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Abstract: Tocotrienol (T3), unsaturated vitamin E, is gaining a lot of attention owing to its potent
anticancer effect, since its efficacy is much greater than that of tocopherol (Toc). Various factors
are known to be involved in such antitumor action, including cell cycle arrest, apoptosis induction,
antiangiogenesis, anti-metastasis, nuclear factor-κB suppression, and telomerase inhibition. Owing
to a difference in the affinity of T3 and Toc for the α-tocopherol transfer protein, the bioavailability
of orally ingested T3 is lower than that of Toc. Furthermore, cellular uptake of T3 is interrupted
by coadministration of α-Toc in vitro and in vivo. Based on this, several studies are in progress to
screen for molecules that can synergize with T3 in order to augment its potency. Combinations
of T3 with chemotherapeutic drugs (e.g., statins, celecoxib, and gefitinib) or dietary components
(e.g., polyphenols, sesamin, and ferulic acid) exhibit synergistic actions on cancer cell growth and
signaling pathways. In this review, we summarize the current status of synergistic effects of T3 and an
array of agents on cancer cells, and discuss their molecular mechanisms of action. These combination
strategies would encourage further investigation and application in cancer prevention and therapy.
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1. Introduction

Vitamin E is divided into two groups, tocopherol (Toc) and tocotrienol (T3), both of which are
made up of a chromanol ring with an isoprenoid-derived hydrophobic tail (Figure 1). Toc has a
fully saturated phytyl tail, while T3 contains an unsaturated isoprenoid side chain with three double
bonds. Both Toc and T3 occur naturally in four different forms: α-, β-, γ-, and δ-isomers, which
are distinguished by the numbers and positions of a methyl group on the chromanol ring [1]. Toc is
abundant in various foods including nuts, whole grains, green leafy vegetables, and common vegetable
oils (e.g., olive, safflower, and sunflower oils). In contrast, T3 is present in a small fraction of plants;
however, annatto, palm, and rice bran oils are known to be some of the richest sources of T3 [2].
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Figure 1. Chemical structure of vitamin E. 

T3 was first discovered and isolated from the latex of the rubber tree (Hevea brasiliensis) in  
1964 [3]. Although the beneficial health effects of T3 were not evident over the following two 
decades, Qureshi et al. demonstrated for the first time that T3 possesses a cholesterol-lowering 
effect in 1986 [4]. Moreover, anti-carcinogenic and anti-proliferative actions of T3 were revealed in 
1989 and 1995, respectively [5,6]. Since then, a number of researchers have investigated the 
mechanism of action of T3 against a variety of diseases, to clarify the broad beneficial activities of 
T3, such as its anti-oxidative [7], anti-tumor [6], anti-diabetic [8], anti-inflammatory [9], 
immune-stimulatory [10], cardio-protective [11], bone-protective [12], neuro-protective [13], 
hepato-protective [14], and nephro-protective effects [15]. These bioactivities of T3 are generally 
superior to those of Toc, since T3 is more efficiently incorporated into the lipid bilayer of the cell 
membrane compared with Toc, owing to its unsaturated isoprenoid chain [16]. 

Toc and T3 are absorbed in the small intestine, packaged into chylomicrons, and then secreted 
into the lymph and blood [17]. In the bloodstream, chylomicron triacylglycerol is hydrolyzed by 
lipoprotein lipase, forming chylomicron remnants. These are mainly taken up by the liver where  
α-tocopherol transfer protein (α-TTP) transfers vitamin E to very-low-density lipoproteins. Toc and 
T3 are then secreted into the blood again, and transported to various tissues. Although α-TTP 
exhibits the highest affinity for α-Toc among all vitamin E isomers, its binding affinity to α-T3 is 
12% of that to α-Toc [18]. Thus, the bioavailability of orally administered T3 is lower than that of 
Toc. In fact, plasma concentrations of Toc and T3 are shown to reach 11–37 μM and 1 μM, 
respectively [19]. Moreover, cellular uptake of T3 is interrupted by coadministration of α-Toc in 
vitro [20] and in vivo [21], indicating that α-Toc decreases the bioavailability of T3. 

Considering this, several studies are in progress to screen for molecules that can synergize 
with T3 in order to augment its potency. Combinations of T3 and certain drugs, such as statins [22], 
erlotinib/gefitinib [23], celecoxib [24], SU11274 [25], GW966/T0070907 [26], oridonin [27], and 
baicalein [28], have synergistic actions on cancer cell growth and signaling pathways. In addition, 
co-treatment with T3 and dietary components, including epigallocatechin gallate (EGCG)/ 
resveratrol [29], sesamin [30], and ferulic acid [31], also exhibit synergistic effects. In this review,  
we present an overview of the agents that can potentiate the anticancer effects of T3 and their 
synergistic mechanisms of action. 

2. Synergistic Anticancer Actions of T3 and Chemotherapeutic Drugs 

2.1. Statins 

Statins, a class of drugs including lovastatin, simvastatin, mevastatin, and atorvastatin, can 
lower high blood cholesterol levels through competitive inhibition of 3-hydroxy-3-methylglutaryl- 
coenzyme A (HMG-CoA) reductase, the rate-limiting enzyme of the mevalonate pathway for 
cholesterol synthesis [32]. This pathway provides various isoprenoid intermediates including 
farnesyl pyrophosphate, geranylgeranyl pyrophosphate, and dolichol, all of which play an 
important role in cell survival and growth (Figure 2). Farnesylation and geranylgeranylation of Ras- 
and Rho-family proteins lead to their membrane anchorage, which is essential to their activation and 
initiation of downstream signaling pathways [33]. Ras proteins participate in regulating cell 
proliferation and survival, while Rho proteins are involved in the control of cell motility and cell-cell 
adhesion. Dolichol is responsible for the N-linked glycosylation and translocation of insulin-like 
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T3 was first discovered and isolated from the latex of the rubber tree (Hevea brasiliensis) in
1964 [3]. Although the beneficial health effects of T3 were not evident over the following two decades,
Qureshi et al. demonstrated for the first time that T3 possesses a cholesterol-lowering effect in 1986 [4].
Moreover, anti-carcinogenic and anti-proliferative actions of T3 were revealed in 1989 and 1995,
respectively [5,6]. Since then, a number of researchers have investigated the mechanism of action of T3
against a variety of diseases, to clarify the broad beneficial activities of T3, such as its anti-oxidative [7],
anti-tumor [6], anti-diabetic [8], anti-inflammatory [9], immune-stimulatory [10], cardio-protective [11],
bone-protective [12], neuro-protective [13], hepato-protective [14], and nephro-protective effects [15].
These bioactivities of T3 are generally superior to those of Toc, since T3 is more efficiently incorporated
into the lipid bilayer of the cell membrane compared with Toc, owing to its unsaturated isoprenoid
chain [16].

Toc and T3 are absorbed in the small intestine, packaged into chylomicrons, and then secreted
into the lymph and blood [17]. In the bloodstream, chylomicron triacylglycerol is hydrolyzed by
lipoprotein lipase, forming chylomicron remnants. These are mainly taken up by the liver where
α-tocopherol transfer protein (α-TTP) transfers vitamin E to very-low-density lipoproteins. Toc
and T3 are then secreted into the blood again, and transported to various tissues. Although α-TTP
exhibits the highest affinity for α-Toc among all vitamin E isomers, its binding affinity to α-T3 is 12%
of that to α-Toc [18]. Thus, the bioavailability of orally administered T3 is lower than that of Toc.
In fact, plasma concentrations of Toc and T3 are shown to reach 11–37 µM and 1 µM, respectively [19].
Moreover, cellular uptake of T3 is interrupted by coadministration ofα-Toc in vitro [20] and in vivo [21],
indicating that α-Toc decreases the bioavailability of T3.

Considering this, several studies are in progress to screen for molecules that can synergize
with T3 in order to augment its potency. Combinations of T3 and certain drugs, such as
statins [22], erlotinib/gefitinib [23], celecoxib [24], SU11274 [25], GW966/T0070907 [26], oridonin [27],
and baicalein [28], have synergistic actions on cancer cell growth and signaling pathways.
In addition, co-treatment with T3 and dietary components, including epigallocatechin gallate
(EGCG)/resveratrol [29], sesamin [30], and ferulic acid [31], also exhibit synergistic effects. In this
review, we present an overview of the agents that can potentiate the anticancer effects of T3 and their
synergistic mechanisms of action.

2. Synergistic Anticancer Actions of T3 and Chemotherapeutic Drugs

2.1. Statins

Statins, a class of drugs including lovastatin, simvastatin, mevastatin, and atorvastatin, can lower
high blood cholesterol levels through competitive inhibition of 3-hydroxy-3-methylglutaryl-coenzyme
A (HMG-CoA) reductase, the rate-limiting enzyme of the mevalonate pathway for cholesterol
synthesis [32]. This pathway provides various isoprenoid intermediates including farnesyl
pyrophosphate, geranylgeranyl pyrophosphate, and dolichol, all of which play an important role in
cell survival and growth (Figure 2). Farnesylation and geranylgeranylation of Ras- and Rho-family
proteins lead to their membrane anchorage, which is essential to their activation and initiation of
downstream signaling pathways [33]. Ras proteins participate in regulating cell proliferation and
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survival, while Rho proteins are involved in the control of cell motility and cell-cell adhesion. Dolichol
is responsible for the N-linked glycosylation and translocation of insulin-like growth factor I (IGF-I)
receptors to the cell surface, thereby leading to cell proliferation [34]. Hence, the mevalonate pathway
contributes to posttranslational modification and maturation among Ras, Rho, and IGF-I receptor
proteins that regulate cell cycles, apoptosis, and metastasis. Intriguingly, HMG-CoA activity is
dysregulated and up-regulated in various tumor tissues [35]. Statins can, therefore, suppress the
proliferation of several types of cancer cells by inducing G1 arrest and/or apoptosis [35], indicating
that statins exhibit not only cholesterol-lowering but also anticancer effects.
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dose-dependently suppressed the proliferation of MIA PaCa-2, BxPC-3, and PANC-1 cells, 
supplementation with mevalonate, the product of HMG-CoA reductase, diminished the  
δ-T3-mediated growth inhibition of these cells [38]. Given that statins and T3 attenuate HMG-CoA 
reductase activity via a different mechanism of action, co-treatment with these agents is thought to 
exert additive or synergistic inhibitory effects on tumor growth. Mo and Elson [22] discovered  
for the first time that co-treatment with γ-T3 and lovastatin resulted in a synergistic decrease in the 
growth of DU145 and LNCaP human prostate cancer cells. McAnally et al. [39] reported that 
combined treatment with T3 and lovastatin synergistically suppressed the proliferation of B16 
(murine melanoma), DU145 (human prostate carcinoma), and A549 (human lung carcinoma) cells. 
Furthermore, coadministration of T3 and lovastatin synergistically suppressed the growth of B16 
cells implanted in C57BL6 mice. Wali and Sylvester [40] revealed that a single treatment with  
3–4 μM γ-T3 or 2–8 μM statins (i.e., simvastatin, lovastatin, or mevastatin) significantly decreased 
the growth of neoplastic +SA mouse mammary epithelial cells, whereas for combinations of  
0.25–2 μM γ-T3 and 0.25 μM each statin exhibited a synergistic inhibitory effect via suppression of 
mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase JNK, p38, and protein kinase B 
(Akt). Moreover, the growth-inhibitory effect of γ-T3 on HT29 and HCT116 colon cancer cells was 
enhanced by atorvastatin through cell cycle arrest at G1 phase and apoptosis [41], and co-treatment 
with δ-T3 and lovastatin caused a synergistic decrease in the growth of A2058 melanoma cells [42]. 
  

Figure 2. Mevalonate pathway and intermediates necessary for the posttranslational
modification of Ras, Rho, and insulin-like growth factor I (IGF-I) receptor. T3, tocotrienol;
HMG-CoA, 3-hydroxy-3-methylglutaryl-coenzyme A. Arrows and perpendicular lines indicate
activation/induction and inhibition/suppression, respectively.

T3, particularly the γ- and δ-isomers, has been shown to attenuate cholesterol synthesis through
posttranscriptional down-regulation of HMG-CoA reductase [36,37]. Although δ-T3 dose-dependently
suppressed the proliferation of MIA PaCa-2, BxPC-3, and PANC-1 cells, supplementation with
mevalonate, the product of HMG-CoA reductase, diminished the δ-T3-mediated growth inhibition of
these cells [38]. Given that statins and T3 attenuate HMG-CoA reductase activity via a different
mechanism of action, co-treatment with these agents is thought to exert additive or synergistic
inhibitory effects on tumor growth. Mo and Elson [22] discovered for the first time that co-treatment
with γ-T3 and lovastatin resulted in a synergistic decrease in the growth of DU145 and LNCaP
human prostate cancer cells. McAnally et al. [39] reported that combined treatment with T3 and
lovastatin synergistically suppressed the proliferation of B16 (murine melanoma), DU145 (human
prostate carcinoma), and A549 (human lung carcinoma) cells. Furthermore, coadministration of T3
and lovastatin synergistically suppressed the growth of B16 cells implanted in C57BL6 mice. Wali and
Sylvester [40] revealed that a single treatment with 3–4 µM γ-T3 or 2–8 µM statins (i.e., simvastatin,
lovastatin, or mevastatin) significantly decreased the growth of neoplastic +SA mouse mammary
epithelial cells, whereas for combinations of 0.25–2 µM γ-T3 and 0.25 µM each statin exhibited
a synergistic inhibitory effect via suppression of mitogen-activated protein kinase (MAPK), c-Jun
N-terminal kinase JNK, p38, and protein kinase B (Akt). Moreover, the growth-inhibitory effect of γ-T3
on HT29 and HCT116 colon cancer cells was enhanced by atorvastatin through cell cycle arrest at G1
phase and apoptosis [41], and co-treatment with δ-T3 and lovastatin caused a synergistic decrease in
the growth of A2058 melanoma cells [42].
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2.2. Gefitinib and Erlotinib

Gefitinib and erlotinib are well-known epidermal growth factor receptor (EGFR) tyrosine kinase
inhibitors [43]. EGFR, a plasma membrane glycoprotein, is a member of the ErbB receptor family,
and is composed of an extracellular ligand-binding domain, a lipophilic transmembrane domain, and
an intracellular cytoplasmic domain with tyrosine kinase [44]. EGFR is activated by some ligands
including epidermal growth factor (EGF), transforming growth factor-α, heparin-binding EGF, and
amphiregulin. Ligand binding to the extracellular domain of EGFR induces a conformational change
in the intracellular cytoplasmic domain, which promotes homodimerization or heterodimerization
with the other ErbB family members, leading to the autophosphorylation of tyrosine residues and
phosphorylation and the activation of downstream signaling pathways (Figure 3) [45]. These pathways
include Ras/Raf/MAPK, phospholipase C/phosphatidylinositol 3-kinase (PI3K)/Akt, and Janus
kinase/signal transducer and activator of transcription (JAK/STAT) [46]. The MAPK pathway is
implicated in cell proliferation and survival. The PI3K/Akt pathway is involved in cell proliferation
and migration. The JAK/STAT pathway participates in the transcription of genes involved in
oncogenesis. Abnormal activation and overexpression of EGFR occur in various types of tumor
cells, resulting in the enhancement of cell growth, survival and metastasis [47]. Gefitinib and erlotinib
can competitively inhibit the binding of adenosine triphosphate to EGFR kinase, which causes the
inhibition of autophosphorylation and downstream pathways [43]. Therefore, both drugs exert
potent antitumor activity, and have been approved for first-line treatment in patients with lung
adenocarcinoma with mutated EGFR.
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inhibitory effect was involved in the suppression of the PI3K/Akt pathway through a significant 
decrease in ErbB3 receptor tyrosine phosphorylation. T3, but not Toc, attenuated PI3K/Akt and 
MAPK pathways via downregulation of ErbB2 expression, thereby leading to the induction of 
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Figure 3. Epidermal growth factor receptor (EGFR) and its downstream signaling proteins. EGF,
epidermal growth factor; EGFR, epidermal growth factor receptor; JAK, Janus kinase; STAT,
signal transducer and activator of transcription; PI3K, phosphatidylinositol 3-kinase; MAPK,
mitogen-activated protein kinase; Akt, protein kinase B; P, phosphorylation. Arrows and perpendicular
lines indicate activation/induction and inhibition/suppression, respectively.

T3 down-regulates the ErbB family receptors and downstream pathways. Samant and
Sylvester [48] showed that γ-T3 dose-dependently inhibited +SA cell growth, and revealed that
its inhibitory effect was involved in the suppression of the PI3K/Akt pathway through a significant
decrease in ErbB3 receptor tyrosine phosphorylation. T3, but not Toc, attenuated PI3K/Akt and MAPK
pathways via downregulation of ErbB2 expression, thereby leading to the induction of apoptosis in
pancreatic cancer cells [49]. Pierpaoli et al. [50] examined the effect of dietary supplementation with
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T3 extracts from annatto seeds (10% γ- and 90% δ-T3 mixture) on the spontaneous development of
mammary tumors in ErbB2 transgenic mice. Oral administration of annatto-T3 diminished the size of
mammary tumors, and induced apoptosis and senescence-like growth arrest of tumor cells. In a cell
culture experiment, the suppression of breast cancer cell growth, increased apoptosis and senescence
molecular markers (p53, p21, p16, and p27), and a decreased expression of ErbB2 was observed in the
cells treated with annatto-T3. Alawin et al. [51] revealed that γ-T3 interfered with the dimerization and
phosphorylation of ErbB2 via its accumulation in the lipid raft microdomain, resulting in the inhibition
of the proliferation in SKBR3 and BT474 human breast cancer cells.

There are limited reports that have investigated whether EGFR inhibitors (i.e., gefitinib and
erlotinib) can synergize with T3. Treatment with 3.5 µM γ-T3, 0.5 µM erlotinib or 1.0 µM gefitinib
significantly repressed the proliferation of +SA cells. The combination of 0.5–3 µM γ-T3 with 0.5 µM
erlotinib or 1.0 µM gefitinib synergistically inhibited cell growth and elicited apoptosis through the
activation of caspase-3. These synergistic inhibitory effects were mediated by a marked reduction in
ErbB2-4 levels [23]. Bachawal et al. [52] also clarified that co-treatment with γ-T3 and erlotinib/gefitinib
resulted in a synergistic decrease in +SA cell growth through down-regulation of ErbB receptors and
downstream signaling of Akt and STAT.

2.3. Celecoxib

Celecoxib, a non-steroidal anti-inflammatory drug, is a specific inhibitor of cyclooxygenase-2
(COX-2) [53]. Aberrant activation of COX-2 is observed in gastric, hepatocellular, esophageal,
pancreatic, colorectal, breast, bladder, cervical, endometrial, skin, and lung cancers, and is involved in
promoting cell survival, angiogenesis, and metastasis [54]. Therefore, the elucidation of downstream
signaling of COX-2 is important for understanding cancer progression. COX-2 metabolizes arachidonic
acid to prostaglandin H2, which can be isomerized to prostaglandin E2 (PGE2) by PGE synthase.
Interestingly, PGE2 activates EGFR via a Src-dependent mechanism [55]. This finding indicates that
COX-2 inhibitors have cancer-fighting activity, since EGFR is recognized as a target for cancer therapy
as described above. It is well established that EGFR phosphorylation induces nuclear factor-κB
(NF-κB) activation (Figure 4) [56]. NF-κB is one of the major pro-inflammatory transcriptional factors.
In unstimulated cells, inhibitors of κB (IκB) bind to NF-κB, resulting in its cytosolic location in an
inactive form. In response to cell stimulation, IκB proteins are phosphorylated by IκB kinase (IKK),
leading to IκB ubiquitination and degradation, thereby allowing active NF-κB to translocate to the
nucleus. Various kinases, such as MAPK, Akt and mammalian target of rapamycin (mTOR), can
phosphorylate IKK, which eventually causes NF-κB activation [57]. NF-κB target genes participate
in the regulation of inflammation (e.g., COX-2, tumor necrosis factor-α, and interleukin-1), cell
proliferation (e.g., Cyclin D1, Cyclin E, and c-Myc), antiapoptosis (e.g., Bcl-xL, inhibitor of apoptosis
protein, and tumor necrosis factor receptor-associated factor), metastasis (e.g., matrix metalloproteinase
and urokinase plasminogen activator), and angiogenesis (e.g., interleukin-1 and vascular endothelial
growth factor) [58]. The findings noted above indicate that celecoxib can inhibit NF-κB as well as
COX-2. In addition, celecoxib prevents NF-κB activation via the inhibition of IKK and Akt, resulting in
the repression of COX-2 synthesis and various genes required for inflammation and proliferation [59].

The effects of T3 on NF-κB have been extensively studied in several types of tumor cells such
as mammary epithelial [60], myeloma [61], prostate [62], colon [63], melanoma [64], breast [65],
pancreatic [66], lung [67], gastric [68], and oral cancer cells [69]. Ahn et al. [61] found that γ-T3 but
not γ-Toc decreased NF-κB activation through the repression of the phosphorylation and degradation
of IκB, inhibition of IKK activation by blocking activation of transforming growth factor-β-activated
kinase 1, and attenuation of the phosphorylation and nuclear translocation of p65, an NF-κB family
member. Its inhibitory action was correlated with the down-regulation of NF-κB target gene expression
related to proliferation, antiapoptosis, invasion, and angiogenesis. Ji et al. [67] showed that treatment
of lung cancer cells with δ-T3 caused a reduction in NF-κB-DNA binding activity and down-regulation
of NF-κB-dependent gene expression including genes coding for surviving, matrix metalloproteinase-9,
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vascular endothelial growth factor, and Bcl-xL. Wang et al. [70] revealed that γ-T3 inhibited NF-κB
activation via induction of A20 and/or Cezanne, both of which act as strong inhibitors of NF-κB activity.
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A synergistic effect between T3 and celecoxib was discovered by Shirode and Sylvester.
Although 3–4 µM γ-T3 or 7.5–10 µM celecoxib alone significantly inhibited +SA cell growth in
a dose-dependent manner, co-treatment with 0.25 µM γ-T3 and 2.5 µM celecoxib had synergistic
action [24]. The anti-proliferative effect was mediated by a decrease in PGE2 synthesis and reduced
levels of COX-2, Akt, and NF-κB. They also clarified that the synergy between γ-T3 and celecoxib was
due to the suppression of ErbB2-4 receptor levels and following reduction of downstream Akt and
NF-κB signaling [71].

2.4. Other Drugs

Mesenchymal epithelial transition factor (Met), also known as hepatocyte growth factor (HGF)
receptor, is the cell surface receptor for HGF, which possesses tyrosine kinase activity [72]. The binding
of HGF induces homodimerization of the Met receptor and phosphorylation of a tyrosine residue
within the catalytic site, leading to the activation of downstream signaling pathways, including MAPK,
Akt, and STAT [73]. Met is known to interact with EGFR, thereby inducing a diverse series of signaling
cascades [74]. Several types of tumor cells exhibit sustained Met stimulation, overexpression, or
mutation [73]. Hence, Met plays a key role in cancer cell growth and survival. Ayoub et al. revealed
that γ-T3 repressed HGF-induced Met tyrosine kinase activation and signaling in breast cancer cells
(+SA, MCF-7, and MDA-MB-231) [25,75]. A combination of γ-T3 and SU11274 (a Met inhibitor)
synergistically suppressed cell proliferation through the reduction in Akt, STAT, and NF-κB activation.

The peroxisome proliferator-activated receptor γ (PPARγ) belongs to the nuclear hormone
receptor superfamily, which acts as a transcription factor after it heterodimerizes with the retinoid X
receptor [76]. PPARγ can be activated by ligands such as 15-deoxy-∆12,14-prostaglandin J2 and some
unsaturated fatty acids [77]. The receptor is present in various tissues and cell types throughout the
body, including monocytes, macrophages, adipocytes, liver, skeletal muscle, breast, prostate, colon,
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as well as cancer cells [77]. Most of the target genes of PPARγ participate in the control of lipid
metabolism and transport. In addition, PPARγ can attenuate the expression of pro-inflammatory
transcription factors such as NF-κB and activator protein-1 (AP-1) [78]. Synthetic PPARγ ligands inhibit
an array of cancer cells in vitro and in vivo [77], suggesting an important role of PPARγ as a tumor
suppressor; however, the precise mechanism is still unclear. Campbell et al. reported that T3, especially
γ- and δ-isomers, repressed the proliferation of prostate cancer cells (PC-3 and LNCaP) more effectively
compared with Toc, while PPARγ knockdown diminished the anti-proliferative effect of T3 [79].
T3 induced 15-lipoxygenase-2 that is responsible for the production of 15-S-hydroxyeicosatrienoic
acid, a PPARγ-activating ligand. These results suggested that T3 inhibited prostate cancer cell
growth through, in part, PPARγ-dependent mechanisms. Malaviya and Sylvester examined the
anti-proliferative effect of γ-T3 in combination with PPARγ agonists or antagonists on breast cancer
cells (MCF-7 and MDA-MB-231) [26]. Single treatment with γ-T3, PPARγ agonists (rosiglitazone or
troglitazone) or antagonists (GW9662 or T0070907) resulted in a dose-dependent growth inhibition
of breast cancer cells. Unexpectedly, a combination with γ-T3 and the agonists promoted cancer cell
proliferation, whereas co-treatment of γ-T3 and the antagonists synergistically suppressed the cell
growth. The contradictory results might be derived from the cancer cell types used in this experiment;
the authors [26] employed breast cancer cells while Campbell et al. [79] used prostate cancer cells.
They concluded that the synergistic effect between γ-T3 and PPARγ antagonists was mediated through
PPARγ-independent mechanisms [80].

Autophagy is a cellular self-catabolic process by which dysfunctional or unnecessary cytoplasmic
components are degraded by lysosomal enzymes [81]. The process is initiated by the formation of
the isolation membrane (also known as the phagophore) to engulf damaged protein aggregates and
intracellular organelles. The isolation membrane expands and closes to form a double-membrane
vesicle (i.e., autophagosome), leading to the fusion of autophagosomes with lysosomes. Finally, the
inner contents are degraded and recycled. Although autophagy maintains intracellular homeostasis,
excessive autophagy disturbs normal cellular function and induces cell death [82]. The autophagic
pathway includes mTOR, class I PI3K, Akt, class III PI3K, Beclin-1, Atg family member proteins, and
p53 [83]. γ-T3 has been shown to induce apoptosis and autophagy in prostate and breast cancer
cells [84,85]. Tiwari et al. investigated the synergistic action of γ-T3 and oridonin, an autophagy
inducer [86], against +SA mammary cancer cells. Co-treatment with γ-T3 and oridonin synergistically
decreased cell viability via the elevation of autophagy markers (e.g., Beclin-1 and Atg), suppression of
Akt/mTOR signaling, and up-regulation of apoptotic markers (e.g., caspase-3 and Bax/Bcl-2 ratio) [27].

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor, which regulates cell
differentiation, proliferation, immune response, and epidermal barrier function [87]. Ligand-bound
AhR complexes translocate to the cell nucleus to interact with AhR nuclear translocator (ARNT),
forming a functional AhR-ARNT heterodimer, resulting in the transcriptional activation of several
target genes (e.g., p21 [88] and Bax [89]) by binding to the xenobiotic responsive element. In B16F10
mouse melanoma cells, stable knockdown of AhR enhanced tumorigenesis and metastatic potential to
the lungs, while constitutive AhR activation potently inhibited melanoma progression [90]. Baicalein,
one of flavones, is a component of the traditional herbal remedy known as Chinese skullcap
(Scutellaria baicalensis). Baicalein can act as a ligand of AhR, and exhibits anticancer action through,
in part, AhR activation [91]. Yamashita et al. found that γ-T3 dose-dependently induced the expression
of AhR in B16 mouse melanoma cells [28]. Thus, combination treatment with γ-T3 and baicalein
synergistically inhibited the cell growth via induction of p21 and Bax expressions.

3. Synergistic Anti-Proliferative Effects of T3 and Dietary Components

3.1. Epigallocatechin Gallate (EGCG) and Resveratrol

EGCG and resveratrol are well-known dietary polyphenols. EGCG is present in tea, grapes,
and certain seeds of leguminous plants [92], while resveratrol is naturally found in grapes, peanuts,
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berries, and red wine [93]. Both polyphenols have diverse health-promoting effects, particularly
anticancer action [94,95], similar to T3. The molecular mechanisms of the cancer-fighting properties of
these three dietary compounds overlap each other. For example, EGFR is one of the critical targets of
EGCG in the repression of cancer proliferation [96]. EGCG attenuates the activation of ErbB family
receptors via the inhibition of tyrosine kinase activity and EGF binding to the EGFR, leading to a
down-regulation of the MAPK and Akt signaling pathways. EGCG also down-regulates NF-κB and
AP-1, thereby modulating the expression of target genes involved in apoptosis and cell cycle regulation.
Similarly, resveratrol can suppress EGFR activation [97]. In addition, resveratrol down-regulates
the mRNA expression of HMG-CoA reductase [98], and combined treatment with resveratrol and
simvastatin synergistically reduces cell proliferation [99].

Hsieh and Mu [29] tested the synergistic anti-proliferative effect of EGCG, resveratrol, and
γ-T3 on breast cancer cells. Treatment with resveratrol or γ-T3 alone (10 µM each) significantly
inhibited cell growth, but treatment with EGCG did not show any effect. Resveratrol potentiated
γ-T3-induced inhibition of cell proliferation. However, effective suppression of the cell growth was not
observed when the three phytochemicals were concomitantly used. Co-treatment with γ-T3 with either
EGCG or resveratrol caused a significant additive effect in reducing cyclin D1 and Bcl-2 expression.
The triple combination of EGCG, resveratrol and γ-T3 synergistically induced NAD(P)H quinone
dehydrogenase 1 (NQO1). NQO1 is involved in phase II detoxification, and its expression is regulated
by nuclear factor erythroid 2–related factor 2 (Nrf2) [100]. Nrf2, a transcriptional factor, is maintained
in an inactive form in the cytoplasm by binding to Kelch-like ECH-associated protein 1 (Keap1). During
redox imbalance, Nrf2 dissociates from Keap1, resulting in the translocation of Nrf2 to the nucleus and
heterodimerization with Maf to bind to antioxidant response elements in various promoter regions,
which increases the transcription of a variety of cytoprotective genes (e.g., glutathione S-transferases,
heme oxygenase-1, and NQO1) [101]. Hence, Nrf2 acts as a central regulator of the adaptive response
to oxidative stress. EGCG, resveratrol, and γ-T3 can individually up-regulate Nrf2 [102–104]. However,
it is unclear how the three phytochemicals synergistically increase NQO1 expression [29].

3.2. Sesamin

Sesamin, one of the major lignans in sesame seed and flax, possesses various beneficial functions,
including anti-oxidative [105], lipid-lowering (arachidonic acid [106] and cholesterol [107] levels),
anti-hypertensive [108], neuroprotective [109], anti-tumor [110], and anti-inflammatory [111] actions.
Sesamin also plays a unique role in improving the bioavailability of T3 in vitro [112] and in vivo [113].

All vitamin E isoforms are catabolized through the oxidative degradation of their side chains to
form water-soluble metabolites known as carboxyethyl hydroxychromans (CEHCs). The degradation
begins with cytochrome P450 (CYP)-catalyzedω-hydroxylation. In humans, CYP4F2 [114] has been
reported to mediate this metabolic process, and CYP3A [115] might also be involved. These CYPs
catalyze the hydroxylation of one of the terminal methyl groups on the hydrophobic side chain.
The ω-hydroxylated Toc and T3 are then oxidized to the corresponding carboxylic acid, followed
by five cycles of β-oxidation to eliminate a two-carbon moiety from the side chain at each cycle,
ultimately leading to the formation of CEHCs (Figure 5) [116,117]. Most CEHCs are excreted in the
urine [17]. Some CYP inhibitors can markedly elevate the levels of vitamin E and lower the levels
of vitamin E metabolites in various tissues. Ketoconazole is a common inhibitor of CYP3A and 4F.
Coadministration of ketoconazole and vitamin E (Toc and T3) decreased urinary excretion of CEHC
and increased Toc and T3 concentrations in the serum and various tissues of rats [118]. In addition,
sesamin strongly inhibits CYP4F2 activity, thereby elevating vitamin E concentrations in rat and human
liver microsomes [114]. Thus, the bioavailability of Toc and T3 is improved by the addition of sesamin.

Akl et al. [30] investigated the synergistic inhibition of +SA mammary cancer cell proliferation
with a combination of γ-T3 and sesamin. Treatment with 3.5–5 µM γ-T3 or 60–120 µM sesamin alone
caused a significant inhibition of the cell growth. Combined treatment with 1–5 µM γ-T3 and 20 µM
sesamin resulted in a synergistic suppression of +SA proliferation, indicating that an increase in T3
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bioavailability by sesamin caused an enhancement of its anticancer activity. Co-treatment of γ-T3
and sesamin markedly prevented the activation of the ErbB receptor and its downstream signaling
molecules (i.e., Raf, PI3K, Akt, NF-κB, JAK, and STAT), indicating that the synergistic action was
associated with the EGF-dependent pathway. Akl et al. [119] also revealed that the combination
of γ-T3 and sesamin synergistically repressed the proliferation of breast cancer cells (+SA, MCF-7,
and MDA-MB-231) via the induction of G1 cell cycle arrest; however, this had no effects on normal
epithelial cell growth. The combined treatment efficiently influenced cell cycle regulators of the G1/S
phase transition; cyclin D1, cyclin-dependent kinase (CDK) 2, CDK4, CDK6, phospho-retinoblastoma,
and E2F1 levels were reduced, and p27 and p16 levels were increased.
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3.3. Ferulic Acid

The bran fraction of rice contains a variety of bioactive components with chemopreventive activity,
including T3, ferulic acid, γ-oryzanol, β-sitosterol, and squalene [120]. Numerous studies have been
performed to investigate the anticancer properties of dietary rice bran. Tantamango et al. [121] reported
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that the consumption of certain foods was associated with the decreased risk of development of polyps
in a prospective study. In addition to the protective effect of green vegetables, dried fruit, and legumes,
this study found that consumption of brown rice had the strongest correlation with a reduced risk of
polyp formation.

We showed that T3 can act as an effective anti-tumor compound (i.e., antiangiogenesis [122] and
telomerase inhibition [123]), and demonstrated that δ-T3 exhibits the most potent anti-cancer property
among the four T3 isomers. Ferulic acid is receiving attention owing to its wide range of therapeutic
effects against cancer [124], diabetes [125], cardiovascular diseases [126], and neurodegenerative
disorders [127]. Although rice bran has a broad spectrum of beneficial activity for human health,
little is known about the synergistic effect of rice bran components on cancer cell proliferation to
date. We, therefore, investigated the potential role of its components, particularly δ-T3 and ferulic
acid, in synergistic growth-inhibitory activity against an array of cancer cells, such as DU-145 human
prostate carcinoma, MCF-7 human breast adenocarcinoma, and PANC-1 human pancreatic carcinoma
cells [31].

δ-T3 dose-dependently inhibited the proliferation of these three cell lines, while ferulic acid
exhibited no growth inhibition even at a concentration of 50 µM. Combined treatment with 10–12.5 µM
δ-T3 and 5–20 µM ferulic acid markedly reduced cell growth compared with treatment with δ-T3 alone,
although 20 µM ferulic acid had no inhibitory effect at all. Ferulic acid enhanced δ-T3-induced G1
phase arrest through the up-regulation of p21, a negative regulator of G1 progression.

To elucidate the reason for the synergistic inhibition of cell proliferation by co-treatment with
δ-T3 and ferulic acid, the intracellular content of δ-T3 was analyzed by high performance liquid
chromatography (HPLC). Co-treatment with δ-T3 and ferulic acid increased the cellular concentration
of δ-T3 in PANC-1 cells compared to treatment with δ-T3 alone. The increment of cellular δ-T3
levels in PANC-1 implies that ferulic acid either suppresses the intracellular metabolism of δ-T3 or
facilitates cellular uptake of δ-T3 from the cell culture medium. To address the latter possibility, we
evaluated δ-T3 concentrations in a culture medium using HPLC, and found that ferulic acid treatment
did not influence the amount of δ-T3 in the culture medium [31]. It seems, therefore, unlikely that
ferulic acid affects cellular δ-T3 incorporation. These findings suggest that sesamin and ferulic acid
may synergize with T3 through a similar mode of action (i.e., increasing the concentration of T3).
Zhao et al. [128] investigated the bioavailability of ferulic acid in rats administered 70 µmol/kg of
ferulic acid, and revealed that the plasma concentration of ferulic acid was 25.3 ± 10.1 µM at 5 min
after administration. These observations indicate that physiological concentrations of ferulic acid can
potentiate the growth-inhibitory effects of δ-T3 on several types of cancer cells, and suggest that ferulic
acid may be a promising candidate for augmenting the anti-cancer activity of δ-T3.

Moreover, we hypothesized that combined treatment with δ-T3 and ferulic acid would not
only inhibit cancer cell growth but would also enhance various physiological activities of δ-T3.
We additionally investigated whether the combination of δ-T3 and ferulic acid synergistically
down-regulated telomerase activity in DLD-1 colorectal cancer cells [129]. As expected, co-treatment
with δ-T3 and ferulic acid resulted in a synergistic reduction of cellular telomerase activity via a
decreased expression of human telomerase reverse transcriptase, the catalytic subunit of telomerase.
Taken together, these results indicate that ferulic acid improves the bioavailability of T3, thereby
synergistically suppressing cancer cell proliferation [31] and cellular telomerase activity [129].

4. Conclusions

Toc is widely present in various foods; however, T3-containing foods are limited. The daily intake
of T3 in a Japanese population was estimated at 1.86–2.15 mg/day/person, which appeared relatively
low compared with that of Toc (9 mg/day/person) [130]. Little is known about the influence of Toc on
the anticancer effect of T3. In an attempt to clarify whether Toc affects the anti-proliferative activity
of T3, DLD-1 cells were treated with both Toc isomers and δ-T3. All Toc isomers, especially α-Toc,
diminished δ-T3-induced cytotoxicity to DLD-1 cells [20]. Co-treatment with α-Toc dose-dependently
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decreased δ-T3 uptake into the cells. These results indicate that α-Toc is not only less cytotoxic to
cancer cells, but also reduces the cytotoxicity of δ-T3 by interfering with its cellular uptake. Findings
of this in vitro study are supported by other in vivo work that found that α-T3 concentrations in
various tissues and plasma decreased by the addition of dietary α-Toc, in the rats fed both α-T3 and
α-Toc [21]. These findings raise concerns about the chemopreventive activity of T3 in vivo, since α-Toc
is ubiquitously present as the dominant vitamin E isomer in animals. Hiura et al. [131] reported that
dietary supplementation of pure T3 effectively suppressed tumor growth in a mouse xenograft model,
suggesting that a high dose of T3 might overcome the inhibitory effects of endogenous α-Toc.

As we described above, chemotherapeutic drugs (i.e., HMG-CoA reductase inhibitors, EGFR
tyrosine kinase inhibitors, a COX-2 inhibitor, a Met inhibitor, PPARγ antagonists, an autophagy
inducer, and an AhR modulator) or dietary components (polyphenols, sesamin, and ferulic acid)
potentiate the anticancer properties of T3. Combination therapy has an advantage in reducing the
toxic adverse side effects of drugs associated with high-dose monotherapy. The clinical application
of dietary compounds in cancer prevention is attractive, because they are non-toxic at physiological
doses. Of note, a clinical trial conducted in humans resulted in no toxicities when up to 800 mg/day
of δ-T3 was administered for several months [132]. Nesaretnam et al. [133] performed a pilot clinical
trial to examine the effect of a T3-rich fraction (200 mg/day) and tamoxifen (20 mg/day) for 5 years in
women with early breast cancer. Although the risk of dying due to breast cancer was lowered by 60%
in patients treated with the combination of T3-rich fraction and tamoxifen compared to patients treated
with placebo and tamoxifen, this was not statistically significant. Estrogen receptor (ER) status is a
very important factor in planning breast cancer treatment. Two ERs, ERα and ERβ, are expressed in
normal breast tissue, but the ratio of ERα to ERβ is elevated in breast tumors [134]. Therefore, selective
ER modulators such as tamoxifen are currently used to treat breast cancer. In ERα-positive T47-D
and MCF-7 human breast cancer cells, overexpression of ERβ not only attenuated Akt signaling
via down-regulation of ErbB2/ErbB3 but also improved the sensitivity of these cancer cells to
tamoxifen [135]. Comitato et al. [136,137] reported that T3-rich fraction from palm oil promoted ERβ
translocation into nucleus, leading to the induction of apoptosis in MDA-MB-231 and MCF-7 breast
cancer cells. These findings suggest that ER might be a promising target for breast cancer therapy
by T3.

In this review, we summarized current research on the synergistic anti-tumor effect of T3 and
various agents, and discussed their related mechanisms. Further studies, particularly animal and
clinical tests, on the combination therapy of T3 and certain agents will contribute to their applications
in cancer treatment and prevention.
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