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Abstract

The advent of next-generation sequencing technologies has greatly promoted the field of metagenomics which studies
genetic material recovered directly from an environment. Characterization of genomic composition of a metagenomic
sample is essential for understanding the structure of the microbial community. Multiple genomes contained in a
metagenomic sample can be identified and quantitated through homology searches of sequence reads with known
sequences catalogued in reference databases. Traditionally, reads with multiple genomic hits are assigned to non-specific or
high ranks of the taxonomy tree, thereby impacting on accurate estimates of relative abundance of multiple genomes
present in a sample. Instead of assigning reads one by one to the taxonomy tree as many existing methods do, we propose
a statistical framework to model the identified candidate genomes to which sequence reads have hits. After obtaining the
estimated proportion of reads generated by each genome, sequence reads are assigned to the candidate genomes and the
taxonomy tree based on the estimated probability by taking into account both sequence alignment scores and estimated
genome abundance. The proposed method is comprehensively tested on both simulated datasets and two real datasets. It
assigns reads to the low taxonomic ranks very accurately. Our statistical approach of taxonomic assignment of
metagenomic reads, TAMER, is implemented in R and available at http://faculty.wcas.northwestern.edu/˜hji403/MetaR.htm.
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Introduction

Traditional and classical methods of genomics and microbiol-

ogy allow researchers to study an individual microbial species

obtained from the environment by isolating the organism into

pure colonies using microbial culture techniques. However, this

approach cannot capture the structure of the broader microbial

community within the environmental sample, the relative

representation of multiple genomes, and their interaction with

each other and with the environment. Additionally, a large

number of microbial species are very difficult, or impossible, to

culture in vitro in the laboratory setting. The development of next-

generation sequencing has advanced the field of metagenomics by

enabling scientists to simultaneously study multiple genomes

recovered directly from an environmental sample, thereby

bypassing the need for microbial isolation through culturing

(see [1] for a review).

In a metagenomic experiment, a sample is usually taken from a

natural (e.g., soil and seawater) or a host-associated (e.g., human

gut) environment containing micro-organisms organized into

communities or microbiomes. DNA is extracted from the

environmental sample containing a mixture of multiple genomes

and then sequenced without prior separation. The resulting

dataset comprises millions of mixed sequence reads from the

multiple genomes contained in the sample. Traditionally, DNA

has been sequenced using Sanger sequencing technology [2] and

the reads generated are routinely 800–1000 base pairs long.

However this technology is extremely cumbersome and costly.

Recently next-generation sequencers, e.g., Illumina/Solexa, Ap-

plied Biosystems’ SOLiD, and Roche’s 454 Life Sciences

sequencing systems, have emerged as the future of genomics with

incredible ability to rapidly generate large amounts of sequence

data [3,4]. These new technologies greatly facilitate high-

throughput while lowering the cost of metagenomic studies.

However, the reads generated are of much shorter length making

reads assembly and alignment more challenging. For example,

Illumina/Solexa and SOLiD generate reads ranging between 35–

100 base pairs while Roche 454 reads are approximately 100–400

base pairs in length.

One goal of metagenomic studies is to identify what genomes

are contained in the environmental sample and to estimate their
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relative abundance. Identification of genomes is complicated by

the mixed nature of multiple genomes in the sample. A widely

used approach is assigning the sequence reads to NCBI’s

taxonomy tree based on sequence read homology alignment with

known sequences catalogued in reference databases. The sequence

reads are first aligned to the reference sequence databases using a

sequence comparison program such as BLAST [5]. Reads which

have hits in the database are then assigned to the taxonomy tree

based on the best match or multiple high-scoring hits. The

challenge of this approach is that hits may be found in multiple

genomes for a single read at a given threshold of bit-score or

Expect value, due to sequence homology and overlaps associated

with similarity among species. Strategy of weighting similarities for

multiple BLAST hits has been used to estimate the relative

genomic abundance and average size [6]. Another representative

and stand-alone analysis tool, MEGAN [7], assigns a read with

hits in multiple genomes to their lowest common ancestor (LCA) in

the NCBI taxonomy tree. Thus assignments of reads to different

ranks of taxonomy tree depend on what threshold for bit-score or

Expect value is used. Furthermore, MEGAN assigns reads one at a

time. As a consequence, the results have less false positives but lack

specificity. Various methods have been proposed to improve the

taxonomic assignment of reads by assigning more reads to the

lower ranks of taxonomy tree [8–12]. In particular, CARMA3

[10] which is BLAST-based but not LCA-based, uses reciprocal

search technique as in SOrt-ITEMS [13] to reduce the number of

hits and hence further improves the accuracy of the taxonomic

classification.

In this paper, we propose a statistical approach, TAMER, for

taxonomic assignment of metagenomic sequence reads. In this

approach we first identify a list of candidate genomes using

homology searches. A mixture model is then employed to estimate

the proportion of reads generated by each candidate genome.

Finally, instead of assigning reads one at a time to the taxonomy

tree as done by LCA-based methods, reads are assigned to the

genomes in a global manner by taking into account both sequence

alignment scores and estimated proportion of reads generated by

each genome. The proposed method is comprehensively tested on

simulated metagenomic data with diverse complexity of microbial

community structure and with various read length and also

applied to several real world metagenomic datasets. Compared

with other available algorithms and tools designated for metage-

nomic analysis, the proposed approach demonstrates greater

accuracy in identification and quantification of multiple genomes

in a given sample.

Materials and Methods

Input Data
The proposed homology-based method, TAMER, identifies

multiple genomes based on the hits obtained by aligning sequence

reads against known reference sequence databases. In this paper

we use the NCBI-NT instead of NCBI-NR database as reference

sequence source in our data analysis. NT database contains almost

all known nucleotide sequences of all known species from NCBI

GeneBank, EMBL and DDBJ, while NR database does not have

reference sequences for reads generated from intergenic regions.

Although BLAST is the traditional sequence comparison and

alignment tool for the NT database, computation time is the

bottleneck [7,9]. High performance computing infrastructure and

fast alignment tools such as BLAT [14] have been recommended

when dealing with large megagenomic datasets [15]. The

alignment tools developed especially for next generation sequenc-

ing technologies retrieve matches with high similarities. In this

research we use MegaBLAST (version 2.2.25+) which yields

matches with relatively high similarities but is much faster than

BLASTn [16]. Notably, our proposed method has great versatility

and can also be applied when other alignment tools and other

reference databases are used.

When aligning reads to the reference database, there may be

multiple hits within one genome for a sequence read. In this

situation, the hit with the largest number of identical matches is

chosen to represent the corresponding genome. For each read and

the corresponding hits in one or multiple genomes, we record the

genome name or taxon identification number of the hit, number of

matched base pairs, and the alignment length. These consist of the

input data for the proposed method which evaluates the likelihood

of alignment of a read with a given genome among the list of

candidate genomes.

Mixture Model
Suppose we have a total of n sequence reads x1,x2, � � � xn

which have been aligned to K candidate genomes. For each of

the K genomes, there is at least one sequence read having hit.

Let Lji denote the alignment length and Mji be the number of

matched base pairs when aligning read xj against genome i. If

a read xj does not have any hit in genome i, then Mji~0. Due

to differences in genome compositions, a short read is usually

aligned to one or a few genomes. Thus, the scoring matrix M

below, where rows represent reads and columns represent

genomes, is very sparse, i.e., most entries in the matrix are

zero.

M~

M11 M12 � � � M1K

M21 M22 � � � M2K

..

. ..
. ..

. ..
.

Mn1 Mn2 � � � MnK

2
66664

3
77775 (1)

To identify which of the K candidate genomes in the scoring

matrix are truly contained in the metagenomic sample, we

propose a statistical framework to model the matches between

the reads and reference sequences. Let Ri denote the

proportion of reads generated from genome i(i~1,2, � � � ,K),
where Ri§0 and the sum of Ri is 1. If the reads are randomly

generated by the K genomes, then the probability that a read xj

is generated by genome i is Ri. Even if a read xj is generated

from genome i, it is possible that the match is not 100%

identical due to sequencing errors, alignment errors, and/or

single nucleotide polymorphism (SNP). Let p denote the

probability of observing a mismatched base pair, then 1- p is

the probability of observing a matched base pair. The

probability that a read xj is generated by genome i with Mji

matched base pairs and Lj{Mji mismatched base pairs is

Rip
Lj{Mji (1{p)Mji , where Lj~ maxfLji,i~1, � � � ,Kg is the

maximum alignment length. Then the probability of observing

a read xj in the dataset is

Pr (xj)~
XK

i~1

Rip
Lj{Mji (1{p)Mji

h i
:

Assuming that the reads are independent of each other, the

likelihood function of the data is:

Taxonomic Assignment of Metagenomic Reads
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‘(p,R1, � � � ,RK )~ P
n

j~1
Pr (xj)

~ P
n

j~1

XK

i~1

Rip
Lj{Mji (1{p)Mji

h i( )
,

ð2Þ

where the values of Lj and Mji are observable, and the parameters

p and Ri i~1,2,:::,Kð Þ are to be estimated.

EM Algorithm
For this mixture model, the expectation maximization (EM)

algorithm [17] is used to calculate the maximum likelihood

estimation for the parameters p and Ri i~1,2,:::,Kð Þ: Let

Z~(Z1, � � � ,Zn) be the latent variables that determine the genome

from which each read originate. The aim is to estimate the

unknown parameters h~(p,R), where R~(R1, � � � ,RK ). The

likelihood function can be written as:

‘(h,M,Z)~ P
n

j~1

XK

i~1

I(zj~i)Rip
Lj{Mji (1{p)Mji

h i( )

where I is an indicator function. As the density function is an

exponential family function, the likelihood function can be

expressed as:

‘(h,M,Z)~

exp
Xn

j~1

XK

i~1

I(zj~i)½log (Ri){Mji log (p=(1{p))zLj log p�
� �( )

N Initialization step. Initialize the values of p an-

dRi(i~1,2, � � � ,K), call them p(0) and R
(0)
i : For instance, let

the reads be equally distributed among the K genomes, i.e.,

R
(0)
i ~1=K , and let p(0)~0:05:

N E-step. Assuming the current estimate of the parameter is h(t),

then the conditional distribution of Zj is:

T
(t)
ji : ~ Pr (zj~iDM; h(t))~

R
(t)
i (p(t))Lj{Mji (1{p(t))Mji

PK
n~1

R
(t)
n (p(t))Lj{Mjv (1{p(t))Mjv

: ð3Þ

Then the E-step result is:

Q(hDh(t))~E½log (‘(h,M,Z))�

~
Xn

j~1

XK

i~1

T
(t)
ji log (Ri){Mji log (p=(1{p))zLj log p
� �

N M-step. As the parameters can be maximized independently,

we get:

R(tz1)~ arg max
R

Q(hDh(t))~ arg max
R

XK

i~1

( log Ri)
Xn

j~1

T
(t)
ji

" #( )
:

This gives R
(tz1)
i ~

1

n

Xn

j~1

T
(t)
ji (i~1,2, � � � ,K):

The probability of observing a mismatched base pair is

estimated as:

p(tz1)~1{

Pn
j~1

PK
i~1

MjiT
(t)
ji

Pn
j~1

PK
i~1

LjT
(t)
ji

N Iteration step. Repeat the E-step and the M-step until all the

parameters converge, i.e., Dp(tz1){p(t)Dve and DR(tz1)
i {R

(t)
i D

ve for i~1,2, � � � ,K and for some pre-specified small number

of e.

The estimates of Ri(i~1,2, � � � ,K) reflect the proportion of

reads generated from each of the K candidate genomes. If Ri = 0,

then the corresponding genome i is not contained in the sample. If

we observe an inequality RiwRi0 for two genomes i and i0, then

we conclude that the sample contains more reads generated from

genomeithan genome i0. However the values of Ri do not give

information on which reads are generated by which genomes.

Next we show how to assign reads to the K candidate genomes and

the taxonomy tree.

Taxonomic Assignment of Reads
To assign each read to the taxonomic tree, we first estimate how

likely it is generated by a specific genome. The probability that

read xj is generated by genome i is estimated by.

Pji : ~
Rip

Lj{Mji (1{p)Mji

PK
n~1

RnpLj{Mjv (1{p)Mjv

for i~1,2, � � � ,K and j~1,2, � � � ,n. Then read xj is assigned to

the genome for which the maximum probability is reached,

i.e., read xj is assigned to genome imax where imax~ arg max

fPji,i~1, � � � ,Kg: An assignment matrix A~½aji�n|K can be

constructed based on the read assignment, where aji~1 if read xj

is assigned to genome i, and aji~0 otherwise. Then the total

number of reads assigned to genome i is
Pn
j~1

aji.

The proposed method, TAMER, applies to the candidate

genomes to which the sequence reads have hits. Note the majority

of the candidate genomes identified after performing BLAST are

at the low ranks of the taxonomy tree, i.e., most of the genomes are

species or substrings of species. Once a read is assigned to a

specific genome, we also consider that it is assigned to taxa with

higher taxonomic ranks. For example, suppose a read is assigned

to Escherichia coli str. K-12 substr. MG1655. When we summarize

reads assigned at different taxonomic ranks, this read is treated as

that it is assigned to Escherichia. coli at rank Species, to Escherichia at

rank Genus, to Enterobacteriaceae at rank of Family, and so on.

Taxonomic Assignment of Metagenomic Reads
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Estimates of Relative Genome Abundance
The number of sequence reads generated by a genome is

proportional not only to the number of copies of that genome in

the metagenomics sample but also to the length of the genome [6].

Similar to [18], the relative genome abundance can be computed

for known genomes which are present in the sample. Let Gidenote

the actual length of the genomeiin base pairs. Suppose there are

Cicopies of genomeiin the sample. Assuming uniform distribution

of reads across the multiple genomes, we have.

Ri~
CiGiPK

h~1

(ChGh)

:

Then the relative abundance of genome i (i.e., relative copy

number) in the sample can be calculated by.

CiPK
h~1

Ch

~
Ri=GiPK

h~1

(Rh=Gh)

:

Algorithm Implementation
All algorithms developed in this research are implemented in R,

a free software environment for statistical computing and graphics

[19]. The R source codes are available at http://faculty.wcas.

northwestern.edu/˜hji403/MetaR.htm. For practical implemen-

tation, the scoring matrix M in equation (1) could require a huge

storage space when the total number of reads is large. Recognizing

that M is a sparse matrix, substantial memory requirement

reductions can be achieved by storing only the non-zero matching

scores. For the zero entries of Mji,their influence on estimating the

parameters is nominal because we have pLj{Mji (1{p)Mji

~pLj&0when Mji~0, for a small value of p(e.g., 0.02ˆ35

= 3.4e-60). With the use of sparse matrix technique, detecting

multiple genomes via the mixture model becomes very efficient.

For example, the computational time for a dataset of 150,000

reads with average read length of 100 bp is about 2 , 3 minutes

on a laptop with 8 GB RAM and 2 core 3.06 GHz CPU.

Simulation Studies
Due to the complexity of metagenomic data, simulation studies

with verifiable results are crucial to benchmark TAMER and

conduct comparisons with other existing methods. For the analysis

by MEGAN the default parameters are used.

Simulation study 1. MetaSim [20], a sequencing simulator

for genomics and metagenomics, is used to generate sequence

reads for simulation studies. Four benchmark simulation datasets

with low (2 genomes, simLC), medium (9 genomes, simMC), high

(11 genomes, simHC), and super high (100 genomes, simSC)

complexity are used. The first three setups were designed by [20]

in conjunction with [21]. We use the simulation study with 100

genomes to reflect the high complex structure of some microbial

communities which may contain hundreds even thousands of

species. Here, we present the simulation studies using reads with

an average read length of 100 bp for all four simulation studies,

thereby mimicking next-generation sequencing short reads. For

the medium and high complexity, we also perform simulation

study using average read length of 400 bp. In this simulation

study, we compare the performance of TAMER with MEGAN.

Simulation study 2. To compare TAMER with CARMA3

[10], we use the same evaluation dataset as in [10]. This

CARMA3 evaluation dataset consists of 25,000 metagenomic

reads which are randomly simulated from 25 bacterial genomes

with an average read length of 265 bp. The online version of

CARMA3, WebCARMA (http://webcarma.cebitec.uni-bielefeld.

de/), with default parameters is used for taxonomic classification.

We also perform the taxonomic analysis using TAMER and

MEGAN, and compare their performance with CARMA3. When

BLASTx and NR database are used, CARMA3 gives better

taxonomic assignment than MEGAN [10]. Therefore we only

present the results by MEGAN using MegaBLAST and NT

database in this study.

Real Datasets
TAMER is also applied to two sets of actual metagenomic data.

Archived metagenomic datasets are accessible from several sources

including the NCBI short read archive [22], CAMERA [23], and

the MG-RAST server [24]. In this paper we analyze data from

eight oral samples and two seawater samples.

The eight oral samples downloaded from the MG-RAST server

were examined in a human metagenome oral cavity study [25].

They represent different degrees of oral health with two samples

for each of the four status, healthy controls (never with caries),

treated for past caries, active caries, and cavities. There are totally

about 2 million reads. The smallest sample has about 70,000 reads

and the largest sample has about 465,000 reads. The average read

length is 4256117 bp.

The two seawater datasets were retrieved from MEGAN

database (http://www.megan-db.org/megan-db/) and were stud-

ied in [20]. Each dataset consists of 10,000 reads and they are part

of the Sargasso Sea Samples studied in [26]. The reads are about

800 bp long in both seawater datasets.

Results

Results for Simulation Study 1
Using the same abundance setup as in [20], 150,000 reads are

generated for each of the three complexity datasets, simLC,

simMC, and simHC, with average length of 100 bp. For the

simSC dataset, 100 genomes with the same abundance are

randomly selected and 150,000 reads are generated. The

characteristics of the datasets are listed in Table S1. For this

simulation study, we compare TAMER with MEGAN. The

proportions of reads correctly (TP) and incorrectly (FP) assigned at

different taxonomy ranks are reported in Table 1. Here

TP = number of correctly assigned reads / total number of

reads6100, and FP = number of incorrectly assigned reads/ total

number of reads6100. For instance, for the simLC data, 146,880

reads are assigned to the corresponding species correctly, and 30

reads are assigned incorrectly, then TP = 146,880/

150,0006100 = 97.92 and FP = 30/150,0006100 = 0.02. Note

that the sum of TP and FP is not 100 as some reads do not

have hits in the reference database.

The simLC dataset consists of 25,926 reads generated from E.

coli str. K-12 substr. MG1655 and 124,074 reads generated from

Methanoculleus marisnigri JR1. Totally there are about 160 million

base pairs and the simulated error rate is 0.027. The estimated

probability of observing a mismatched base pair is 0.025 by

TAMER. Using MegaBLAST, hits are found for 97.94% of the

150,000 reads in 4,407 unique taxa. At rank Species, TAMER

accurately assigns 25,221 reads to species Escherichia coli which is

close to the true value of 25,926 reads, while MEGAN only assigns

5,583 reads to this taxon (Figure 1 (a)). At rank Genus, MEGAN

Taxonomic Assignment of Metagenomic Reads
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assigns 5,974 reads to Escherichia which is only about 23% of the

true value and the number of reads assigned by TAMER to that

genus (Figure 1 (b)). Considering the low proportion of incorrect

assignment (Table 1), TAMER accurately identifies and quantifies

the different genomes at low taxonomic ranks.

The simMC dataset consists of nine microbial organisms from

phylum Proteobacteria with diverse relative abundance. Hits are

found for 97.00% of the 150,000 reads in 9,925 unique taxa.

TAMER is able to dramatically reduce the huge number of taxa,

and accurately identifies the nine organisms and assigns the reads

to the corresponding originated organisms. TAMER assigns

96.14% of the reads correctly at rank Species, while MEGAN

only assigns 67.57% of reads (Table 1). At rank Genus, the

proportion of assigned reads by MEGAN is increased to 72.95%,

however it is 23% less than that by TAMER. The percentage of

incorrectly assigned reads is about 0.8% for both TAMER and

MEGAN at both ranks of Species and Genus. It is evident that the

number of reads assigned to different taxa by TAMER is very

close to the true value, while MEGAN assigns 6,643 less reads to

Francisella tularensis and 39,184 less reads to Shigella dysenteriae than

TAMER does (Figure 2 (a)). At rank Genus, TAMER assigns

39,191 reads to Shigella which is close to the true value and is about

eight times as many as MEGAN does (Figure 2 (b)).

The simHC dataset consists of 11 microbial organisms. Using

MegaBLAST, hits are found for 97.11% of 150,000 reads in 2,511

unique taxa. TAMER identifies all 11 genomes and assigns the

reads accurately to the original organisms. For these 11 distantly

related organisms, MEGAN also does a satisfactory work by

assigning about 92% of reads at rank Species which is 5% less than

TAMER does (Table 1). Population distributions of reads at rank

Species (Figure S1) and Genus (Figure S2) show that the

assignments of reads by both methods are similarly accurate.

The simSC dataset is generated from 100 microbial organisms.

About 96.90% of 150,000 reads have matches in 14,205 unique

taxa. TAMER identifies 149 genomes with 103 of them having at

least 5 assigned reads. Summarizing the results at different

taxonomic ranks, TAMER assigns about 8% more reads than

MEGAN at rank Species, and TAMER and MEGAN are

comparable at higher taxonomic ranks (Table 1).

For simMC and simHC, we also perform a simulation study

using 10,000 reads with average read length of 400 bp. With

longer read length, the proportion of correctly assigned reads at

low taxonomic ranks is improved for both methods. This further

confirms the very well-known fact that longer reads are more

sensitive in estimating the relative abundance of the multiple

species. For simMC data, TAMER and MEGAN assign about

99.9% and 71.4% of reads correctly at rank Species, respectively,

while the proportion of incorrectly assigned reads only increases

about 0.1% for TAMER (Table S2). At rank Genus, TAMER

assigns about 23% more reads correctly than MEGAN (99.91%

for TAMER and 76.53% for MEGAN) while the false positive rate

only increases about 0.08%. For simHC simulation study, the

results of TAMER and MEGAN are highly comparable.

Results for Simulation Study 2
For the CARMA3 evaluation dataset, the results based on

TAMER and MEGAN are listed in Table 2, where we also list the

results of CARMA3 which are reported in the original paper [10].

At rank Species, the percentage of correctly assigned reads is

99.24% for TAMER, 81.45% for MEGAN, and 4.57% for

CARMA3 (Table 2). At rank Genus, the proportion of correctly

assigned reads by TAMER (99.26%) is 7% and 35% more than

MEGAN (91.52%) and CARMA3 (64.10%), respectively.

Consistent with the conclusions from simulation study 1, the

numbers of reads assigned by TAMER are very close to the true

values, the true positive rate is high, and the false positive rate is

very low. TAMER gives more accurate assignments than

MEGAN and CARMA3 at rank Genus (Figure 3). For example,

it assigns about 14 times as many as reads to Shigella than MEGAN

and CARMA3.

Results for Real Data Analysis
Oral data. Identifying and quantifying bacterial species in the

normal and diseased samples will help understand the develop-

ment of dental caries. About 46% of the 2 million reads have hits

and could be assigned to taxonomic ranks by TAMER. The

number of identified species varies from about 700 to 1,400 across

the eight samples. Totally 2,500 unique species are detected from

this study, about 1,300 of them have at least 5 assigned reads, and

about 400 species are shared by all samples.

Estimated proportions of reads for the dominant classes based

on TAMER are shown in Figure 4 (a). Generally, normal sample

contains more Bacilli and Gammaproteobacteria but less Bacteroidia

than the diseased sample, which agrees with taxonomic assign-

ment using MEGAN approach [25] (Figure S3). We also observe a

large variation among the individual samples although the eight

samples were selected with homogeneous clinical features. For

Table 1. Results for simulation study 1 with average read length o1 100 bp.

simLC simMC simHC simSC

TAMER MEGAN TAMER MEGAN TAMER MEGAN TAMER MEGAN

TP FP TP FP TP FP TP FP TP FP TP FP TP FP TP FP

Species 97.92 0.02 84.74 0.01 96.14 0.86 67.57 0.83 96.97 0.15 91.97 0.00 95.70 1.20 86.05 0.11

Genus 97.92 0.00 85.02 0.01 96.17 0.76 72.95 0.86 97.00 0.03 93.59 0.00 95.87 0.70 91.67 0.00

Family 97.93 0.00 96.68 0.01 96.91 0.02 95.13 0.01 97.01 0.02 96.59 0.00 94.71 0.02 93.63 0.00

Order 97.93 0.00 96.69 0.01 96.91 0.02 95.20 0.01 97.01 0.02 96.74 0.00 95.36 0.01 94.37 0.00

Class 97.93 0.00 96.79 0.01 96.93 0.00 95.44 0.01 82.85 0.00 82.64 0.00 92.10 0.00 91.21 0.00

Phylum 97.93 0.00 96.87 0.01 96.93 0.00 95.51 0.01 97.03 0.00 96.92 0.00 96.16 0.00 95.35 0.00

Kingdom 97.94 0.01 96.98 0.01 96.99 0.00 95.66 0.01 97.11 0.00 96.97 0.00 96.90 0.00 96.19 0.00

The percentage of correctly (TP) and incorrectly (FP) assigned reads out of total 150,000 reads with average read length of 100 bp at different taxonomic ranks using
TAMER and MEGAN for the simLC, simMC, simHC and simSC datasets in simulation study 1.
doi:10.1371/journal.pone.0046450.t001
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instance, Actinobacteria is abundant in the two control samples, and

depleted in the remaining samples except for one sample from

within cavities where it shows high proportion. Betaproteobacteria is

high in one of the two controls and one of the samples with treated

cavities, but low in the remaining six samples. Examining the

population distribution at the genus level (Figure 4 (b)), Streptococcus

is enriched in the normal samples, Prevotella and Veillonella are

associated with the disease, and Fusobacterium is not abundant in the

Figure 1. Reads assignment at rank Species and Genus for simLC dataset. Numbers of reads assigned to rank (A) Species and (B) Genus
using TAMER and MEGAN are compared with the true values (TRUTH) for the simLC dataset with 150,000 reads and average read length of 100 bp in
simulation study 1.
doi:10.1371/journal.pone.0046450.g001
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disease samples. Our findings about these genera are also reported

in a recent study [27] which hence further verified our results.

Seawater data. Using BLAST, about 97% of reads in sample

1 and 94% of reads in sample 2 have hits in the nt database and

could be assigned to taxonomic ranks by TAMER. There are

about 900 and 1,400 species detected in sample 1 and 2,

respectively. TAMER assigns more reads than MEGAN and

CARMA3 at different taxonomic ranks (Table 3). At rank Species,

TAMER assigns about 50% more reads than MEGAN and about

90% more reads than CARMA3 for sample 1. Candidatus

Figure 2. Reads assignment at rank Species and Genus for simMC dataset. Numbers of reads assigned to rank (A) Species and (B) Genus
using TAMER and MEGAN are compared with the true values (TRUTH) for the simMC dataset with 150,000 reads and average read length of 100 bp in
simulation study 1.
doi:10.1371/journal.pone.0046450.g002
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Pelagibacter ubique is dominant in both samples (Figures S4). In fact

this organism is highly dominant in both salt and fresh water

worldwide [28]. At rank Genus, the differences among the number

of assigned reads using different methods become smaller.

However TAMER still assigns about 18% more reads than

MEGAN and about 37% more reads than CARMA3 for sample

1. The two seawater samples are characterized as differing from

each other based on relative frequency with sample 1 containing

more Shewanella and Burkholderia than sample 2 (Figures S5), which

is consistent with previous conclusions [7,26].

Discussion

The term metagenomics, first appeared in publication about 10

years ago [29]. To date, many metagenomic projects have

undertaken characterization of microbiomes in samples from

different environments including human gut [30], seawater [26],

and soil [31], due to the next generation sequencing technologies.

Therefore metagenomics has a broad impact across many diverse

areas including human health, ecology, environmental remedia-

tion, and agriculture. Tens of millions of sequence reads can be

obtained from sequencing one sample. An enormous challenge is

attaining efficient and accurate data capture and storage coupled

with computational and statistical methods to mine information

from these massive datasets.

In this paper, we propose a rigorous statistical model to

accurately identify and quantify genomes contained in a

metagenomic sample by taking into account both sequence

alignment scores and relative proportion of reads generated by

the genomes. Identification of multiple genomes is an important

goal in metagenomic studies. When a read is assigned to the high

rank of the taxonomy tree, it is difficult to differentiate what genus

or species actually are, or are not contained in the sample, as a

high rank of taxonomy tree usually contains many genera and

species. The proposed method, TAMER, can be applied to

unassembled reads directly. The uniqueness of TAMER is that it

assigns reads among the candidate genomes to which the sequence

Table 2. Results for CARMA3 evaluation dataset.

TAMER MEGAN CARMA3

TP FP TP FP TP FP

Species 99.24 0.73 81.45 0.02 4.57 0.12

Genus 99.26 0.68 91.52 0.03 64.10 0.43

Family 89.39 0.00 88.55 0.00 73.20 0.10

Order 97.22 0.00 96.40 0.00 83.48 0.12

Class 92.11 0.00 91.42 0.00 82.34 0.10

Phylum 99.94 0.00 99.31 0.00 90.50 0.07

Kingdom 99.97 0.00 99.42 0.00 90.90 0.12

The percentage of correctly (TP) and incorrectly (FP) assigned reads out of total
25,000 reads at different taxonomic ranks using TAMER, MEGAN and CARMA3
for the CARMA3 evaluation dataset in simulation study 2.
doi:10.1371/journal.pone.0046450.t002

Figure 3. Reads assignment at rank Genus for CARMA3 dataset. Numbers of reads assigned to rank Genus using TAMER, MEGAN, and
CARMA3 are compared with the true values (TRUTH) for the CARMA3 evaluation dataset in simulation study 2.
doi:10.1371/journal.pone.0046450.g003
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reads have hits. It does not assign the reads one by one to the

taxonomy tree. On the contrary TAMER fully utilizes the

information available from all reads by employing the mixture

model. Roughly speaking, the taxonomic assignment of a read not

only depends on its matching score against a genome but also

borrows strength or information from other reads in the dataset. If

a read achieved a high score in only one genome, then this read

would be considered genome-specific and will be assigned to the

corresponding genome. After assigning reads to multiple genomes,

we sum up the assigned reads at different taxonomic ranks.

Different from other mixture models [18,32], the sequencing error

is considered and estimated in our proposed method. The

comprehensive simulation studies demonstrate that TAMER is

comparable with MEGAN at high taxonomic ranks, but TAMER

assigns reads more accurately than MEGAN at Genus level or

even Species level.

One limitation of the proposed method is that it is based on

homology searches of the sequence reads in the reference

databases. For reads generated from new genomes, they would

not be included in the model if matches are not found. De novo

assembly methods and deep sequencing are needed to discover

new genomes.

As of future work, we can further assess the accuracy and

uncertainty of the proportion of assigned reads along the

taxonomy tree. The bootstrap method [33] by resampling the

original sequence reads (i.e., sampling rows of the scoring matrix)

with replacement can be used for the statistical inference.

Subsequently, the parameters are estimated using the described

EM algorithm for the bootstrap sample. By replicating this

procedure, i.e., resampling and estimating a large number of

times, (e.g., B = 1000 bootstraps), we are able to obtain the

confidence interval for each parameter of interest. Since we

construct the confidence intervals for the K parameters

Ri(i~1,2, � � � ,K) simultaneously, a multiple correction method

[34] such as Bonferroni correction can be used to guarantee a pre-

specified (1-a)*100% family confidence level.

Supporting Information

Figure S1 Barplot of the number of assigned reads by
TAMER and MEGAN at rank Species for simHC data.
Numbers of reads assigned to rank Species using TAMER and

MEGAN are compared with the true values (TRUTH) for the

simHC data set of 150,000 reads with average read length of

100 bp.

(TIFF)

Figure S2 Barplot of the number of assigned reads by
TAMER and MEGAN at rank Genus for simHC data.
Numbers of reads assigned to rank Genus using TAMER and

MEGAN are compared with the true values (TRUTH) for the

simHC data set of 150,000 reads with average read length of

100 bp.

(TIFF)

Figure S3 Scatter plot of estimated proportions byTA-
MER and MEGAN at different taxonomic ranks for the
oral data. Scatter plots of estimated abundance (proportion of

reads) at different taxonomic ranks by MEGAN and TAMER for

all eight samples.

(TIF)

Figure S4 Population distribution of sea water samples
at rank Species. Proportions of reads assigned to the taxa at

rank Species using TAMER, MEGAN and CARMA3 are

compared for the sea water datasets.

(TIFF)

Figure S5 Population distribution of sea water samples
at rank Genus. Proportions of reads assigned to the taxa at rank

Genus using TAMER, MEGAN and CARMA3 are compared for

the sea water datasets.

(TIFF)

Table S1 Characteristics of data sets for simulation
study 1. Number of reads generated from each organism is listed

for the simLC, simMC, simHC, and simSC datasets.

(XLS)

Figure 4. Heatmaps for oral samples. Heatmaps for the abundant
(A) classes and (B) genera represent the estimated proportion of reads
assigned to each of the eight samples based on TAMER.
doi:10.1371/journal.pone.0046450.g004

Table 3. Results for the two seawater samples.

Sample 1 Sample 2

TAMER MEGAN CARMA3 TAMER MEGAN CARMA3

Species 93.92 45.82 3.92 86.92 35.36 0.54

Genus 91.77 70.98 60.20 81.84 34.02 15.63

Family 75.86 59.82 54.16 57.77 18.30 5.00

Order 91.62 77.12 57.88 80.69 41.74 8.44

Class 85.57 74.40 73.71 74.10 42.81 37.66

Phylum 92.84 81.36 83.92 83.53 50.12 53.65

Kingdom 96.50 87.32 90.27 93.86 68.85 73.87

The percentage of reads out of total 10,000 reads assigned at different
taxonomic ranks using TAMER, MEGAN and CARMA3, for each of the two
seawater samples.
doi:10.1371/journal.pone.0046450.t003
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Table S2 Results for simulation study 1 with average
read length of 400 bp. The percentage of correctly (TP) and

incorrectly (FP) assigned reads out of total 10,000 reads with

average read length of 400 bp at different taxonomic ranks using

TAMER and MEGAN for simMC and simHC datasets.

(DOC)
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