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Abstract: Membranous nephropathy (MN) is an important cause of nephrotic syndrome and chronic
kidney disease (CKD) in adults. The pathogenic significance of B cells in MN is increasingly recog-
nized, especially following the discovery of various autoantibodies that target specific podocytic
antigens and the promising treatment responses seen with B cell depleting therapies. The presence of
autoreactive B cells and autoantibodies that bind to antigens on podocyte surfaces are characteristic
features of MN, and are the result of breaches in central and peripheral tolerance of B lymphocytes.
These perturbations in B cell tolerance include altered B lymphocyte subsets, dysregulation of genes
that govern immunoglobulin production, aberrant somatic hypermutation and co-stimulatory sig-
nalling, abnormal expression of B cell-related cytokines, and increased B cell infiltrates and organized
tertiary lymphoid structures within the kidneys. An understanding of the role of B cell tolerance
and homeostasis may have important implications for patient management in MN, as conventional
immunosuppressive treatments and novel B cell-targeted therapies show distinct effects on prolifer-
ation, differentiation and reconstitution in different B cell subsets. Circulating B lymphocytes and
related cytokines may serve as potential biomarkers for treatment selection, monitoring of therapeutic
response and prediction of disease relapse. These recent advances in the understanding of B cell
tolerance in MN have provided greater insight into its immunopathogenesis and potential novel
strategies for disease monitoring and treatment.

Keywords: B cells; primary membranous nephropathy; immune tolerance

1. Introduction

Membranous nephropathy (MN) is the most common cause of idiopathic nephrotic
syndrome in adults [1]. Globally, the incidence rate of MN is up to 12 per million adults per
year, although there is significant regional variation [1–18]. The incidence may be underes-
timated because only a small proportion of patients with MN progress to end-stage kidney
disease (ESKD). Adults over the age of 50 are more commonly affected [19–21]. MN is
defined by its characteristic histopathological features, which include thickened glomerular
basement membrane and subepithelial spikes on the outer surface of the capillary wall.
Immunofluorescence typically reveals granular deposits of IgG4 along the outer surface of
the capillary walls, though IgG1 and IgG3 may be seen as well especially in earlier disease;
complement components especially C3 may also be present. Electron microscopy confirms
the diagnosis with identification of subepithelial electron-dense deposits, in conjunction
with other pathological findings including glomerular basement membrane thickening and
effacement of podocytes [22]. Clinically, MN is characterized by proteinuria, which can
be of variable severity but often presents as full-blown nephrotic syndrome. The natural
history of MN is variable: although around one-third of cases remit spontaneously, a sig-
nificant number of patients manifest persistently heavy proteinuria [23–25]. A subset of
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patients who remain persistently nephrotic in spite of treatment may develop progressive
chronic kidney disease (CKD) and eventually reach ESKD.

Traditionally, MN has been classified as primary or secondary. Common secondary
causes of MN include malignancy, infections (such as hepatitis B and C), other systemic
autoimmune diseases (such as systemic lupus erythematosus and sarcoidosis), and drugs;
the label of “primary MN” was reserved for idiopathic cases for which extensive workup
has not revealed an underlying cause [26]. The identification of pathognomonic antibodies
in ‘idiopathic’ MN has cast doubt on the appropriateness of this terminology. Also, recent
data suggest significant overlap between the pathophysiology underlying both the primary
and secondary forms of MN, and an arbitrary distinction between primary and secondary
forms may be overly simplistic [27,28].

A growing body of evidence suggests that MN is a kidney-specific autoimmune
disease, arising from a loss of normal immune tolerance to podocyte antigens, with for-
mation of disease-causing antibodies that result in a pathognomonic pattern of injury in
glomeruli [25,29–31]. The role of B cells in the immunopathogenesis of primary MN is
therefore increasingly recognized, and therapeutic depletion of B cells has gained promi-
nence as an effective means of treating MN. This review will explore the mechanisms
by which normal B cell tolerance is breached in MN and highlight the implications for
clinical management.

2. Reconceptualizing Membranous Nephropathy as a B Cell Disorder

The identification of disease-specific podocyte antigens and associated pathogenic
antibodies, as well as the success of B cell-targeted treatments, especially anti-CD20 mon-
oclonal antibodies such as rituximab, suggest that B cells play a prominent role in MN.
Historically, disease-causing autoantibodies directed against megalin in murine podocytes
were isolated in the archetypal murine Heymann nephritis model of MN [32,33]. In the
past two decades, the phospholipase-A2 receptor (PLA2R) has been found to be the culprit
podocyte antigen in about 70–80% cases labeled as primary MN in human. Circulating anti-
PLA2R antibodies, which are IgG4 antibodies targeted at different epitopes on PLA2R, are
found in a majority of such cases [29,34–38]. Thrombospondin type-1 domain-containing
7A (THSD7A) is another target antigen implicated in about 5% of cases, and is likewise as-
sociated with circulating antibodies [39,40]. Other novel antigens identified include neural
epidermal growth factor-1 (NELL1), exostosin 1/exostosin 2 (EXT1/EXT2), semaphorin 3B
(Sema3B), and protocadherin-7 (PCDH7); circulating antibodies to some of these antigens
have been isolated from the sera of patients with MN [41–46]. A growing number of studies
suggest that these antibodies may be directly pathogenic in MN, and carry diagnostic,
prognostic and therapeutic significance. Meanwhile, randomized controlled trials have
confirmed the efficacy of anti-CD20 monoclonal antibodies, particularly rituximab, in MN,
especially in but not limited to PLA2R-associated disease [47–57]. Smaller case series sug-
gest similar or even superior efficacy with the use of other monoclonal antibodies targeted
against B cell antigen(s) or B cell activating factor, such as obinutuzumab, ofatumumab and
belimumab [58–61]. Taken together, these findings suggest that autoantibodies generated
by autoreactive B cells are a key driver in the immunopathogenesis of MN. Although
there is mounting data to support that breaches in normal B cell tolerance occur in MN
and the downstream effects lead to glomerular injury, the exact underlying mechanisms
remain elusive. The following discussion will overview the normal mechanisms for central
and peripheral B cell tolerance, and summarize the current evidence for dysregulation of
normal B cell tolerance in the context of MN.

3. Mechanisms of Central and Peripheral B Cell Tolerance

B lymphocytes are formed in the bone marrow and arise from progenitor cells known
as pro-B cells that are committed to the B cell lineage. A key process of B cell develop-
ment in the bone marrow is rearrangement of the immunoglobulin heavy chain (IgH) and
light chain (IgL) to generate a diverse repertoire of immunoglobulin (Ig) specificities [62].



Int. J. Mol. Sci. 2021, 22, 13560 3 of 19

Immature B cells expressing innocuous B cell receptors (BCR) with high phosphoinositide-
3-kinase (PI3K) activity are then positively selected for by tonic BCR signaling. However,
as V(D)J recombination is a random process, the Ig repertoire generated cannot be pre-
dicted. A significant proportion of antigens bound by the BCR expressed on naïve B cells
are necessarily self-antigens within the marrow microenvironment. Thus, negative selec-
tion is needed in the bone marrow to ligate BCR that bind self-antigens. The regulatory
mechanisms in the bone marrow to reduce self-reactivity are collectively known as central
tolerance [63]. If an immature B cell encounters a self-antigen at high concentrations in the
bone marrow environment, the BCR cross-links, resulting in one of two fates. First, the
B cell may undergo apoptosis, a process known as clonal deletion [64,65]. Second, the B
cell may undergo another round of IgL gene recombination to generate a new, innocuous
IgL specificity; this is known as receptor editing [66–70]. Alternatively, if the immature
B cell encounters a self-antigen at low concentrations, the cell may simply become func-
tionally unresponsive, or anergic, due to downregulation of the BCR and its downstream
signaling pathways. The cell’s lifespan is then significantly shortened and apoptosis occurs
within days [71,72]. These mechansims of negative selection of autoreactive B cells are
summarized in Figure 1. The three main mechanisms of clonal deletion, receptor editing
and anergy involved in negative selection are limited in that only self-antigens that are
expressed in the bone marrow are tolerized. Thus, immature B cells that leave the bone
marrow may yet carry autoreactive BCR specificities, and further tolerance checkpoints are
needed in the periphery [63,73].
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Immature B cells that exit the bone marrow home to the spleen, and differentiate into
transitional B cells. These transitional B cells undergo further maturation and differentiation
in the spleen into follicular B (FOB) cells or marginal zone B (MZB) cells [74]. This process
is triggered by BCR-related pathways of signal transduction, but also by other critical
cytokine pathways, such as the BAFF (B cell activating factor belonging to the tumor
necrosis factor family) system and the NOTCH2 (neurogenic locus notch homolog protein 2)
signaling pathway [75–77]. Under tonic, or intermediate-to-strong BCR-mediated signals
and BAFF, and expression of transcription factors such as NOTCH2 and BTK (Bruton’s
tyrosine kinase), transitional B cells can evolve into FOB cells, before being recirculated and
occupying secondary lymphoid organs (SLOs) such as lymph nodes and mucosa-associated
lymphoid tissues [78]. The most important role of FOB cells is to interact with follicular
helper T cells (TFH cells) in SLOs to stimulate further B cell differentiation and proliferation.
B cells that are stimulated by an appropriate antigen receive cognate help from TFH cells
at the boundary of the lymphoid follicle adjacent to the T cell zone [79]. Such activated
B cells may either develop into extrafollicular plasmablasts or early memory B cells, or
may enter the follicles to form germinal centres with TFH cells [80]. In germinal centres,
B cells undergo somatic hypermutation (SHM) and/or class switch recombination (CSR) to
generate a diverse repertoire of high-affinity antibodies. SHM refers to a process of stepwise
incorporation of single-nucleotide substitutions into the V gene, catalyzed by the enzyme
activation-induced deaminase (AID), resulting in an expanded diversity of antibodies [81].
CSR is another process catalyzed by the enzyme AID, whereby B cell activation results in
the switching of the IgM isoform to other Ig isotypes, including IgG1/2/3/4, IgA1/2, IgD,
and IgE, to form different antigen avidities and immune responses [82,83]. CSR takes place
in the germinal centre and requires close cooperation between the FOB and TFH cells via
binding of the B cell surface protein CD40 to its ligand CD40L, which is expressed on TFH
cells [84]. Through these mechanisms, germinal centre B cells with increased affinity for
the target antigen are selected and preferentially expanded, and differentiate into memory
B cells and antibody-producing plasma cells [85]. Meanwhile, under weak BCR signaling,
NOTCH2 signaling and NF-κB signals, transitional cells can also evolve into MZB cells in
the splenic marginal zone [75]. MZB cells function as antigen-presenting cells to activate
TFH cells and can also differentiate into short-lived plasmablasts in response to blood
antigens and form a large number of IgM. Some cells, such as dendritic cells, macrophages
and NK/T cells can also trigger CSR in MZB cells [86]. Delta-like 1 (DL-1), the ligand
of NOTCH2 on endothelial cells, is a key activator of MZB cells, and MZB migration
to the follicles is also promoted by sphingosine-1-phosphate receptor (S1PR1) and CXC
chemokine ligand 13 (CXCL13) [77,87].

As alluded to above, B cell selection and survival is regulated by several key cytokine
systems, including the BAFF and APRIL (a proliferation-inducing ligand) [86,88,89], both
belonging to the tumor necrosis factor (TNF) superfamily. BAFF, also known as BlyS (B lym-
phocyte stimulator) or TALL-1 (TNF and apoptosis ligand-related leukocyte-expressed
ligand 1), is a cytokine expressed by monocytes, macrophages, dendritic cells, bone mar-
row stromal cells and T cells. Both BAFF and APRIL interact with TACI (transmembrane
activator and cyclophilin ligand interactor) and BCMA (B cell maturation antigen), and
BAFF additionally binds to the BAFF receptor (BAFF-R). BAFF-R is expressed by B cells
starting from the time they evolve into transitional B cells and leave the bone marrow. TACI
is expressed in activated B cells, marginal zone B cells, switched B cells and plasma cells,
whereas BCMA is upregulated in activated B cells, and long-lived plasma cells requires
APRIL or BAFF signaling for survival [90]. Through these receptors, BAFF serves as an
important pro-survival signal for B cells through activation of the non-canonical NF-κB2
pathway and the PI3K pathway; absence of BAFF leads to an almost complete arrest of
B cell development [89]. Logically, elevated serum BAFF levels have been associated with
autoimmunity in B cell disorders such as systemic lupus erythematosus (SLE) [91]. As
bone marrow B cells have very low levels of BAFF-R expression, BAFF expression levels
have little impact on clonal deletion or receptor editing in the bone marrow. Therefore,
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perturbations in BAFF likely affect peripheral more than central tolerance of B cells [89]. Of
note, autoreactive B cells are typically rendered anergic after repeated stimulation by self-
antigen and are particularly dependent on high levels of BAFF for survival; the corollary is
that they are more likely to be outcompeted by other, less BAFF-dependent naïve B cells
for survival in lymphoid follicles [92]. Finally, TACI can serve as a decoy receptor but can
also trigger CSR in germinal centres [93].

In addition to those that escape central tolerance mechanisms in the bone marrow,
a significant population of autoreactive B cells is also generated due to the efficient process
of SHM. Peripheral tolerance mechanisms are therefore necessary to prevent development
of autoimmunity. These mechanisms include clonal deletion in the periphery, anergy,
immunomodulation by regulatory T (Treg) or regulatory B (Breg) cells, and ignorance by
cognate T cells. Escape from these immune tolerance mechanisms may occur in the setting
of elevated BAFF levels, or augmented T cell help of anergic B cells [94]. Regulatory B cells
that secrete regulatory cytokines, such as IL-10, transforming growth factor-β (TGF-β),
and FoxP3, may also play a role in attenuating maladaptive immune and inflammatory
responses, and their dysfunction is associated with development of autoimmunity [95,96].

Clearly, failure of any parts of the tightly orchestrated process of B cell development
and regulation can result in generation of autoreactive B cells that contribute to the patho-
genesis of MN. These defects are well described in conditions such as SLE, but are also
increasingly recognized in the context of MN and will be explored in detail in the follow-
ing sections. Modulation of these mechanisms of tolerance in B cells also has important
therapeutic implications in MN.

4. Perturbations in Circulating B Cell Repertoire, Tolerance and Regulation in
Membranous Nephropathy

Accumulating evidence suggests that the B cell repertoire is disturbed in MN. Al-
though the absolute number of circulating B cells in the peripheral blood is not significantly
altered in MN, the B cell population may be polarized towards naïve B cells, with decreased
switched and non-switched memory B cells [97,98]. The circulating plasma cell population
is also abnormally expanded in MN [99,100]. These findings are similar to those found
in other autoimmune diseases including SLE, suggesting alterations in B cell tolerance
checkpoints [101]. The reduction in circulating memory B cells in spite of autoimmunity
could suggest either infiltration into end-organs such as the kidney, or by preferential dif-
ferentiation of self-reactive B cells into plasmablasts rather than memory B cells. Infiltrating
B cell subsets will be explored in greater depth in a later section, while PLA2R-specific
IgG-producing plasmablasts were identified in the circulation of MN patients in a recent
study [99].

A transcriptomic analysis demonstrated that RNA transcripts of multiple genes gov-
erning IgH status were differentially expressed in peripheral blood mononuclear cells
(PBMCs) of patients with MN, as compared to healthy controls. Specifically, the frequency
of IGHM, IGHD, and IGHE—genes that govern expression of µ, δ, and ε heavy chains on
IgM, IgD and IgE respectively—were higher in MN patients, whereas the frequency of
IGHA and IGHG4—genes that govern expression of α and γ4 heavy chains on IgA and
IgG4 respectively—were lower in MN patients. In addition, usage pattern of IGHV genes
coding for the immunoglobulin heavy-chain variable region were skewed, with a lower
frequency of IGHV3 and comparatively higher frequency of IGHV4 [102]. These findings
mirror the results of BCR sequencing studies in SLE, as lupus patients typically show
enrichment in usage of the IGHV4 gene family [103,104]. Extrapolating from previous
studies in SLE patients, such a usage pattern is typically associated with autoreactivity,
although this can also be modified by disease stage and immunomodulatory treatment.
Indeed, in the same study, patients with MN who achieved a complete remission after
6 months of immunosuppressive treatment had a differential expression of several IGHV
genes, although the specific details on the immunosuppressive treatments used were not
reported [102].
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Analysis of the length of the third complementarity-determining region of the heavy
chain (CDR-H3) showed that the length of the CDR-H3 loop for different immunoglobulin
isotypes was significantly increased in patients with MN as compared to healthy controls,
except for IgE. The CDR-H3 loop of the IgM and IgD isotypes were also significantly
more hydrophobic in MN patients [102]. In healthy subjects, selection against long and
hydrophobic CDR-H3 segments typically occurs at multiple stages of B cell development,
such as through deletion or receptor editing in the naïve B cell compartment, or through
negative selection and apoptosis in the mature compartment. Increased CDR-H3 length
and hydrophobicity have been associated with autoreactivity and polyreactivity, through
interference with IgH and IgL pairing [105,106]. Paradoxically, patients with SLE have
typically been associated with short CDR-H3 segments, although it has been hypothesized
that this may be due to a disproportionately large population of circulating plasmablasts in
SLE [107]. It may therefore be helpful to investigate specific B cell subsets in MN patients
to determine the site at which immune tolerance against self-reactive, long or hydrophobic
IgH segments is breached.

Indirect evidence points to the loss of peripheral tolerance in secondary lymphoid
organs (SLOs) in MN. Analysis of IGHA, IGHD, IGHG, and IGHM transcripts in PBMCs in
MN showed an augmented rate of SHM, particularly for the IgG isotype [102]. Furthermore,
inhibition of the CD40/CD40L pathway prevented development of murine MN, and
blockade of the same pathway using a CD40 DNA vaccine targeted to dendritic cells
protected predisposed rats from developing Heymann nephritis [108,109]. These findings
demonstrate that failure of tolerance mechanisms to abrogate autoreactive T cell help via
the CD40/CD40L co-stimulatory pathway is pivotal to the immunopathogenesis of MN.

Meanwhile, there is conflicting evidence regarding the expression of Bregs, which
usually regulate and suppress memory B cell development arising from TFH-B cell interac-
tions, in the context of MN. Whereas some studies have suggested Bregs were decreased
in patients with MN, and the population rose with successful treatment of MN, others
showed higher concentrations of Bregs compared to healthy controls and patients with non-
immune causes of chronic kidney disease, though this may be a compensatory response
rather than disease-causing per se [99,110–112]. It is crucial to note that Bregs are composed
of various B cell subpopulations, including CD19+CD5+CD1dhi cells that secrete IL-10,
CD19+CD5+GzmB+ cells that secrete granzyme B, as well as other classes of B cells, and
that the limited studies looking at Bregs in MN have focused primarily on IL-10-secreting
Bregs. Furthermore, these studies mostly evaluated quantitative differences in Bregs, rather
than the functionality of the isolated Bregs; importantly, in SLE and other autoimmune
conditions, Bregs tended to produce less IL-10 and lacked suppressive capacity [113]. Thus,
standardized classification of B cell subsets including Breg populations, analysis of circulat-
ing cytokine levels and functional assessment of Bregs are needed to better delineate the
role of Bregs in MN and characterize their responses to immunomodulatory treatments.

Key B cell-related cytokines are upregulated in MN. Consistent with observations
in other antibody-mediated autoimmune diseases, serum BAFF and APRIL levels were
elevated in MN, although this was mostly observed in the group with detectable anti-
PLA2R antibodies [114,115]. The different molecular profiles observed in different types of
MN suggest that the mechanism of loss of immune tolerance may depend on the target
antigen in question. Baseline serum baseline BAFF and APRIL levels were lower in patients
who achieved a complete or partial response to standard immunosuppressive treatments
as opposed to patients who had a limited or no response, and a marked reduction in the
circulating levels of these cytokines was associated with favourable clinical outcomes [115].
In a separate study, high serum baseline APRIL was also associated with less complete
response, while high serum baseline BAFF was associated with relapse [114]. BAFF also
provides signals for SHM in SLOs, although no studies have yet explored the relation
between serum BAFF levels and the level of SHM in B cells of MN patients [89].
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5. Infiltrating B Cell Subsets and Intrarenal Tertiary Lymphoid Structures in
Membranous Nephropathy

Early studies have highlighted that interstitial infiltrates are often present in MN
and may contribute to development of tubulointerstitial fibrosis, attrition of nephrons
and development of progressive CKD and ESKD [116]. Although these infiltrates were
previously thought to be predominantly made up by macrophages, monocytes and T cells,
recent studies have demonstrated prominent cellular infiltrates positive for the B cell
marker CD20 in human MN, which were absent in patients with minimal change disease
and healthy controls [117]. In association with such B cell infiltrates, other studies have
shown that organized tertiary lymphoid structures (TLSs) may be found in human kidney
biopsies with MN; the histological and immunohistochemical findings were corroborated
by confirmation of expression of cytokines such as CXCL13 and lymphotoxin B (LTB),
which are crucial mediators for the formation of TLSs [118,119]. TLSs are structures that
develop in chronically inflamed organs as ectopic lymphoid aggregates resembling lymph
nodes, with a variable degree of sophistication in its architecture, ranging from mere cellu-
lar aggregates of B and T cells to an SLO-like organization with B cell follicles, germinal
centres or even lymphatic vessels. Such structures displace normal organ parenchyma
and perpetuate organ-specific autoimmunity and have been described in a range of au-
toimmune disorders [120]. These include synovial tissues in rheumatoid arthritis, in
salivary glands in Sjögren’s syndrome, in the thyroid in Hashimoto’s thyroidits, and in the
kidneys in lupus nephritis, IgA nephropathy or kidney allograft rejection, among other
end-organs [119,121,122]. In the aforementioned examples of autoimmune disease, TLSs
promote local autoimmunity through a number of pathways. These include facilitation
of local antigen presentation by B cells and other antigen-presenting cells, and provision
of critical survival signals for B cells and long-lived plasma cells, including BAFF and
IL-7 [120]. This results in B cell maturation and survival with consequent production of
self-reactive antibodies directed against locally expressed antigens.

Although it is still conceivable that the intrarenal B cells migrated to the kidney
from SLOs, the evidence hints at an in-situ tolerance break, with local presentation of
podocyte antigens and B cell affinity maturation in intrarenal TLSs. This is supported by a
clonal analysis of the B cell repertoire in immune-mediated glomerular diseases, which
suggests the presence of an antigen-specific process of SHM and CSR that occurs locally
in the renal parenchyma. Intrarenal oligoclonal B cells were found in glomerular diseases
characterized by podocyte injury, including focal segmental glomerulosclerosis and MN,
in the absence of B cell oligoclonality in the peripheral blood [123]. Furthermore, T cell
interstitial infiltrates in MN usually show an elevated CD4+/CD8+ ratio [116]; and in
human and experimental models of MN, the Th2 polarization of CD4+ T cells stimulates
both peripheral and intrarenal B cells to produce IgG4, the culprit Ig isotype in MN [124].
A small study of MN patients has also shown that BAFF and APRIL are elevated not just in
the sera but also in the renal tissue [114]. Taken together, these findings suggest that even
if kidney-specific autoimmunity is not initiated by TLSs, it is exacerbated and perpetuated
by their existence, leading to chronic damage and increased propensity for disease relapse.

While there was no correlation between such infiltrates and proteinuria, patients with
an abundance of B cell infiltrates on the kidney biopsy were more likely to have a lower
estimated glomerular filtration rate. B cell depletion with rituximab in such cases resulted
in significantly better kidney function in the long term, underscoring the role of interstitial
inflammation in chronic kidney damage and fibrosis in glomerular diseases [118]. However,
studies have not specifically analyzed the subsets of B cells present in these interstitial
infiltrates in detail. In the context of renal transplantation, pre-emptive induction treatment
with rituximab paradoxically increased the risk of cellular rejection, presumably because
of non-specific removal of all B cell infiltrates including Bregs [125]. The contribution
of Bregs to the interstitial infiltrates observed in MN would therefore be of interest and
clinical relevance.
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6. B Cells and the Treatment of Membranous Nephropathy

The conceptualization of MN as a B cell disorder has revolutionized its treatment.
Conventionally, MN that failed to resolve spontaneously with conservative medical man-
agement was treated with either a cyclical combination of corticosteroids and cyclophos-
phamide (such as the modified Ponticelli regimen), or calcineurin inhibitors such as cy-
closporin A and tacrolimus, with or without concomitant corticosteroids [126,127]. Al-
though the former option was highly potent and demonstrated favourable long-term
outcomes, the use of cyclophosphamide was burdened with significant adverse effects
including infertility, infections, urological toxicity and secondary malignancies [128]. Mean-
while, the use of calcineurin inhibitors was associated with a high rate of relapse upon
cessation of therapy, necessitating long-term use but with the attendant risks of calcineurin
inhibitor side effects, which include chronic nephrotoxicity, worsening of hypertension,
diabetes and dyslipidaemia [129]. The use of B cell depletion in MN thus holds promise as
a relatively less toxic treatment option, premised on a more sophisticated understanding of
the immunopathogenesis of MN, and recently promulgated guidelines support the use of
rituximab as first-line treatment for moderate-to-high-risk MN [126,127].

The efficacy of various treatments for MN may be, at least in part, related to their
impacts on the B cell signature of the disease. Although there is scant data on the impact
of cyclophosphamide on B cell markers in the specific context of MN, the extensive expe-
rience with cyclophosphamide in other diseases suggests cyclophosphamide effectively
decreases both the B cell and T cell compartments, especially the former [130]. Through
its action on DNA synthesis, cyclophosphamide inhibits various stages of B cell prolifer-
ation and differentiation, and also exhibits substantial activity against plasmablasts and
short-lived plasma cells, thereby significantly reducing the generation of new antibody-
secreting cells [131–133]. In the context of MN, serum levels of BAFF and APRIL were
both reduced after treatment with the modified Ponticelli regimen. Conversely, calcineurin
inhibitors are T cell-targeted therapies that mediate indirect effects on the B cell population
via modulating T cell help to B cells. While cyclosporin A seems to be primarily effective
against B cells at earlier stages of development prior to their activation, tacrolimus inhibits
both the activation and proliferation of human B lymphocytes in vitro, and reduces im-
munoglobulin secretion after antigen stimulation [134,135]. However, neither cyclosporin
A nor tacrolimus affects B cell differentiation [136,137]. Importantly, in studies of MN
patients, both cyclophosphamide- and calcineurin inhibitor-based treatment regimens are
clinically useful in MN, and can effectively reduce anti-PLA2R antibody titres in PLA2R-
associated MN, although greater, earlier and more sustained decreases were typically seen
with cyclophosphamide-based regimens [138]. Patients on calcineurin inhibitors do not
tend to go into durable remissions and have a high rate of immunological and clinical
relapse after cessation of treatment.

B cell depletion, most commonly with the chimeric anti-CD20 monoclonal antibody
rituximab, has been associated with high rates of immunological and clinical response
in the context of MN. Analysis of B cell and T cell subpopulations in rituximab-treated
patients with autoimmune kidney disease shows that rituximab depletes B cells effectively
in the peripheral blood, particularly CD40+ memory B cells, switched memory B cells and
plasmablasts [139]. Typically, in responders, B cell depletion is followed days to weeks
later with decreases in anti-PLA2R antibody titres in seropositive patients, and this is
later followed by a clinical response [140]. B cell depletion is additionally associated with
a decrease in pro-inflammatory cytokines, particularly tumor necrosis factor-α (TNF-α),
though it remains speculative whether these effects may be attributable to B cell depletion
alone. In MN, there are so far no reliable B cell signatures that would predict a clinical and
immunological response to rituximab, but responders tend to show a lower percentage of
Tregs at baseline and an increased percentage shortly after treatment [98,139]. This suggests
that part of the effect of rituximab could be mediated by an increase in the Treg fraction,
which affects mechanisms of peripheral B and T cell tolerance. This effect may be related to
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reduced antigen presentation by memory B cells to T cells, and attenuation of B cell-related
cytokine production, including interferon-γ.

Various treatment regimens for rituximab have been tried, and both the dosing reg-
imens of rituximab 375 mg/m2 weekly for 4 weeks and rituximab 1 g every 2 weeks
for 2 doses have been shown to be effective in achieving complete B cell depletion, and
immunological and clinical responses, in MN [56,57]. Smaller studies suggest that titrating
rituximab to circulating B cell levels may optimize total rituximab dose, reduce treatment
cost and possibly minimize side effects [141]; although a recent retrospective analysis of
MN patients treated with higher doses compared to lower doses of rituximab suggested
that the full, high-dose protocol was associated with higher remission rates, a shorter
median time to achieving remission, and more profound B cell depletion [142,143]. This
may be especially important for patients with high circulating anti-PLA2R antibody titres
before treatment. Further investigation of different dosing schedules of rituximab in MN
are likely indicated: compared to other autoimmune diseases for which rituximab is used,
including ANCA-associated vasculitis (AAV), rheumatoid arthritis and myasthenia gravis,
the half-life is shorter and serum levels of rituximab are lower in MN patients, likely
because of significant urinary wasting of rituximab in the context of nephrotic-range pro-
teinuria due to MN; these decreases have been associated with earlier peripheral B cell
reconstitution, higher anti-PLA2R titres and higher degrees of proteinuria at various time
points [144–146].

The tempo of B cell repopulation following transient depletion differs among var-
ious autoimmune diseases, and may affect the timing of disease relapse and the choice
of maintenance immunosuppression. Among patients with AAV, only 10% of patients
with granulomatosis with polyangiitis (GPA) or microscopic polyangiitis (MPA) had any
evidence of B cell repopulation at 1 year after a standard rituximab-based induction, and
no patients with eosinophilic granulomatosis with polyangiitis (EGPA) had detectable
B cells in the peripheral blood, whereas B cell repopulation had commenced in over 90%
of patients with rheumatoid arthritis at 1 year [147]. This may suggest either latent B cell
defects associated with the underlying disease, or the effects of other concomitant immuno-
suppressive treatments, such as azathioprine or mycophenolate mofetil in the context of
AAV. B cell levels over time were not consistently reported in all studies of rituximab in
MN, but small studies suggest that B cell repopulation typically occurs at around 9 to
12 months for patients receiving standard, high-dose rituximab for induction [142]. Al-
though total B cell count, i.e., the CD19+ cell count, is often used in clinical practice to gauge
the response to anti-CD20 treatments, it is not well-established as to whether sustained
total peripheral B cell depletion alone is a suitable treatment target in MN to prevent
relapse. For cases of MN that have entered into remission, small studies investigating
B cell subsets in MN have suggested that anti-PLA2R antibody-secreting plasmablasts
and memory B cells may reappear before naïve B cells, leading to relapse [148]. On the
contrary, sustained immunological and clinical remission may be seen even in the context
of B cell repopulation, and re-treatment to ensure continued B cell depletion might well
be unnecessary or even counterproductive [53]. This may be related to changes in the
B cell repertoire following transient depletion, the effects of which may not be captured by
simply monitoring the total CD19+ cell count. Studies in other primary glomerulonephri-
tides such as childhood idiopathic nephrotic syndrome have demonstrated prolonged
impairment of immunological memory following treatment with anti-CD20 therapies, with
sustained reductions in total memory B cells and switched memory B cells [149]. In some
cases, these could be associated with significant hypogammaglobulinaemia. Similar B cell
repopulation kinetics have been observed in rheumatoid arthritis, with a slow and delayed
repopulation in the memory B cell subset, resulting in persistently suppressed memory
B cell levels for over 2 years after the last dose of rituximab [150]. Importantly, the use of
rituximab in conjunction with corticosteroids in neuromyelitis optica spectrum disorders
and in immune thrombocytopenia have additionally been associated with an increased
proportion of Bregs upon repopulation, suggesting that B cell depletion with anti-CD20
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monoclonal antibodies may actually restore immune tolerance in certain autoimmune
conditions [151,152]. Associated B cell biomarkers and cytokines may also be relevant: in
autoimmune kidney disease including MN, treatment with rituximab and subsequent B cell
depletion was paralleled by a compensatory increase in APRIL levels [139]; there is no data
specific to the MN population to suggest whether such an increase may be associated with
a higher risk of relapse or treatment failure. Meanwhile, rheumatoid arthritis and SLE,
rituximab treatment is typically associated with compensatory elevations in BAFF and this
may herald relapse in disease activity [153–156]. Whether these B cell biomarkers carry the
same prognostic implications in MN remains speculative.

Despite the promise of rituximab treatment, there are still significant unmet treat-
ment needs. The remission rate achieved by rituximab in MN remains at only 60–70%,
suggesting that some components of the immune pathways leading to MN are not ade-
quately addressed and that this may lead to resistance to rituximab [53,144]. Given the
aforementioned increased BAFF levels in MN patients, and the knowledge that BAFF
levels are elevated in other autoimmune diseases following rituximab treatment, anti-BAFF
treatment such as with belimumab (a human IgG1-λmonoclonal antibody against BAFF
approved for the treatment of SLE and lupus nephritis) have been trialed in MN. Phase
2 studies have encouragingly shown that belimumab can effectively reduce proteinuria
and anti-PLA2R antibody levels in MN [60]. However, in class V lupus nephritis, a form
of secondary MN, belimumab did not improve rates of renal response as compared to
standard of care [157]. To settle this question, a randomized controlled study investigating
sequential treatment of MN with rituximab followed by belimumab is currently under
way (NCT03949855). More information regarding the molecular and cellular signature
in responders would be helpful, as indiscriminate targeting of BAFF may also result in
depletion of Bregs and paradoxically worsen autoimmunity [158]. There is comparatively
little experience with use of anti-APRIL therapies in MN or other autoimmune diseases;
a phase 2/3 study of atacicept, a human recombinant fusion protein of TACI and the Fc
portion of IgG1, in combination with mycophenolate mofetil in SLE was discontinued
prematurely due to hypogammaglobulinaemia and opportunistic infections [159].

Meanwhile, newer, humanized anti-CD20 monoclonal antibodies, such as obinu-
tuzumab and ofatumumab, have been investigated in MN, especially in rituximab-resistant
disease [58,59,61,160,161]. Type II anti-CD20 monoclonal antibodies generally confer more
potent B cell depletion compared to rituximab, a type I antibody, as type I antibodies
lead to antigenic modulation of CD20 with resultant internalization of the CD20/antibody
complex in B cells, reduced antibody-dependent phagocytosis and consumption of the
monoclonal antibody. Due to its chimeric structure, administration of rituximab has also
been associated with the development of anti-drug antibodies [144]. Obinutuzumab binds
to a different epitope of CD20 to avoid internalization of the CD20/antibody complex, and
is also glycoengineered to generate a higher level of antibody-dependent cell cytotoxicity,
with reduced dependence on complement-dependent cytotoxicity. It is worthwhile to note
that persistence of TLSs in tissues as well as in lymph nodes despite peripheral B cell
depletion by rituximab is well documented in a number of autoimmune diseases, includ-
ing rheumatoid arthritis and Sjögren’s syndrome [162]. The finding of B cell-containing
TLSs in MN suggests that deeper B cell depletion may be beneficial for refractory disease.
Although it remains speculative whether type II anti-CD20 monoclonal antibodies are truly
more effective in eradicating TLSs, depletion of B cells in lymph nodes in addition to the
peripheral blood was demonstrated in a pilot study of obinutuzumab for desensitization
of highly sensitized kidney transplant candidates [163]. Theoretically, even more extensive
B cell depletion can be achieved with chimeric antigen receptor T cells (CAR-T), a treat-
ment currently approved for refractory B cell lymphomas and leukaemias [164]. However,
CAR-T is associated with high treatment costs and significant toxicities, and hence its use
in a less life-threatening and relatively indolent condition like MN appears unjustified
at present.
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Finally, certain antibody-secreting cells such as plasmablasts or plasma cells do not
express the CD20 marker, and the effects of anti-CD20 treatment on these cell types are
often indirect and incomplete [165]. Indeed, in the largest published study comparing a
cyclophosphamide-based treatment regimen with a rituximab-containing regimen, both
immunological response including the tempo and magnitude of decline in anti-PLA2R
antibody levels, as well as clinical response, were superior in the cyclophosphamide arm,
although some studies show that rituximab may be safer and better tolerated [55,166].
Rituximab monotherapy has also been shown to have a higher rate of failure in patients
with a high baseline titre of anti-PLA2R antibody [167]. These differences may possibly be
due to the fact that cyclophosphamide is more effective than rituximab in targeting such
antibody-secreting cells. Efforts to overcome these hurdles include use of combination
rituximab and cyclophosphamide for high-risk cases [168]; or the use of anti-plasma cell
therapies such as the proteasome inhibitor bortezomib, with or without corticosteroids or
other immunosuppressive treatments [169,170]. From an immunological perspective, the
latter option would be able to eradicate long-lived plasma cells in the bone marrow, which
are often even resistant to alkylating agents such as cyclophosphamide. An ongoing phase
2 study is exploring the safety of MOR202, an anti-CD38 monoclonal antibody targeted at
plasma cells, in PLA2R-associated MN (NCT04145440). The effects of these novel biologic
therapies are summarized in Figure 2. Larger studies are evidently needed to elucidate the
role of these multimodal rescue therapies. Ultimately, given that none of these therapies
are truly specific for MN, there is often a trade-off between greater treatment potency and
off-target adverse effects, some of which can be potentially severe or even fatal.
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7. Conclusions

MN is a kidney-specific autoimmune disease involving a loss of central and peripheral
tolerance to autoreactive B cells. In recent years, a more sophisticated understanding of the
underlying immunopathogenesis of MN, especially the discovery of disease-associated
autoantigens and autoantibodies, has led to a shift in the treatment paradigm from non-
specific immunosuppression to B cell-targeted therapies. Further research is needed to
better delineate the mechanisms by which B cell tolerance is breached in MN, to guide
the development of more specific and effective treatments. In this regard, elucidation of
the B cell signatures of MN patients prior to enrolment in clinical trials and assessment
of changes in B lymphocyte and plasma cell subpopulations with treatment may help
identify suitable groups of patients for novel therapies. Finally, correlation of B cell-related
cellular biomarkers and cytokines with histological and clinical parameters may provide a
non-invasive tool for prognostication and treatment selection in MN, leading to improved
outcomes in this patient population.
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