analysis 
assumed ideal compression. However, the testing condi-
tions (serrated plates) actually led to non-ideal compression 
and hence a barrelling of the tissue samples. “Appendix 2” 

Fig. 3   The minimum error for 
the L

2
 norm (Eq. 24), obtained 

for each data group, for frac-
tional order � values between 
0.05 and 1. Plots show minimal 
error obtained for vMR∗ (Top), 
vOG (Middle) and vEXP (Bot-
tom) models, with the larger-
sized markers being obtained 
for the parameters presented in 
the corresponding tables

CS 1% 10% 20% 10% 10% mean
freq 1Hz 1Hz 1Hz 0.5Hz 2Hz ± SD

err(%) 24.40 21.35 18.92 18.36 29.99

α 0.33 0.26 0.28 0.19 0.31 0.27±0.05

C(Pa) 10.16 35.28 38.96 0 67.68 30.42±26.56

δ(Pa) 80.2 95.78 62.88 328.12 166.44 146.68±108.79

CS 1% 10% 20% 10% 10% mean
freq 1Hz 1Hz 1Hz 0.5Hz 2Hz ± SD

err(%) 21.41 18.46 16.83 18.20 28.70

α 0.33 0.24 0.21 0.19 0.3 0.25±0.06

b 3.5 4 4.5 2.5 6.5 4.2±1.48

δ(Pa) 17.86 24.19 23.02 243.44 13.84 64.47±100.14

CS 1% 10% 20% 10% 10% mean
freq 1Hz 1Hz 1Hz 0.5Hz 2Hz ± SD

err(%) 21.48 19.27 17.73 18.20 28.44

α 0.33 0.23 0.21 0.19 0.3 0.25±0.06

b 0.1 0.1 0.1 0.1 1.2 0.32±0.49

δ(Pa) 82.26 149.85 177.70 438.22 184.56 206.52±135.69

Fig. 4   Example of the three models fit to the data acquired at 1 Hz, compression strain 10%, using the L
2
 norm. The parameters employed to pro-

duce the models’ curves can be found in column 2 (CS 10% 1 Hz) of the corresponding tables in Fig. 3
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presents details on the differences observed between ideal 
and non-ideal compression, and it reveals that, for torque, 
a scaling factor needs to be applied in order to correct the 
linear parameters. For the vEXP model, for the data at 1 Hz, 
the correcting factors are presented in Table 2, and the cor-
rected parameters are shown in Fig. 14.

4 � Discussion

When comparing the three models (vMR∗ , vOG and vEXP) 
within the L2 norm performance, it can be seen that the 
errors presented in Fig. 3 are very similar, with the vMR∗ 
model errors being slightly higher (at most ≈ 3% ). This is 
likely due to the fact that the other two models are more 
suitable to capture the nonlinear trends. However, it can be 
seen from Fig. 4 that all three models match the closest data 
peaks at shear strain 50%. This is because the data in this 
study can vary even by two orders of magnitude, with the 
higher amplitude data having the largest impact on the L2 
norm. As a result, amplitudes in the other tests have lesser 
fidelity, as a consequence of the L2 norm, which penalises 
less discrepancies at smaller amplitudes. This mismatch is 
further accentuated by the strain softening effect. It can be 
seen that the data exhibit a shallower increase in amplitude 

Fig. 5   Lissajous curve exemplifying the vEXP model fit to the data 
acquired at 1 Hz, compression strain 10%. The parameters employed 
to produce the model’s curves can be found in column 2 (CS 10% 
1 Hz) of the bottom table in Fig. 3. The curves corresponding to shear 
strains 1–10–25–50% are shown in the top quadrant, while the lower 
quadrant zooms on shear strains 1–10%

Fig. 6   Minimum error for 
the point-wise scaling norm 
(Eq. 26), obtained for each data 
group, for fractional-order � val-
ues between 0.05 and 1. Plots 
show minimal error obtained for 
vMR∗ (Top), vOG (Middle) and 
vEXP (Bottom) models, with 
the larger-sized markers being 
obtained for the parameters 
presented in the corresponding 
tables

CS 1% 10% 20% 10% 10% mean
freq 1Hz 1Hz 1Hz 0.5Hz 2Hz ± SD

err(%) 87.51 83.31 78.90 69.95 90.12

α 0.4 0.31 0.29 0.25 0.4 0.33±0.07

C(Pa) 0 0 0 18.93 0 3.79±8.47

δ(Pa) 22.30 34.36 34.24 184.45 35.30 62.13±68.59

CS 1% 10% 20% 10% 10% mean
freq 1Hz 1Hz 1Hz 0.5Hz 2Hz ± SD

err(%) 63.23 56.05 53.55 51.76 73.82

α 0.29 0.2 0.19 0.18 0.31 0.23±0.06

b 7 8 8.5 12 14 9.9±2.97

δ(Pa) 2.48 3.93 3.56 5.58 1.26 3.36±1.62

CS 1% 10% 20% 10% 10% mean
freq 1Hz 1Hz 1Hz 0.5Hz 2Hz ± SD

err(%) 61.25 54.56 52.91 52.55 77.88

α 0.28 0.21 0.19 0.19 0.33 0.24±0.06

b 1 1.2 1.4 3 3 1.92±1.00

δ(Pa) 55.08 89.73 63.98 235.39 71.20 103.07±75.05
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with shear strain (1–50%) than the models are. The bias of 
the L2 norm towards the higher amplitude points can also be 
observed in Fig. 5, where the vEXP model fit well the peak 
at shear strain 50%, yet the rest of the model torque curve 
looks idealised (almost perfectly elliptic) and does not fol-
low the data curve.

In order for the models to better follow the data curve 
trends throughout the entire deformation, a point-wise scal-
ing norm (Eq. 26) was designed, which penalises discrepan-
cies between data and models, across all points considered, 
evenly. For this norm, the errors for the vOG and vEXP mod-
els are similar, with the vMR∗ model performing signifi-
cantly worse ( ≈ 20% , as shown in Fig. 6). This is because the 
vMR∗ model cannot recreate the nonlinear trends exhibited. 
Hence, this norm drives the model peak points to match 
closely the lower amplitude data points (Fig. 7), by forcing 
a delayed response (higher � values, as shown in the top 
table of Fig. 6, compared to the middle and bottom tables).

Figure 7 shows that the vOG and vEXP models are able 
to capture the data trends; however, there is a data-model 
amplitude discrepancy for all tests. This discrepancy is more 
accentuated than for the L2 norm (Fig. 4) because the models 
employ a higher nonlinear parameter b—8 to 4 for vOG, as 
shown in the middle tables of Figs. 3 and  6, and 1.2 to 0.1 

Fig. 7   Example of the three models fit to the data acquired at 1 Hz, compression strain 10%, using the point-wise scaling norm. The parameters 
employed to produce the models’ curves can be found in column 2 (CS 10% 1 Hz) of the corresponding tables in Fig. 6

Fig. 8   Lissajous curve exemplifying the vEXP model fit to the data 
acquired at 1 Hz, compression strain 10%. The parameters employed 
to produce the model’s curves can be found in column 2 (CS 10% 
1 Hz) of the bottom table in Fig. 6. The curves corresponding to shear 
strains 1–10–25–50% are shown in the top quadrant, while the lower 
quadrant zooms on shear strains 1–10%

err(%) α b C∗(Pa) δ∗(Pa)

vMR∗ 19.92 0.22 N/A 97.38 130.85
mean±SD 145.55±106.26 195.43±142.79

vOG 17.04 0.19 10 N/A 2.7
mean±SD 6.74±6.09

vEXP 17.52 0.2 1.5 N/A 113.99
mean±SD 231.02±198.43

Fig. 9   Minimum model error (vMR∗ , vOG and vEXP) for the param-
eter scaling norm (Eq. 30), obtained for the tests altogether, for frac-
tional-order � values between 0.05 and 1. The minimal error across � 

is enhanced by the larger-sized marker, obtained for the parameters 
presented in the corresponding table
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for vEXP, as shown in the bottom tables of the same figures. 
This determines a steeper increase in the models’ amplitude. 
Figure 8 clearly shows that this norm leads to a better model 
match of the data curve trend, at the cost of discrepancy in 
the peaks.

In the models, the nonlinear parameter � determines the 
phase delay between the shear strain input and torque output. 
The nonlinear parameter b controls the shape and amplitude 
of the torque curve, where b = 0 leads to a linear response 
(i.e. sinusoidal output as a result of a sinusoidal input) and 
higher values lead to an increased nonlinear response. The 
linear parameters C and � amplify the contribution of the 
model components. Comparing the results of the L2 and 
point-wise norms, it can be concluded that the data curve 
trends can only be captured by accentuating the nonlinear 
characteristics of the models (e.g. increasing the b param-
eter). However, this deteriorates the peak amplitude match, 
as the data exhibit strain softening (Fig. 2).

Due to the fact that the data could not be described using 
a set of fully consistent parameters, the parameter scaling 
norm was designed so that the set of linear parameters can 
be adjusted according to each test, by scaling the models’ 
amplitude response. Hence, it is expected that the errors, 
computed using Eq. 30, are small. Indeed, as per Fig. 9, 
the parameter scaling norm leads to the smallest quantified 
errors, compared to the L2 and point-wise scaling norms. 

Comparing the three models, it can be observed that error 
behaviour with � (Fig. 9) is almost identical for the vOG 
and vEXP models. For the vMR∗ model, the minimum error 
curve is shallow for � values between 0.15 and 0.4, leading 
to a less precise parameter identifiability.

With the three models reaching a similar minimum 
error, it is expected that they behave similarly, as shown in 
Figs. 10 and 11. The vOG and vEXP models are better at 
capturing the data nonlinearity, which becomes apparent at 
shear strains above 10%, as the curves start deviating from 
a pure sinusoidal wave, looking like a combination of trian-
gle and sine waves. Although it appears that an increased 
compression strain simplifies the appearance of the shear 
strain torque curve, in reality it further complicates the non-
linear behaviour exposed due to shear straining. This com-
plex behaviour is generally better captured by the vOG and 
vEXP models, although one notable test where the vMR∗ 
model performs better is at compression strain 1%, shear 
strain 50%, 1 Hz (top right panel in Fig. 10). There, vMR∗ 
captures the data amplitude and does not exhibit the exag-
gerated nonlinearity of the other two models; however, it 
performs inferiorly in other tests (e.g. compression strain 
10%, shear strain 25%, 0.5 Hz—top right panel in Fig. 11).

The models’ curves in Figs. 10, 11 and 12 were produced 
using the parameters presented in Fig. 9. All three models 
employ a similar fractional-order derivative, between 0.19 

Fig. 10   Three models fit to the data acquired at 1  Hz, using the 
parameter scaling norm. The first row illustrates the tests at CS 1%, 
the second row at CS 10% and the third row at CS 20%. The parame-

ters employed to produce the models’ curves can be found in the table 
corresponding to Fig. 9
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and 0.22, which is in good agreement with the literature. 
It is notable that for the vOG and vEXP models, the non-
linear parameters � and b presented in Fig. 9 are similar 
to the parameter means presented in Fig. 6, obtained using 
the point-wise norm. This reinforces the suitability of the 
parameter scaling norm to be employed with this study’s 
data, as its main effect is facilitating the amplitude match.

The linear parameters �∗ and, if applicable, C∗ , are 
scaled according to each data test, leading to the test-spe-
cific parameters depicted in Fig. 13. It can be observed 
that for all three models, the linear parameters decrease 
with increasing shear strain, which reflects the shear strain 
softening effect. Interestingly, it appears that three data 
groups can be identified, which correspond to the fre-
quency groups—0.5, 1 and 2 Hz. Since the linear param-
eters do not have a monotonic trend with frequency, with 
the parameters at 0.5 and 2 Hz being larger than the ones 
at 1 Hz, it is unlikely that this reflects a parameter–fre-
quency coupling. Instead, this might be explained by a 
dependency on the sample location, as different samples 
were tested across the frequency tests. Additionally, the 
standard deviation of these parameters reaches up to 90% 
of their mean, as presented in Fig. 9, indicating a high 

linear parameter variability introduced by sample location 
and strain softening.

The effect of barrelling, due to non-ideal compression, 
was investigated in “Appendix 2”. For the vEXP model 
simulating the data at 1Hz, the corrected parameters can 
be seen in Fig. 14. The parameters at CS 1% remain similar 
between ideal and non-ideal compression, which is expected 
given the small compressive strain level. The parameters at 
CS 10% are downscaled by a factor of ≈ 1.5, according to 
Table 2, and maintain a similar softening trend. The param-
eters at CS 20% are downscaled according to the factors pre-
sented in Table 2. Although the non-ideal parameters trend 
appears flatter, this is because of the scale used (0 to 230), 
and in reality the softening trend is accentuated.

4.1 � Liver biomechanical considerations 
in the context of existing literature

In this study, polynomial, Ogden and exponential model 
forms were used. These types of models are commonly 
employed for capturing the nonlinear hyperelastic behav-
iour exhibited by tissue at large strains (Veronda and West-
mann 1970; Zobitz et al. 2001; Chui et al. 2004; Gao et al. 

Fig. 11   Three models fit to the data acquired at CS 10%, using the 
parameter scaling norm. The first row illustrates the tests at 0.5 Hz, 
the second row at 1 Hz and the third row at 2  Hz. The parameters 

employed to produce the models’ curves can be found in the table 
corresponding to Fig. 9
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Fig. 12   Lissajous curve exemplifying the vEXP model fit to the data 
acquired at 1 Hz. The parameters employed to produce the model’s 
curves can be found in the table corresponding to Fig. 9. The top row 

shows the curves corresponding to shear strains 1–10–25–50%, while 
the bottom row zooms on shear strains 1–10%. Compression strain 
increases from left (1%) to middle (10%) and right (20%)

Fig. 13   Absolute linear param-
eters for the models, obtained 
by transforming the starred∗ 
relative parameters into their 
absolute counterparts using 
Eq. 27. The top panels show 
the C and � parameters scaling 
the elastic and viscoelastic 
components of the vMR∗ model. 
The bottom panels show the � 
parameter scaling the viscoelas-
tic component of the vOG and 
vEXP models, respectively
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2010). Polynomial models introduce nonlinearity through 
quadratic or higher-order terms, yet Ogden and exponential 
models are generally better suited in capturing the nonlinear-
ity. However, loading–unloading tests reveal that biological 
tissues are viscoelastic (Jordan et al. 2009) and strain rate 
dependent (Liu and Bilston 2000; Miller 2000). Here, frac-
tional derivative adaptions of the Mooney–Rivlin, Ogden 
and exponential models were introduced in order to capture 
the viscoelastic, strain rate-dependent behaviour of liver tis-
sue. The fractional order � can vary from 0 (purely elastic 
response) to 1 (purely viscous response), with intermedi-
ate values leading to viscoelasticity. For fractional models, 
a frequency dependence of the type �� Holm and Sinkus 
(2010) is achieved. Considering the above, the vMR∗ , vOG 
and vEXP models are appropriate for modelling the torque 
data in this study, which exhibits a frequency-dependent, 
nonlinear viscoelastic behaviour.

In a study similar to the present one, conducted by Ayy-
ildiz et al. (2015), cylindrical liver samples of similar dimen-
sions were investigated at a range of compression strains, 
shear strains and frequencies. Specifically, the authors 
investigated the effect of strain rate on compressions up to 
20%, the influence of compressive preload (5–20%) on shear 
strains of 0.1–5% at a fixed frequency of 10Hz, and the com-
bined effect of compressive preload (5–20%) and frequency 
sweep (0.1–10 Hz) on the shear modulus measured using 
0.5% shear strain. It was found that the compressive preload 
affects the measured shear modulus, which is consistent with 
our findings [and the original findings in Tan et al. (2013)], 
since the compression strain influences the torque response 
measured, as shown in Fig. 10. Similarly, the frequency 
increase accentuates the nonlinear shear response (Fig. 11), 
which would correspond to an increased shear modulus, as 
indicated by Ayyildiz. As the detailed results on the shear 
strain sweep (0.1–5%) are not presented, the studies cannot 
be compared in this regard. To model the data, Ayyildiz used 
a generalised Maxwell model with 13 parameters, which 
captures the strain-dependent, nonlinear viscoelastic behav-
iour of the liver. Here, we used fractional viscoelasticity, 
which helps reducing the number of rheological elements 
considered and hence the number of model parameters.

4.2 � Study overview

In this work, three constitutive equations were proposed 
for modelling the behaviour of liver tissue under a range 
of deformations and frequencies, being parametrised by 
three error norms. For the data employed here, the L2 norm 
proved to be unsuitable, as it was biased by the larger ampli-
tude points. However, this is a straightforward norm that 
is convenient to use when analysing data of comparable 
magnitude. The point-wise norm was introduced in order to 
equalise the weight of each data point in the models’ fitting 
process. The vMR∗ model performed particularly poor with 
this norm; however, the vOG and vEXP models followed 
the data curve trends better than for the L2 norm. Hence, 
this norm offered better insights into the nonlinearity of the 
data. With the shear strain softening leading to amplitude 
mismatches, the parameter scaling norm was designed to 
allow for flexibility in the set of linear parameters and thus 
facilitate the model to data amplitude match. In this case, the 
models’ fit was significantly improved, with all three models 
performing similarly in capturing the data particularities.

Based on the results of this study, the choice of constitu-
tive law for modelling the liver behaviour depends on the 
complexity desired. The vMR∗ model provided a marginally 
less suitable fit compared to the vOG and vEXP models; 
however, it is very practical due to its simple form, requiring 
only the computation of invariants and identifying a single 
nonlinear parameter. Nevertheless, for the data presented 
here, the shallow minima of the error norm across the non-
linear parameter � reveal a non-ideal parameter identifiabil-
ity process. As an alternative, the vOG and vEXP models 
can be employed if more accuracy is required, as they lead 
to the identification of a clear minima and also provide 
an improved fit. They are more complex, involving two 

Table 2   Multiplying factors between ideal and non-ideal torque and 
normal force measurements

Torque SS 1% SS 10% SS 25% SS 50%

CS 1% 1.0050 1.0046 1.0031 1.0000
0.2041% 0.2026% 0.2043% 0.1730%

CS 10% 1.5560 1.5568 1.5460 1.5123
0.6844% 0.7326% 0.9007% 1.1374%

CS 20% 5.9433 6.0363 6.3176 6.8061
3.0972% 2.7304% 1.9302% 1.5789%

Fig. 14   Absolute linear parameters for the vEXP model, correspond-
ing to the data at 1 Hz. The solid lines (blue, orange, yellow) indicate 
the value of the � parameter when using ideal deformation assump-
tion and are the same as the ones presented in Fig. 13, bottom right 
panel; the dashed lines (purple, green, cyan) indicate the � parameter 
when using non-ideal compression. The non-ideal parameters were 
obtained by scaling the ideal parameters by the values presented in 
Table 2
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nonlinear parameters. Furthermore, the vOG model relies 
on the computation of eigenvalues, which is more compu-
tationally expensive.

Considering this study’s findings, the vEXP model pro-
vides a good balance between model complexity and data 
fit. The use of the parameter scaling norm was essential in 
ensuring a good overall model fit. Nevertheless, note that 
this norm was employed in order to overcome strain soften-
ing effect. Ideally, this effect would be mitigated by precon-
ditioning the samples at the highest strain applied, but here, 
due to the very large strains, is avoided in order to avoid 
tissue damage to the samples during early testing.

4.3 � Extension and impact in vivo and in silico

The transportation industry is particularly concerned with 
the study of liver’s response to sudden large impacts, as it 
is the most exposed abdominal organ in frontal and side 
crashes. Having a model that is able to capture its behaviour 
at large deformations as well as rate-dependent effects ena-
bles the determination of injury tolerance limits and hence 
can guide the design of seatbelts, airbags, children car seats, 
etc. Although the models designed here are more appropri-
ate for phenomena occurring repetitively, they can provide 
a starting point or complement the investigation of sudden 
high impacts experienced in injury crashes.

In the medical research field, in silico simulations are 
used in order to test new devices, provide surgery training, 
predict diagnosis and treatment response, etc. These simu-
lations need to be able to gauge the nonlinear viscoelastic 
tissue response to a range of mechanical stimuli, e.g. cutting, 
puncturing, pressing. The models discussed here are suitable 
for in silico work, with the vEXP model performing better 
than the vMR∗ model and being computationally cheaper 
than vOG.

A different possible application of the models discussed 
is in the medical elastography area, which provides non-
invasive in vivo measurements of an organ’s stiffness in 
order to assess disease severity. These measurements rely on 
assumptions about an underlying biomechanical model. In 
general, simple models are considered (e.g. Neo-Hookean), 
but frequency-dependent nonlinear viscoelastic models, like 
the ones presented here, could lead to a better identifica-
tion and staging of pathology. With the liver being one of 
the most imaged organs using elastography, the 3D liver 
models proposed here could be translated and investigated 
in the context of small amplitude shear waves probing the 
liver at various deformation states imposed by the respira-
tory motion (Kang et al. 2012).

4.4 � Study limitations

The aim of this paper is to define a frequency-dependent 
nonlinear viscoelastic law that is able to characterise the 
liver tissue under a range of combined deformations and 
frequencies. The results presented advocate for the suitabil-
ity of all three models employed, with vEXP in particular, 
to capture the liver behaviour, yet some limitations remain 
to be addressed by further research.

One of the main difficulties in this study was to overcome 
strain softening effect encountered, which was emphasised 
by the testing procedure. In a study performed by Cheng 
et al. (2009) on spinal cord, it was shown that the response of 
tissue loaded to 2% uniaxial strain differs significantly if the 
tissue is preconditioned to a maximum of 2% or 5% strain. 
Nonetheless, the tissue behaviour that was loaded up to 2% 
or 5% did not differ if all samples were preconditioned at 5% 
strain. This indicated that the strain softening phenomena 
can be addressed by preconditioning at the highest strain 
used in the testing protocol. In our study, given that large 
deformations were investigated, the preconditioning protocol 
had to be applied sequentially with the measurements. That 
is, at each deformation level, eight oscillations were carried 
out before acquiring the data, which was enough in order to 
obtain a steady response in the data, as shown in the Lis-
sajous-type curves in Fig. 12. However, the tissue samples 
were not strained to the maximum deformation level before 
starting the data acquisition, as that could have damaged 
the samples’ microstructure and led to non-representative 
measurements at low strains. In order to address this effect, 
an initial preconditioning would need to be done at the high-
est deformation level, as suggested by Cheng et al. (2009), 
or measurements would need to be acquired in reverse, from 
the highest to the lowest strain. This would also require 
determination of the maximal deformation allowed avoid-
ing material damage. An alternative approach in dealing 
with the strain softening would be to devise models that are 
able to capture this phenomenon. However, such models are 
usually heuristic (e.g. Perepelyuk et al. 2016), and their use 
is thus limited. Hence, the best approach in mitigating the 
strain softening remains preconditioning to the highest strain 
level applied in the testing protocol, despite that this level 
might be variable across studies.

A limitation of the vOG and vEXP models, compared 
to vMR∗ , is the absence of a purely elastic term. Over an 
infinite time, the viscoelastic term modelled using the frac-
tional-order derivative D�

t
 would approach 0. Nonetheless, 

the time required for this decay is very large, as the normal 
force component in uniaxial compression relaxes proportion-
ally to the power law F ∝ Fmaxt

−� , where F is the force at 
time t and Fmax is the maximum force reached due to defor-
mation. For a fractional order similar to the one identified 
in this study, i.e. � = 0.2 , the time required for the force to 
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decay to 1% of the maximum value is 1010 s ( ≈ 317 years). 
This is an impractical time duration for both experiments 
and simulations. Thus, despite the eventual decay of the 
force, here it was considered that a single viscoelastic term 
is appropriate for modelling the data. Adding a purely elas-
tic term Se to the vOG and vEXP models was also consid-
ered, as exemplified in “Appendix 1”; however, this leads to 
parameter coupling. A broader frequency interval may be 
beneficial in identifying two separate elastic and viscoelas-
tic terms, but for the data available in this study there was a 
trade-off between adding a purely elastic term and identify-
ing a fractional order �.

One of the assumptions made in the modelling process 
is the idealised compression employed. In the experiments, 
however, the samples bulged under compression. Likely, the 
viscoelastic model response would change when considering 
a non-idealised compression. Investigations in simulated 3D 
models indicate that there is a torque amplitude difference 
between the idealised and non-idealised compression. How-
ever, this would have an impact only on the linear param-
eters of the models, which would need to be upscaled. The 
normal force, nonetheless, would be the most affected, as 
simulations show a qualitative difference between ideal and 
non-ideal compression. “Appendix 2” presents a detailed in 
silico comparison of normal forces and torque between ideal 
and non-ideal compression.

The liver samples used in this study were fixed in the 
rheometer using serrated plates. To ensure sample gripping, 
an initial compressive strain and force had to be applied 
before running the experiments, and hence, the total com-
pressive force at 1, 10 and 20% compression strain was 0.07, 
0.2 and 0.7N, respectively. Despite the initial preload, other 
fixing methods like glue could have led to changes in tissue 
properties (Nicolle et al. 2010) and artificial changes in the 
samples’ height.

Although the range of frequencies investigated here is 
small (0.5–2Hz), the models presented in this study are 
applicable for other frequencies as well. The fractional 
order � is related to the frequency response, and the value 
identified in this study ( � = 0.2 ) is in good agreement with 
literature findings (Liu and Bilston 2000; Jordan et al. 2011; 
Sinkus et al. 2018; Asbach et al. 2008). Thus, by choosing 
the nonlinear parameters presented in Fig. 9 and the appro-
priate linear parameters corresponding to a certain deforma-
tion level (Fig. 14), the models can be used for predicting 
phenomena occurring repetitively, at various frequencies. 
(e.g. for MRE purposes). However, when a sudden force 
is experienced (e.g. crash injury), the response is hard to 
predict, and hence, the use of these models in an area like 
transportation industry is limited.

The current model presented considers liver tissue as 
viscoelastic, neglecting porous media effects due to the 
vasculature of the liver. Preparation of tested samples 

was selected with care to avoid large vessels that may 
bias measurements; however, smaller vessels were pre-
sent throughout the test samples. While the presence of 
vasculature can exhibit behaviour similar to viscoelas-
tic phenomena, studies neglecting viscoelastic response 
in cardiac tissue, arterial wall and articular cartilage (at 
strain rate > 0.0001s−1 ) have not been able to replicate 
experimentally observed hysteresis or relaxation (Yang 
and Taber 1991; Zakerzadeh et  al. 2016; DiSilvestro 
et al. 2001). Further, as the constituents of the liver have 
been shown to exhibit viscoelastic material response (e.g. 
hepatic cells are viscoelastic (Zhang et al. 2002; Yang 
et al. 2019), extracellular collagen needs to exhibit viscoe-
lasticity in order to ensure accurate hepatic cell behaviour 
(Mattei et al. 2018) and isolated collagen fibrils exhibit 
viscoelasticity (Shen et al. 2011)), we believe the observed 
behaviour stems from viscoelasticity within the material. 
Further studies considering poro-viscoelasticity (particu-
larly at the whole-organ level) would provide an interest-
ing avenue for further investigations.

5 � Conclusions

This paper investigates the suitability of three models—
vMR∗ , vOG and vEXP—to capture the nonlinear viscoelastic 
liver response at a range of large deformations. Their perfor-
mance is gauged using three norms—the L2 norm, a point-
wise scaling norm, which ensures even contributions from 
each data point, and a novel parameter scaling norm, which 
allows for flexibility in determining the linear parameters. 
This norm was introduced in order to overcome the strain 
softening effect, and its implementation leads to significant 
improvements in fitting the models to the data, with the vOG 
and vEXP models being able to better capture the nonlinear 
particularities. Among the forms presented here, the vEXP 
model is able to recreate the data trends, while identifying a 
clear minima across the fractional order � . Furthermore, it 
relies on strain metrics that are cheap to compute, making it 
advantageous to use.
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Appendix 1: Extended models

The models presented in this study may be extended to 
include more components. This could allow for more flex-
ibility in the modelling process. For example, consider the 
extended version of the vMR∗ model (vMR∗

ext
 ) to be

where S1,2
e

 are defined as in the set of Eqs. 14. Similarly, the 
extended vOG model (vOGext ) would be characterised as

with Sb
e
 given by Eq. 16. Lastly, the extended vEXP model 

(vEXPext ) would be defined as

(31)S = C1S
1
e
+ C2S

2
e
+ �1D

�
t
(S1

e
) + �2D

�
t
(S2

e
) + Sp,

(32)S = C1S
b1
e
+ �1D

�
t
(Sb2

e
) + Sp,

(33)S = C1Dev[S
b1
e
] + �1Dev[D

�
t
Sb2
e
] + Sp,

where Sb
e
 is characterised by Eq. 18. For all three extended 

models, the material parameters C and � are linearly scaling 
the elastic and viscoelastic contributions, respectively.

Appendix 1.1: Results employing the extended 
models

Employing the extended models with the parameter scaling 
norm leads to smaller errors compared to the initial models. 
Figure 15 summarises the minimum errors and best param-
eter set for each model. The vMR∗

ext
 model leads to a better 

fit ( ≈ 4% error improvement) compared to vMR∗ . For the 
other two extended models, the error improvement is less 
than ≈1%. However, in Fig. 15 it can be seen that the minima 
are shallow, whereas when using the initial models vOG 
and vEXP (Fig. 9), the minima are more clearly identified. 
This is because the vOGext and vEXPext models offer more 
flexibility in fitting the data, by adding a purely elastic com-
ponent. This becomes dominant, while the viscoelastic part 
is used for fine-tuning of the nonlinear behaviour, which is 
why the error curve is shallow across � values. Given the 
data range used in this study, the extended models do not 
lead to a clear parameter identifiability. Nevertheless, they 
might be suitable in modelling more complex experimental 
data or different materials.

Appendix 2: Ideal and non‑ideal 
compression

The modelling part of this study assumes ideal compression 
conditions, where the cylindrical samples can slide under 
compression and maintain a cylindrical shape. However, due 
to the nature of the rheological experiment, which employs 
serrated plates, the top and bottom faces of the samples 
were prevented from sliding, hence leading to non-ideal 
compression and a barrelling effect. This effect has been 
previously investigated in the literature (Mendis et al. 1995; 

α b1 b2 C∗
1 C∗

2 δ∗1 δ∗2

vMR∗
ext 0.29 N/A N/A 47.58 49.02 9.12 140.11

(err 15.99%)

vOGext 0.4 7 11 5.39 N/A 0.73 N/A
(err 15.95%)

vEXPext 0.4 1.5 2 54.23 N/A 33.01 N/A
(err 16.67%)

Fig. 15   Minimum model error (vMR∗
ext

 , vOG
ext

 and vEXP
ext

 ) for the 
parameter scaling norm (Eq.  30), obtained for the tests altogether, 
for fractional-order � values between 0.05 and 1. The minimal error 

across � is enhanced by the larger-sized marker, obtained for the 
parameters presented in the corresponding tables
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Miller 2005; Wu et al. 2004; Spilker et al. 1990; Roan and 
Vemaganti 2007), and it was shown that the compressive 
force was significantly higher when a no-slip boundary was 
in place, leading to barrelling. This was more pronounced 
for samples where height/diameter ratio is small, as in the 
current study. In order to address discrepancies that might 
arise, here, we investigate the differences between ideal and 
non-ideal compression in an in silico setting. For this, C
heart (Lee et al. 2016) was used to solve the mechanical 
problem posed in Sect. 2.2.3.

In order to replicate the experiment as accurately as pos-
sible, a cylindrical sample of radius R = 10 mm and height 
H = 3 mm was compressed by 1, 10 and 20% and sheared up 
to 1, 10, 25 and 50% level, at a frequency of 1 Hz. The expo-
nential model (Eq. 18) was employed, with the linear scaling 
� = 130 , the nonlinear parameter b = 1.5 and the fractional 
power � = 0.2 . The uniform compression was prescribed at 
the top and bottom surfaces as

while the non-ideal compression was prescribed as

Note that the other boundaries were left unrestricted. Here, � 
is the compression and �X3 is the shear angle, where

The compression was set to take place linearly over the 
course of 0.5 s, i.e. �(t) = 1 − CSmin(t, 0.5) , and the angu-
lar displacement was applied after the desired compression 
level was reached, i.e. t̂ = max(0, t − 0.5).

Note that, while ideal compression was assumed in 
order to ensure rapid model evaluation, correction to 
non-ideal compression could be carried out for each case 
individually. However, the non-ideal model is time-con-
suming and costly, especially when analysing different 
model forms over a broad parameter space.

Appendix 2.1: Results comparing ideal 
and non‑ideal compression

The liver under ideal and non-ideal 10% compression is 
illustrated in Fig. 16. It can be seen that, under non-ideal 

(34)
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compression, the sample is barrelling. Simulations of the 
normal force on the top surface and torque are presented in 
Figs. 17, 18 and 19.

The normal force simulations show the most striking 
differences between the two compression types, which is 
consistent with literature findings. In order to facilitate 
the comparison of the force between ideal and non-ideal 
compression, the force corresponding to the ideal case was 
upscaled by the parameters presented in Table 3. These 
were obtained by ensuring the best point-wise fit between 
the two cases, with the errors being reported for each test. 
It can be seen that for small compression and shear strains 
(1%), an almost perfect match can be recovered. The factor 
used in this case (6.5821) matches the correction indicated 
by Gent (2012) for short cylindrical samples (i.e. 6.5556, 
corresponding to the specific sample size considered here). 
The correction proposed by Gent stands for small strains, 
and hence, it can be seen that for the larger strains utilised 
in this study, the parameters are different and the match 
deteriorates.

Despite the discrepancy in the normal force, the ideal 
compression consideration does not invalidate this study. 
In Figs.  18 and 19, it can be seen that, although the torque 
amplitude differs between ideal and non-ideal compression, 
the trends are preserved and a good match can be obtained 
by upscaling the ideal compression case by the factors pre-
sented in Table 2. For 1% compression strain, the factor is 
almost unity, which is expected since very little barrelling 
is experienced under 1% compression. The errors when 
matching the two cases is generally very small. For 20% 
compression, the errors can reach 3%, but this is likely due 
to the first oscillatory cycle, as the remaining cycles look 
better matched.

Although there is a scale factor that needs to be 
applied to the torque simulations between ideal and non-
ideal compression, this only affects the identification of 
the linear parameters presented in Figs. 9 and 13. Since 
the parameter scaling norm (Eq. 30) allows for the linear 
parameters to be adjusted according to each test, the ideal 
compression assumption does not impact the model fit to 
the data, but it introduces additional uncertainty on the 
linear parameter � . Note that, as the torque scaling factor 
is approximately constant across shear strain (for com-
pression strain 1% and 10%) or increases (for the CS 20% 
group), consideration of non-ideal compression would 
not have resolved the shear strain softening phenomena 
observed in the study, as shown in Fig. 14. Overall, it can 
be concluded that the exponential model (18) with the 
nonlinear parameters presented in Fig. 9 and the linear 
parameters presented in Fig. 14 is suitable for capturing 
the constitutive behaviour of liver tissue.   
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Fig. 16   Simulations of liver sample compression; (left) liver in undeformed state; (middle) liver under 10% ideal compression; (right) liver 
under 10% non-ideal compression

Fig. 17   Normal force simulations during ideal and non-ideal com-
pression. The simulations were carried out at CS 1% (top row), 10% 
(second row) and 20% (third row), and shear strain 1% (first column), 
10% (second column), 25% (third column) and 50% (fourth column). 

The black curves show the non-ideal compression, the blue curves 
show the ideal compression, and the red curves show the scaled ideal 
compression, using the factors presented in Table 3

Fig. 18   Torque simulations during ideal and non-ideal compression. 
The simulations were carried out at CS 1% (top row), 10% (second 
row) and 20% (third row), and shear strain 1% (first column), 10% 
(second column), 25% (third column) and 50% (fourth column). The 

black curves show the non-ideal compression, the blue curves show 
the ideal compression, and the red curves show the scaled ideal com-
pression, using the factors presented in Table 2
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