
Frontiers in Immunology | www.frontiersin.

Edited by:
Thomas Herrmann,

Julius Maximilian University of
Würzburg, Germany

Reviewed by:
Oliver Daumke,

Max Delbrueck Center for Molecular
Medicine, Germany

Tiina Henttinen,
University of Turku,

Finland

*Correspondence:
Sheela Ramanathan

sheela.ramanathan@usherbrooke.ca

Specialty section:
This article was submitted to

T Cell Biology,
a section of the journal

Frontiers in Immunology

Received: 16 March 2021
Accepted: 12 May 2021
Published: 31 May 2021

Citation:
Limoges M-A, Cloutier M, Nandi M,
Ilangumaran S and Ramanathan S

(2021) The GIMAP Family
Proteins: An Incomplete Puzzle.

Front. Immunol. 12:679739.
doi: 10.3389/fimmu.2021.679739

REVIEW
published: 31 May 2021

doi: 10.3389/fimmu.2021.679739
The GIMAP Family Proteins: An
Incomplete Puzzle
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Overview: Long-term survival of T lymphocytes in quiescent state is essential to maintain
their cell numbers in secondary lymphoid organs and in peripheral circulation. In the
BioBreeding diabetes-prone strain of rats (BB-DP), loss of functional GIMAP5 (GTPase of
the immune associated nucleotide binding protein 5) results in profound peripheral T
lymphopenia. This discovery heralded the identification of a new family of proteins initially
called Immune-associated nucleotide binding protein (IAN) family. In this review we will use
‘GIMAP’ to refer to this family of proteins. Recent studies suggest that GIMAP proteins
may interact with each other and also be involved in the movement of the cellular cargo
along the cytoskeletal network. Here we will summarize the current knowledge on the
characteristics and functions of GIMAP family of proteins.
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INTRODUCTION

In the BioBreeding diabetes-prone strain of rats (BB-DP), the recessive lyp mutation causes a
profound loss of T lymphocytes in secondary lymphoid organs (1). Positional cloning of the gene
responsible for the lymphopenic phenotype in the BB-DP rats independently by two groups led to
the discovery of a family of proteins that are conserved in vertebrates (2, 3). The lyp allele arises from
a frame shift mutation within the GTPase domain of the immune associated nucleotide binding
protein 5 (Gimap5) gene, resulting in a truncated protein lacking 223 amino acids at the C-terminus
(2, 3). GIMAP5 is a member of the GIMAP family that are implicated in immune functions in
mammals (4). Initially this family of proteins was named IAN, for ‘immune associated nucleotide
binding’ proteins, as they were predominantly expressed in the cells of the hematopoietic system
and contained domains that can bind to GDP/GTP. In this review we will summarize our
current knowledge of the structure and functions of GIMAP proteins, many of which are
implicated in the development and maintenance of lymphocytes (Table 1). All Gimap genes are
clustered within a short locus in the genome. The human GIMAP cluster, spanning about 500kb on
Abbreviations: BB-DP, Biobreeding diabetes prone; CRAC, Ca2+ release activated Ca2+ channel; GIMAP, GTPase of the
immune associated nucleotide binding protein; GPN, Gly-Phe b-naphthylamide; HSC, hematopoietic stem cell; MHC:p, MHC
peptide complex; RTE, recent thymic emigrants; T1D, Type 1 diabetes.
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chromosome 7, contains seven functional genes and one
pseudogene (4). In mice and rats the Gimap genes are present
as a tight cluster within a 150kb region on chromosome 6 and
4, respectively (2, 3). Gimap-like genes have been identified
in angiosperms, corals, nematodes and in snails wherein they
are implicated in protection from infections (56–59). The
observed homology between GIMAP proteins and the plant
avrRpt2 induced gene 1 (AIG1) might have resulted from
convergent evolution of the AIG1 domain (4, 60). In fact,
initial homology searches identified Arpt1 in Arabhdiposis
thaliana (61) as the closest homolog of the mammalian Gimap
family proteins.

The GIMAP family consists of putative small GTP-or/and
ATP binding proteins that are conserved among vertebrates
(Figure 1). Among the GIMAP family proteins, sequence
similarity is restricted to the N-terminus, which contains a
guanine nucleotide-binding domain (4, 62). All GIMAP family
members harbor the AIG1 domain containing a GTP-binding
motif, that is referred to as GIMAP GTPase domain comprised
of the five G motifs G1, G2, G3, G4, and G5, which are involved
in nucleotide binding. It is thought that the GIMAP GTPase
domains may be functional and that their activity may be
controlled by homo/hetero dimerization (44–46, 63). However,
only some GIMAPs have been shown to bind GDP/GTP or to
hydrolyze GTP. GIMAP4 is the first member reported to bind
GDP and GTP and exhibit GTPase activity (63). Further studies
have shown that GIMAP2 and GIMAP5 can bind GTP with high
affinity but cannot hydrolyze it on their own (44). GIMAP7 can
Frontiers in Immunology | www.frontiersin.org 2
stimulate its own GTPase activity and promote GTP hydrolysis
by GIMAP2 (44). Besides the GTPase domain, all GIMAP
proteins contain a helical segment that folds back on to the
GTPase domain and may mediate interaction with partner
proteins. In addition, GIMAP1, GIMAP3, and GIMAP5
contain a transmembrane hydrophobic domain at the C-
terminus that have been shown to mediate membrane
anchoring and target them to intracellular organelles (64). In
the next sections each of the GIMAP family member is discussed
in detail, starting with the founding member GIMAP5.
GIMAP5

Mutation in Gimap5 Is Associated With
T Lymphopenia
A spontaneous mutation in an outbred colony of Wistar rats was
associated with the development of autoimmune type 1 diabetes
(T1D) (5). Incidentally these rats were also lymphopenic. Further
inbreeding resulted in the establishment of the strain of BB-DP
rats (1, 6–8). Genetic studies mapped the lymphopenia
phenotype to the lyp locus on chromosome 4 (9). In 2002, two
groups independently identified a frameshift mutation within the
Gimap5 gene as being responsible for this lymphopenic
phenotype (2, 3). In BB-DP rats, lymphopenia is restricted
to the T cell compartment with a 5-10 fold reduction in the
number of mature T cells in secondary lymphoid organs (10).
This lymphopenia is more severe in the CD8+ T cell
TABLE 1 | Phenotype of deficiency in GIMAP genes.

Gene/Protein
localization

mice/rats Humans References

Gimap5
Lysosomes,
vesicles

Rats:
Normal T cell development; reduced T cell export; peripheral T lymphopenia;
Survival defects in naïve resting T cells; normal B and NK cells; T cell-mediated
autoimmunity dependent on the genetic background; Normal life span;
spontaneous activation of the AKT signaling pathway
Mice:
Deficiency in T, B and NK cells; survival defects in lymphocytes; exhaustion of
HSC; hepatic extramedullary hematopoiesis; reduced life span; spontaneous
activation of AKT signaling
In another independent knockout mouse line, no defect was observed

T and NK defects; splenomegaly and
lymphadenopathy; spontaneous activation of the
AKT pathway; responsive to rapamycin
treatment; replicative senescence in T cells.

Rats: (1–3,
5–34).
Mice: (35–
41).
Humans:
(40, 42).

Gimap1
Golgi apparatus

Reduced survival of T and B cells; loss of mitochondrial potential and oxygen
consumption

GIMAP1 expression is increased in DLBCL
lymphomas

(33, 43)

Gimap2
Lipid droplets

absent Not known (44–46)

Gimap3
Endoplasmic
reticulum

Pseudogene in rats
In mice GIMAP3 regulates the segregation of mitochondrial DNA

Pseudogene in humans (47, 48)

Gimap4
Cytosolic

Required for the transition of T cells from apoptotic to dead cells Associated with cytoskeleton, movement of
vesicles and secretion of cytokines

(49, 50)

Gimap6
Autophagosomes

Reduced T and B cell numbers; Increased sensitivity to apoptosis Increased sensitivity to apoptosis Mice: (51–
53).
Humans:
(54).

Gimap7
Cytosolic

Not known Not known (44–46)

Gimap8 Reduction in recirculating B cells (55)
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compartment than in the CD4+ T cell compartment (11, 12).
Thus, most studies characterizing the function of GIMAP5 in T
cells have been carried out on the CD4+ T cell subset. Mature
CD4+ T cells, characterized by the expression of the RT6 marker
in the rats, were almost completely absent in the secondary
lymphoid organs of BB-DP rats (13, 14). In vitro studies have
shown that the few surviving T cells in BB-DP rats are not fully
functional. Purified BB-DP rat CD4+ T cells stimulated with
mitogens or anti-CD3/CD8 antibodies displayed impaired
proliferative response (15). In vivo, the decreased functionality
of the BB-DP rat T cells was attributed to the increased nitric
oxide (NO) production by macrophages (16). Bone-marrow
chimeras showed that the increased NO production by
macrophages of the BB-DP rats was secondary to the T
lymphopenia, as correcting the latter decreased NO production
(15). In addition, the lyp mutation affects the development of
regulatory T cells, gd T cells and intra-epithelial lymphocytes
(iIELs) in the intestinal mucosa (17, 18). The development and
survival of NK cells and B lymphocytes are not affected by the lyp
mutation in BB-DP rats (genotype: Gimap5lyp/lyp) (1). An
important paradox in BB-DP rats that aroused much scientific
investigation in the 80s and 90s was the T cell dependency of
autoimmune T1D development despite severe lymphopenia.
Depletion of the few CD4+ or CD8+ T cells, but not NK cells,
prevented T1D development in BB-DP rats (19, 20), indicating
that the remaining lymphocytes are the crucial mediators
of disease.
Frontiers in Immunology | www.frontiersin.org 3
Phenotype of T Cells in the Absence of
Functional GIMAP5
During T cell development, hematopoietic precursors with
restricted multipotency enter the thymic cortex from the bone
marrow and undergo a series of developmental changes that are
demarcated by specific phenotypic characteristics associated with
their commitment towards the T cell lineage (65). Until the
rearrangement of the T cell antigen receptor (TCR) genes,
thymocytes do not express CD4 or CD8 co-receptors and are
referred to as double negative (DN) thymocytes. TCR
rearrangement upregulates the expression of both CD4 and
CD8 co-receptors, allowing these double positive (DP) cells to
undergo positive selection (66, 67). Subsequent to TCR signaling,
DP cells lose one of the two co-receptors, depending on their
ability to recognize MHC class I or class II molecules, and
become CD4 or CD8 single positive (SP) cells that transit to
the thymic medulla where T cells with high affinity to self-
antigens are deleted by the negative selection process. The
surviving SP thymocytes undergo further maturation before
exiting to the periphery as recent thymic emigrants (RTE).
RTE undergo additional maturation in the periphery to
become long-lived naïve T cells. Naïve T cell survival is
maintained in the periphery by constant low-level interactions
with the self MHC:peptide complexes (MHC:p) (68). Upon
encounter with the cognate antigen, the TCR-stimulated T cell
clones undergo proliferative expansion and initiate the adaptive
immune response. Some of the antigen-specific T cells undergo
A

B

FIGURE 1 | Human GIMAP family protein structure. Predicted structural domains of human GIMAP family members. (A) The 307-amino acid long human GIMAP5
protein contains the GIMAP GTPase domain, coiled-coil (CC) regions and a C-terminal transmembrane (TM) domain. Rat GIMAP5 protein is found in two isoforms
that differ in length (GIMAP5v1 and GIMAP5v2). Both retain the CC regions and the TM domain. (B) Predicted structures of other human GIMAP family proteins and
mouse GIMAP3, as the latter is a pseudogene in humans. The calmodulin interaction domain (IQ) is unique to both GIMAP4 isoforms. The drawings are not to scale.
May 2021 | Volume 12 | Article 679739
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reprogramming to become long-lived memory T cells that
constantly patrol the tissues. Both naïve and memory T cells
rely on cues from TCR- MHC:p interactions and cytokines such
as IL-7 and IL-15 for their survival and homeostasis in
the periphery.

Even though the proportion of DN, DP and SP subsets are
comparable between control and BB-DP rats, the reduced thymic
output in BB-DP rats (1, 21, 22) suggested that the lymphopenic
phenotype caused by Gimap5lyp/lyp genotype manifests during
the later stages of T cell development in the thymus. In line with
this observation, transcripts for Gimap5 are detected at higher
levels starting from DP stage of T cell development in normal
rats (23). Some groups have observed a decrease in the frequency
of immature CD8+ SP thymocytes (24–26). Nevertheless, SP
thymocytes from Gimap5lyp/lyp rats undergo accelerated
apoptosis in vitro (1, 25–27).

Homeostatic expansion of T cells present in the periphery can
compensate for reduced thymic export and can almost fully
restore the T cell numbers under conditions of lymphopenia
(69). However, the peripheral T lymphopenia in the Gimap5lyp/lyp

rats suggests that the homeostatic expansion may also be
compromised by GIMAP5 deficiency or, alternately, that the
expanding cells are unable to survive and persist in the secondary
lymphoid organs. To address this issue, we thymectomized
control and Gimap5lyp/lyp rats and labeled the cycling cells
with bromodeoxyuridine (27). Whereas only 5-10% T cells
incorporated the label in control rats with a full T cell
compartment, almost 100% of the T cells in Gimap5lyp/lyp rats
had incorporated BrDU during the same period. Despite this
increased T cell cycling in the periphery, Gimap5lyp/lyp rats fail to
restore their T cells numbers in the periphery. Follow up of the
BrDU-labeled cells during the chase period suggested that most
of them were lost from the secondary lymphoid organs in
Gimap5lyp/lyp rats while they were present in control rats. The
complete loss of the BrDU-labeled cells from the secondary
lymphoid organs of Gimap5lyp/lyp rats indicated that the
progeny of the cycling cells was unable to persist and survive
and that the homeostatic pressure maintains the few surviving
cells in a perpetual cycling phase. Reconstitution of the
lymphopenic BB-DP rats with splenocytes from syngenic,
diabetes-resistant (BB-DR) rats that carry the wildtype Gimap5
allele eliminated the cycling of endogenous BB-DP T cells that
were eventually lost from the periphery.

Paradoxically, the few cells that persist in the secondary
organs of Gimap5lyp/lyp rats have been shown to be activated by
their cognate antigen and incorporated into the pool of recycling
cells (27). As there are no TCR transgenics available for rats, the
antigen specificity of the peripheral T cell pool was assessed using
allogenic T cells from Wistar Furth (WF) background as
lymphopenic BB-DP rats could reject allogenic T cells (27). To
determine whether antigen-reactive cells were inducted into the
pool of recirculating cells, the BB-DP rats were thymectomized
following the rejection of WF T cells. One month after
thymectomy, the antigen-exposed rats were still capable of
rejecting the allogenic T cells. However, in the absence of prior
exposure, thymectomized rats were unable to eliminate the
Frontiers in Immunology | www.frontiersin.org 4
allogenic cells. Additional experiments showed that RTEs had
a narrow window of one week after thymic exit in order to be
‘rescued’ by TCR stimulation. These experiments helped resolve
the paradox of T cell mediated autoimmunity in BB-DP rats. In
an appropriate genetic background these cycling Gimap5lyp/lyp T
cells recognize self-antigens and induce autoimmune diseases.
For example, in the BB-DP rats these cycling T cells recognize
islet antigens and induce T1D. In the PVG background the lyp
mutation contribute to eosinophilic inflammatory bowel disease
(70) whereas in Lewis rats experimental autoimmune
encephalomyelitis (EAE) becomes aggravated (71).

In humans, transcripts for GIMAP5 can be detected in
peripheral blood T cells but not in B cells (62). Human
GIMAP5 was initially identified in 2001 as the Oar-2 clone
from a Jurkat-derived cDNA library that could confer
resistance to gamma-radiation and okadaic acid (OA)-induced
apoptosis (72). In 2003, the protein was identified as Irod
(inhibitor of radiation- and OA- induced death) (73).
Overexpression of Oar-2 conferred protection in a CaMKII
dependent manner in Jurkat cells (73). Regulation of sensitivity
to OA may be species-specific, as no significant alterations in
protein phosphatase activity was observed in Gimap5lyp/lyp rat T
cells (28).

To better understand the functions of Gimap5, three groups
generated mice with inactivating mutations in Gimap5 (35–37).
Two lines of Gimap5-deficient mice generated by the groups of
H. Weiler and K. Hoebe exhibited comparable phenotype (35,
36). The Weiler laboratory generated Gimap5-/- mice by
replacing the Gimap5 exon 2 and a part of exon 3 with the
neomycin cassette (36). The Hoebe group inactivated Gimap5
through ENU mediated mutagenesis to generate the Sphinx
(Gimap5sph/sph) line of mice (35). The latter carried a point
mutation G38C that can abrogate the binding of GTP/GDP to
a site that is conserved in RAS family of GTPases. Unlike in rats,
where the defect caused by the lyp allele is restricted to T cells,
absence of functional GIMAP5 leads to a paucity of peripheral T,
B and NK cells in Gimap5-/- and in Gimap5sph/sphmice. However,
positive and negative selection of T cells was not altered by the
absence of GIMAP5 (35). In addition to T and B lymphopenia,
both lines of mice show exhaustion of hematopoietic stem cells
(HSC) and hepatic extramedullary hematopoiesis that is
independent of T and B lymphocytes, as Rag1-/-Gimap5-/- mice
also show the same phenotype (35, 38). In contrast to the above
two mouse strains, Gimap5-/- mice developed by the Takahama
group did not exhibit any T cell survival defects (37). Reasons for
this discrepancy remains unclear. The Sphinx mice have also
been reported to develop intestinal inflammation (35, 39).

Mutation in the Gimap5 Gene Disrupts
Signaling Pathways in T Cells
Homeostatic survival of naive T cells requires two essential
signals, one provided by the cytokine interleukin-7 (IL-7) and
the other by MHC:self-peptide complexes that engage the TCR
(74). Signals delivered via the IL-7 receptor and the TCR impact
the classical pathway that maintains quiescence in most cell types
involving LKB1 and AMPK (75, 76). AMPK, the energy sensor
May 2021 | Volume 12 | Article 679739
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activated by an elevated AMP/ATP ratio, inhibits the mTORC1
complex by activating its suppressor, the TSC1/2 complex (77,
78). TCR engagement triggers the activation of LCK and ZAP70
that phosphorylate many substrates including the scaffolding
protein LAT, resulting in the formation of multi-molecular
signaling complex at the plasma membrane (79) (Figure 2).
Activation of the PI3K/AKT signaling pathway downstream of
TCR signaling phosphorylates TSC1/2 complex thereby releasing
RHEB GTPase from suppression to activate the mTORC1
complex (80). mTORC1 promotes translation and protein
synthesis by activating 70-kDa ribosomal S6 kinase (S6K1) and
releasing the repressor protein 4E-BP1 from the translation
initiation factor eIF-E4. Thus, in the absence of functional
LKB1, AMPK or the TSC1/2 complex, T cell quiescence is lost
(75–78). We observed that Gimap5-deficient T cells showed
normal AMPK activation and mitochondrial respiration but
displayed defects in IL-7 signaling, proximal TCR signaling
manifested as reduced phosphorylation of ZAP70 and LAT, T
cell calcium response and constitutive activation of AKT and the
mTORC1 pathway (28–31) (Figure 2). Molecular mechanisms
by which GIMAP5 impacts TCR and IL-7R signaling pathways
remain to be elucidated.

Rat GIMAP5 Regulates Cellular
Calcium Homeostasis
The TCR signalosome recruits and activates phospholipase
Cg (PLCg) , which hydrolyzes the membrane bound
phosphatidylinositol 4,5 bisphosphate (PIP2) to generate inositol
Frontiers in Immunology | www.frontiersin.org 5
1,4,5-triphosphate (IP3) and diacyl glycerol (DAG) (Figure 2). IP3
binds to its receptor IP3R on the endoplasmic reticulum (ER) and
triggers Ca2+ release from the ER store, resulting in a
conformational change in the ER-localized STIM1 protein (81,
82) (Figure 3). This event relays a signal to open the Ca2+ release-
activatedCa2+ channel (CRAC)on theplasmamembrane, inducing
the capacitative Ca2+ entry from the extracellular milieu (83, 84).
CRAC channels consisting of the ORAI proteins are the major
store-operated channels in T lymphocytes (85, 86). TCR
stimulation by antigen induces sustained Ca2+ influx via CRAC
channels leading to T cell proliferation (87).

We observed that TCR-induced Ca2+ flux is reduced in T cells
from BB-DP rats, which lack a functional GIMAP5 protein (30).
The IP3-mediated Ca2+ release from the ER stores into the
cytosol (88), can be mimicked by blocking the sarco/
endoplasmic reticulum Ca2+ ATPases (SERCA) pump that
refills the ER Ca2+ reserve, using thapsigargin (89) (Figure 3).
We observed that GIMAP5 deficiency does not affect Ca2+

release from the ER in primary rat T cells (30). Similarly,
overexpression of rGIMAP5 did not influence the emptying of
the ER Ca2+ stores (31). However, Ca2+ influx from the
extracellular milieu which occurs mainly via the CRAC
channels, was reduced in Gimap5-deficient rat T cells (28, 30).

Following sustained Ca2+ entry via the CRAC channels, the
rising concentration of cytosolic Ca2+ ([Ca2+]c) activates the Ca

2+

uniporter on the mitochondrial membrane. This induces a slow,
membrane potential-driven uptake of Ca2+, which is released
later via the Na+/Ca2+ exchanger (90) (Figure 3). This process
FIGURE 2 | T cell signaling pathways that are influenced by GIMAP5. Following TCR stimulation by MHC:peptide complex or by Ab-mediated TCR cross-linking,
LCK phosphorylates CD3 zeta chains and ZAP70, resulting in the phosphorylation of LAT that acts as a scaffold for downstream signaling molecules such as PLCg.
Activation of the PI3K/AKT signaling pathway downstream of TCR phosphorylates and inhibits the TSC1/2 complex, relieving repression of the mTORC1 kinase and
leading to activation of downstream signaling events. IL-7 signaling stimulates STAT5 and also activates the PI3K/AKT pathway. GIMAP5 deficiency in rat and mouse
T cells compromises proximal TCR signaling characterized by reduced Tyr phosphorylation of ZAP70 and LAT, but results in constitutive activation of AKT and
mTORC1. GIMAP5 deficient T cells also display reduced IL-7-induced STAT5 phosphorylation. It is unclear how GIMAP5 impacts the TCR and IL-7R signaling
pathways and regulates AKT activity (29, 34, 40–42).
May 2021 | Volume 12 | Article 679739
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ensures that Ca2+ entering via the CRAC channel does not cause
a feedback inhibition of the CRAC channel activity (91, 92).
Thus, mitochondria act like a slow, non-saturable, non-linear
buffer for intracellular Ca2+, as they sequester [Ca2+]c during
periods of rapid Ca2+ entry and sustain the [Ca2+]c level by
releasing it slowly even after the cessation of Ca2+ influx (91)
(Figure 3). We observed that the reduced Ca2+ influx in Gimap5-
deficient T cells is associated with the inability of their
mitochondria to sequester Ca2+ ([Ca2+]m) following
capacitative entry (28). This reduced mitochondrial Ca2+ was
also observed following stimulation of the ryanodine receptors
that are present on ER membrane (28) and are implicated in T
cell functions (93–95). As a corollary, overexpression of
rGIMAP5 in HEK293 cells resulted in increased Ca2+

accumulation within the mitochondria (28). As a consequence,
Ca2+ influx from extracellular milieu is reduced in cells
expressing GIMAP5, probably due to early saturation of the
mitochondrial Ca2+ store (28).

Even though the ER is the major intracellular Ca2+ store, and
mitochondria uptake Ca2+ to prevent feedback inhibition of the
CRAC channels, a significant amount of Ca2+ can be released
from the Golgi complex, lysosomes, nucleus and secretory
granules (96). As GIMAP5 does not directly interact with
mitochondria but is present on lysosomes and certain
Frontiers in Immunology | www.frontiersin.org 6
endocytic vesicles (31–33, 40), we postulated that GIMAP5
might regulate the Ca2+ content of lysosomes (Figure 3). Ca2+

was released from lysosomes by Gly-Phe b-naphthylamide
(GPN) whose hydrolysis by cathepsin C results in osmotic lysis
of the acidic compartment (97). We observed that GPN-
mediated Ca2+ release was increased in T cells from Gimap5lyp/lyp

rats, and the Ca2+ influx from the extracellular milieu was also
higher than that of T cells from control rats (31). These
observations suggest that the intracellular partitioning of Ca2+

in Gimap5lyp/lyp rat T cells is different from that of normal rat T
cells. These observations were reflected in stable transfectants of
full-length GIMAP5 in HEK293T cells, which displayed reduced
GPN-induced Ca2+ release. Regulation of Ca2+ homeostasis was
dependent on the full-length GIMAP5 protein as C-terminal or
N-terminal deletion mutants were unable to do so. Further
analyses of the truncated GIMAP5 proteins indicated that the
GIMAP5 is anchored to lysosomal membranes and certain
vesicles through the C-terminal anchor while the N-terminal
regions interacted with the microtubules (31, 33) (Figure 4).
Thus, the presence of GIMAP5 appears to decrease Ca2+ release
from lysosomes. For the first time, our results suggest that
lysosomal Ca2+ homeostasis regulates the survival of T cells and
that this process requires GIMAP5. We also observed that that
the lysosomal Ca2+ content was altered by signaling through
FIGURE 3 | Regulation of Calcium homeostasis in rat T cells by GIMAP5. TCR-induced PLCg activation leads to cleavage of plasma membrane-associated
phosphatidylinositol 4,5 bisphosphate (PIP2) to generate inositol 1,4,5-triphosphate (IP3). IP3 binds to its receptor IP3R on the endoplasmic reticulum (ER) and
triggers Ca2+ release from the ER store, resulting in a conformational change in the ER-localized STIM1 protein. This event relays a signal to open the Ca2+ release-
activated Ca2+ channel (CRAC) on the plasma membrane, inducing the capacitative Ca2+ entry. The rising concentration of cytosolic calcium ([Ca2+]c) activates the
Ca2+ uniporter on the mitochondrial membrane to uptake Ca2+, which is released later via the Na+/Ca2+ exchanger. In addition to ER, lysosomes also release a
significant amount of Ca2+ following cell activation. Loss of GIMAP5 does not affect TCR- or thapsigargin- induced Ca2+ release from the ER stores but reduces
Ca2+entry from extracellular milieu. GIMAP5 resides on lysosomes and the loss of GIMAP5 reduces lysosomal and mitochondrial Ca2+ content, presumably leading
to feedback inhibition of the CRAC channels by cytosolic Ca2+. How GIMAP5 integrates TCR signaling to regulate lysosomal and mitochondrial Ca2+ to promote T
cell survival and functions remains to be elucidated (28, 30, 31).
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the TCR in murine and human T cells (31). Whether and how
GIMAP5 integrates TCR signaling to regulate lysosomal Ca2+ in
order to promote T cell survival and functions remain to be
elucidated (Figure 3).

Signaling Pathways Affected in T Cells in
the Absence of GIMAP5
Defective Ca2+ signaling in BB-DP rat T cells is evident within 30
minutes of TCR signaling induced by CD3 cross-linking (30).
However, T cells from Gimap5Sph/Sph mice do not display any
defect in Ca2+ influx induced by TCR signaling (40). Nonetheless,
the TCR proximal signaling events showed similar impairments in
Gimap5mutantTcells inboth the species (29, 34, 40, 41) (Figure2).
Rat T cells were activated by cross-linking CD3/CD28, and T cells
from OT-II TCR transgenic control and Gimap5sph/sph mice were
activated using anti-CD3/CD28 antibodies or dendritic cells pulsed
with the cognate OVA-peptide. Gimap5 mutant rat and mouse T
cells displayed reduced phosphorylation of LCK and the scaffold
protein LAT following anti-CD3 stimulation (29). Notably, T cells
from the Gimap5 mutant mice and rats exhibited constitutive
phosphorylation of ATK at the basal level (34). This constitutive
phosphorylation of AKT was inhibited by PI3K inhibitors.
While aberrant activation of the PI3K/AKT pathway results
in malignant growth in most cell types (98), it causes cell death in
non-transformed T lymphocytes, leading to immunodeficiency
(99–101). Spontaneous activating mutations of PI3K that results
in constitutively active PI3K/AKT pathway in T cells has been
Frontiers in Immunology | www.frontiersin.org 7
observed in a new class of patients with primary immunodeficiency
(99–101). T cells from these patients do not proliferate in response
to mitogenic signals. These published reports and our observation
indicate that aberrant activation of the PI3K/AKT pathway in the
absence of TCR engagement may result in T cell death. The
constitutive phosphorylation of AKT can also explain the reduced
phosphorylation of STAT5 that we have observed following IL-7
stimulation (29), as pAKT can suppress the phosphorylation of
STAT5 (102).

Spontaneous AKT activation observed in Gimap5 deficient T
cells is reflected in the phosphorylation of downstream substrates
including mTORC1 and FOXO1 (34). In fact, FOXO1 proteins
are depleted progressively with age in Gimap5Sph/Sph mice (41).
It is possible that the persistent phosphorylation of FOXO1
can lead to their degradation by proteasomes (103, 104).
The Hoebe group recently showed that GIMAP5, which is
localized on lysosomes and in certain vesicles, is required for+
the inactivation of GSK3b (40). GSK3b is a serine threonine
kinase that is constitutively active in all cell types (105).
Phosphorylation on Ser-9 and Ser-389 is required to inactivate
GSK3b and promote T cell proliferation (106–108). Absence of
GIMAP5 in T cells prevented CD3/CD28-induced inactivation
of GSK3b as its inhibition by lithium chloride permitted the
survival of T cells in Gimap5Sph/Sph mice (40). As GIMAP5 is
present in certain vesicles, GIMAP5-mediated sequestration of
GSK3b may play a role inhibiting its activity and promote cell
proliferation (40).
FIGURE 4 | Subcellular localization of various GIMAP proteins in T cells. The known subcellular localization of mammalian GIMAP proteins in T lymphocytes is
indicated. For the sake of simplicity, species-specific expression pattern of some GIMAP proteins are omitted. Details are given in the text and Table 1. Events that
are predicted but require experimental confirmation are indicated by question marks. Ref- GIMAP5: (31–33); GIMAP1: (33); GIMAP2: (45); GIMAP3: (47); GIMAP4:
(49); GIMAP6: (51); GIMAP7: (45); GIMAP8: (55).
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GIMAP5 in Hematopoietic Stem Cells
GIMAP5 is essential to maintain the hematopoietic stem cell
(HSC) niche as HSC numbers diminish with age in mice carrying
mutant GIMAP5 (38), although this is not the case in rats. The
absolute numbers of HSCs as defined by Lin-IL-7R-cKit+Sca+

(LSK) cells, was comparable between wildtype and Gimap5-/-

mice (38, 41). However, Gimap5-deficient HSCs have intrinsic
defects in long-term engrafting capacity (38). The exhaustion of
HSC in Gimap5-/- mice may be the consequence of their inability
to stay in the quiescent state. In line with these observations,
Gimap5 expression is observed in murine HSC (38). Interaction
of GIMAP5 with MCL1 and HSC70 appears to contribute to
quiescence, however the underlying mechanisms are not yet
known (38, 40). Simultaneous deletion of the two pro-
apoptotic proteins, BAX and BAK, which rescues survival
in the absence of MCL1, did not alter the survival of T cells in
Gimap5Sph/Sph mice (40). It is possible that GSK3b, activated in
the absence of GIMAP5 (40), might accelerate the degradation of
MCL1 (109). These in vivo observations stand in contrast to
over-expression studies in vitro where GIMAP5 was shown to
interact with BCL-2 and BCL-xL (110). The requirement of
GIMAP5 to maintain quiescence in HSCs is further supported by
the observation that extramedullary hematopoiesis and reduced
lifespan are still observed Gimap5-/-Rag2-/- mice (36).

Polymorphisms in humanGIMAP5 gene locus has been shown
to be associated with autoimmune T1D and lupus in independent
studies (111–114). Recently, mutations in GIMAP5 have been
described in human primary immunodeficiency. The Hoebe
group (40) described one patient who had mild lymphopenia
with impaired T cell proliferation in vitro that was rescued by
GSK3b inhibition. Lenardo’s group (42) identified4different family
clusters with mutations in GIMAP5 gene. Similar to what was
reported in rats (31), GIMAP5 exists as 2 distinct isoforms in
humans (42). GIMAP5 expression was observed in NK and T cells
but not in B cells or monocytes. Nonetheless, frequency of T
lymphocytes was reduced in all the patients studied while some of
them also showed reduction in B lymphocytes and neutrophils.
These patients exhibit splenomegaly and lymphadenopathy with
abnormal liver and were susceptible to recurrent infections. T cells
from the patients recapitulate the spontaneousmTORC1activation
observed in GIMAP5 mutant T cells from rats and mice (34).
Similar to the in vitro findings (34), Gimap5Sph/Sph mice that
received rapamycin, showed reduced activation of the mTORC1
pathway (42). Treatment of one of the patients with rapamycin for
over 6 years diminished splenomegaly and lymphadenopathy,
suggesting aberrant activation of the AKT/mTORC1 pathway in
vivo in humans in the absence of functional GIMAP5. The
abnormal activation of T cells in these patients is accompanied by
replicative senescence in T cells as seen from reduced telomere
length. These observations indicate that mutations in Gimap5
profoundly compromises the survival of T cells. In rats only one
of the two isoforms was shown to regulate calcium homeostasis
(31). While the abundantly expressed GIMAP5v2 regulates
lysosomal calcium, GIMAP5v1 that is expressed at a lower level
did not. It appears that the GIMAP5v1 homolog is functional in
mice and in humans but not in rats.
Frontiers in Immunology | www.frontiersin.org 8
GIMAP1

GIMAP1 was initially identified as Imap38 that was induced in the
spleen following Plasmodium chaboudi infection (115). However
later studies carried out with anti-GIMAP1 antibody in infected
tissues was unable to confirm these findings (116). GIMAP1, which
is located in the Golgi complex (33), is expressed during all the
stages of thymocyte development and in mature T, B cells and NK
cells but minimally in macrophages (116). In humans, GIMAP1 is
upregulated following Th1, but not Th2 differentiation in vitro
(117). Constitutive and induced deletion of Gimap1 in T cells
compromised their survival in the periphery (43, 118). Following
T cell activation via the TCR, Gimap1-/- CD4+ T cells upregulate
markers of activation such as CD25 but fail to proliferate and
expand (43). In vitro, Gimap1-/- CD4+ T cells showed accelerated
loss of mitochondrial potential with a concomitant reduction in
oxygen consumption. GIMAP1 is also essential for the survival and
functioningofmatureB cells (119).Transgenic expressionofBCL-2
did not rescue the loss ofGimap1-/- B cells. Deletion of GIMAP1 in
germinal center B cells prevented the generation of efficient T-
dependent antibody responses. GIMAP1 expression is increased in
diffuse large B-cell lymphoma (DLBCL) due to hypomethylation of
the GIMAP locus (120). Additional studies are needed to
understand the role of GIMAP1 in cell survival and leukemia.
GIMAP2 AND GIMAP7

Functional GIMAP2 is present in humans but is absent inmice and
rats (3, 4). The functions of GIMAP2 have not been characterized.
The C-terminal double hydrophobic domain, which is unique to
GIMAP2, localizes it with the lipid droplets marker BIODIPY
following overexpression in JURKAT cells (45). Structural studies
of GTP-bound and unbound GIMAP2 indicate that the nucleotide
bindingdomainsofGIMAPsare related to those found indynamin,
chloroplast proteinsToc and septin-GTPases (45, 46).GTPbinding
induces the formation of dimers of GIMAP2 and presumably, of
GIMAP5. It has beenproposed that themembrane boundGIMAPs
such as GIMAP5 and GIMAP2 may form scaffolds in the GTP
associated forms (121). GTP hydrolysis may be initiated by
dimerization-dependent mechanisms involving GIMAP7 and
GIMAP4 that do not have a membrane anchor, to promote GTP
catalysis (44, 63). If this hypothesis is supported by experimental
evidence, it is possible that GTP-bound GIMAP5 scaffolds may
inhibit apoptosis, whereas heterodimerization with GIMAP4 and
consequent GTP hydrolysis may antagonize the pro-survival
functions of GIMAP5 (44, 49). These studies may also help in
identifying other associated proteins and delineating their
functional contributions.
GIMAP3

GIMAP3 is a pseudogene inhumans and in rats (4).MouseGimap3
is present in the ER (47) and influences the segregation of
mitochondrial DNA in hematopoietic tissues (48). Mammalian
mitochondrialDNA(mtDNA) is inherited from themother.When
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all the cells in an organism carry the same haplotype ofmtDNA it is
referred to as homoplasmy (122, 123). In the case of mtDNA
mutations, the cell carries two different haplotypes of mtDNA,
referred to as heteroplasmy.Manyof thesemutations are associated
with maternally inherited disorders in humans (122, 123). The two
mitochondrial haplotypes are not inherited by daughter somatic
cells in a stochastic manner (124). Additionally, mtDNA
segregation in tissues and cell types are regulated by distinct
mechanisms in an age-dependent manner (125). In inbred strains
of Mus musculus domesticus mtDNA exists in two distinct
haplotypes namely, BALB and NZB, which are transmitted in a
randommanner in the germline, but show segregation in the post-
natal stage (126). For example, the BALB haplotype is enriched in
hematopoietic cells while NZB is enriched in the liver and kidneys
(127). While nuclear factors are implicated in tissue-specific
segregation of mtDNA, the identity of proteins/RNA that could
influence mtDNA segregation and the underlying mechanisms are
not yet fully characterized (128, 129).

The group of Battersby showed that GIMAP3 is involved in
regulating mtDNA segregation in hematopoietic cells (48). A
mutation in the splice acceptor site of Gimap3 in Mus musculus
castaneus (CAST/Ei), results in Gimap3 mRNA that codes for an
additional 58 amino acids at the N-terminus (47). However, the
longer N-terminus interferes with efficient translation, rendering
CASTGimap3 a functional nullmutant (47). Absence offunctional
Gimap3 (CAST/Ei allele) resulted in equivalent representation of
NZB mtDNA haplotype in hematopoietic tissues and in neutral
tissues (where there is no haplotype selection), whereas mice
expressing the wildtype Giamp3 allele showed enrichment of
BALB mtDNA haplotype in hematopoietic tissues (48). Analysis
of segregation of BALB mtDNA in Gimap5 heterozygous mice
generated by the Weiler’s group (36) indicated that the abundance
of GIMAP5 protein influenced that of GIMAP3 protein and was
accompanied by differential segregation of BALB mtDNA in
hematopoietic cells (47). In this context, it is interesting to note
that Yano et al. (37), observed that T cell survival was significantly
affected inGimap5/Gimap3double knockoutmice indicating as yet
unknown interactions between these GIMAP members in
hematopoietic cells.
GIMAP4

Gimap4 is expressed in developingT lymphocytes at theDN4 stage
in response to pre-TCR signaling, is transiently downregulated in
the DP stage and re-expressed in SP thymocytes, peripheral T cells
as well as in B cells, NK cells and to a lesser extent in macrophages
(49). The absence of GIMAP4 expression in RAG1-deficient
thymocytes indicates that it is not expressed in DN 1-3 stages
(49). Of the GIMAP proteins, interacting partners have been
characterized in detail for GIMAP4 (49). GIMAP4 lacks a
membrane anchor and is expressed in the cytosol (Figure 4). The
C-terminal IQ domain, that is unique to the GIMAP4 (Figure 1)
binds calmodulin. GIMAP4 harbours four PKC phosphorylation
sites that are phosphorylated following T cell activation. Absence of
GIMAP4 did not affect the generation or survival of T cells in the
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periphery. However, the frequency of apoptotic cells was increased
in Gimap4-deficient T cells following exposure to gamma-
irradiation, etoposide or dexamethasone, suggesting that
GIMAP4 may be involved in promoting cell death following
induction of apoptosis. In support of this notion, wildtype T cells
undergoing apoptotic death display increased phosphorylation of
GIMAP4 (49). The mitochondrial membrane potential and
cytochrome c levels were comparable between the wildtype and
Gimap4-deficient T cells indicating that GIMAP4 modulates
apoptosis downstream of mitochondria. Furthermore, the
apoptotic phenotype was inhibited by effector-caspase inhibitor in
Gimap4-deficient T cells (49). Similar to other GIMAP proteins,
GIMAP4 shows association with cytoskeletal elements and is
implicated in membrane trafficking, movement of vesicles and
cytokine secretion in T cells (31, 33, 47, 50, 130). Polymorphisms
in GIMAP4 was shown to be associated with asthma and allergy,
although the underlyingmechanisms remain tobeelucidated (111).
GIMAP6

HumanGIMAP6has been shown to be involved in autophagy (51).
Mass spectrometry analysis identified GABARAPL2, the
mammalian homolog of yeast ATG8, as the binding partner for
GIMAP6. GIMAP6 is localized to the punctate structures along
with GABARAPL2 and MAP1LC3B, an autophagosome marker.
Knockdown of GIMAP6 in JURKAT T cells resulted in reduced
levels of GABARAPL2, suggesting that GIMAP6 may regulate the
expression of the latter (51). Knockdown of GIMAP6 in JURKAT
cells also increased their sensitivity to apoptosis inducing agents
(52). Similar tohumanGIMAP6,mouseGIMAP6 is also implicated
in autophagy. CD2-Cre mediated deletion of Gimap6 in mice
caused in a significant reduction in T and B cell numbers in the
periphery even though antigen-specific responses of Gimap6-/- T
and B cells remained unaffected (53). The half-life of T cells lacking
GIMAP6 was estimated to be around 4-5 days based on 4-
hydroxytamoxifen mediated deletion in Gimap6fl/flERT2Cre mice.
Recently, genetic loss of GIMAP6 protein was reported in humans,
but with different degrees of clinical manifestations, presumably
influenced by additional genetic and environmental factors, as one
sibling exhibited lymphopenia while the other was asymptomatic
even though both of them were homozygous for the mutant allele
(54). Lymphocytes from these patients exhibited accelerated
apoptosis, while maintaining normal activation, proliferation and
cytokine secretion in vitro. Given the lymphocyte-specific
expression of GIMAP proteins, it is possible that GIMAP6 may
confer additional level of control over apoptotic and autophagic
pathways in T cells.
GIMAP8

In contrast to other GIMAP proteins, GIMAP8 possesses three
GTPase domains and it is expressed in DN1, DN2 and mature
thymocytes and T cells similar to GIMAP5 (23, 55). Gimap8-
deficient mice show normal T cell development but show a
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reduction of recirculating B cells in the bone marrow (55).
Nonetheless, the responses of B cells to a T-dependent antigen
appear to be normal in these mice.
GIMAP GENES IN LEUKEMOGENESIS

The importance of GIMAP proteins in cell survival and their
regulation during the ontogeny of different HSC-derived cell
populations suggest that their deregulation may contribute to
oncogenesis. The GIMAP locus has been implicated in T acute
lymphoblastic leukemia (T-ALL) as a target of NOTCH signaling.
During T cell development in the thymus, transition through DN1
to DN4 stages is accompanied by a progressive increase in
NOTCH1 signaling (131). The DN3 to DN4 transition is a
critical checkpoint that selects for productive rearrangement of
the TCRB locus. Subsequent pre-TCR signaling induces NOTCH1
activation, which is required to expand the pool of cells that
rearrange the TCRA locus, become CD4+CD8+ DP thymocytes
and undergo positive and negative selection processes to generate
SPCD4+ orCD8+ naïve T cells. Amajority of thymocytes die due to
the lackof survival signals in the absence of productively rearranged
TCR genes (131, 132). Aberrant oncogenic signaling arising from
faultyTCRrearrangement is often implicated in the pathogenesis of
T-ALL.AberrantNOTCH1activation plays a key oncogenic role in
T-ALL (133). In addition to NOTCH1, T-ALL development is
associatedwithoncogenic activationof transcription factors such as
TAL1, LYL1, LMO2, TLX1, TLX3 etc., which interfere with
progression through T cell developmental stages (134–141).

GIMAP5 was identified as one of the NOTCH1 targets that
contributed to the survival of leukemic T cell lines (142, 143).Many
GIMAP genes are expressed in T-ALL cell lines (144, 145). The
expression ofGIMAP5occurs inmanyT cell leukemic cell lines and
in anaplastic large cell lymphoma (ALCL) cell lines while the
expression of GIMAP1, GIMAP2, GIMAP6 and GIMAP7 were
down-regulated in ALCLs (44, 146). KMT2A/GIMAP8
rearrangements were detected in a patient with acute
undifferentiated leukemia (147). Gimap1 is upregulated in a
murine leukemic cell line during p53-induced apoptosis (148).
Most of the Gimap genes are expressed in HSC and/or in mature
T cells but not in DN thymocytes in zebrafish (145). The GIMAP
super-enhancer region was shown to be activated by the oncogenic
transcription factorTAL1and is repressedbyE-proteins.Knocking
out the TAL1 binding domain in JURKAT cells abrogated the
expression ofGIMAP genes. Ectopic expression of humanGIMAP5
andGIMAP7under theRag2promoterdidnot induce leukemiabut
was capable of acceleratingT-ALL inducedbyMYC in the zebrafish
(145). As knockdown of GIMAP in T-ALL cells reduced their
survival, it is possible that GIMAP proteins play an important role
in maintaining the survival of transformed cells.
CONCLUSIONS AND FUTURE DIRECTIONS

GTPases with similarities to mammalian GIMAPs appear to have
evolved independently in different species (56, 58, 59, 149–152).
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Proteins containing the AIG domain are present in angiosperms
(flowering plants) and are induced by infections and stress (57,
61). Gimap genes are upregulated in certain invertebrates and
zebrafish in response to infections (58, 59, 149, 151). Future
studies aimed at understanding the functions of the related
genes in the context of stress and infections in different species
will further our knowledge on GIMAP proteins.

The data available to date overwhelmingly indicate that the
GIMAP proteins have important and non-redundant functions
in the survival of lymphocytes and in the maintenance of
quiescence (GIMAP5) in HSCs. While some GIMAP proteins
may interact with proteins involved in classical pathways of cell
survival such as BCL2 family members and caspases, they also
appear to promote survival by distinct mechanisms. GIMAP
proteins are distinctly related to septins and share structural
similarities with dynamins, Toc and other TRAnslation FACtor
(TRAFAC) proteins (153). Structural analyses of GIMAP2 and
GIAMP7 suggest that their GTPase activity is regulated by
dimerization (44). GIMAP1, GIMAP2, GIMAP3 and GIMAP5
are membrane-associated while the rest of the GIMAP proteins
do not have membrane anchor domains (Figures 1, 4).
Overexpressed GIMAP2 increases the formation of lipid
droplets in JURKAT cells and can dimerize with GIMAP7
(44–46, 121). It is possible that the homo- and hetero-
oligomers can form membrane scaffolds that recruit additional
interacting proteins (121). Many of these interactions can be
presumed to be dynamic and temporal, making it difficult to
identify the interacting partners by classical methods (53).
GIMAP5 and GIMAP4 have been observed to be associated
with microtubules and actin (31, 50), implicating them in
the transport of cellular cargo. Given the implication of
GIMAP proteins in the survival of T lymphocytes, it is not
surprising that GIMAPs have been associated with different
types of leukemias. Unravelling the functions of GIMAP
proteins will predicate a better understanding of their role in
T cell survival and their contribution to the development
of leukemias.
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