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We identify the phase of a cycle as a new critical
factor for tipping points (critical transitions) in cyclic
systems subject to time-varying external conditions.
As an example, we consider how contemporary
climate variability induces tipping from a predator–
prey cycle to extinction in two paradigmatic predator–
prey models with an Allee effect. Our analysis of
these examples uncovers a counterintuitive behaviour,
which we call phase tipping or P-tipping, where
tipping to extinction occurs only from certain phases
of the cycle. To explain this behaviour, we combine
global dynamics with set theory and introduce the
concept of partial basin instability for attracting limit
cycles. This concept provides a general framework
to analyse and identify easily testable criteria for
the occurrence of phase tipping in externally forced
systems, and can be extended to more complicated
attractors.

1. Introduction
Tipping points or critical transitions are fascinating
nonlinear phenomena that are known to occur in
complex systems subject to changing external conditions
or external inputs. They are ubiquitous in nature and,
in layman’s terms, can be described as large, sudden
and unexpected changes in the state of the system
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triggered by small or slow changes in the external inputs [1,2]. Owing to potentially catastrophic
and irreversible changes associated with tipping points, it is important to identify and understand
the underlying dynamical mechanisms that enable such transitions. To do so, it is helpful to
consider base states (attractors for fixed external conditions) whose position or stability change as
the external conditions vary over time. Recent work on tipping from base states that are stationary
(attracting equilibria) has been shown to result from three generic tipping mechanisms [3]:

— Bifurcation-induced tipping or B-tipping occurs when the external input passes through a
dangerous bifurcation of the base state, at which point the base state disappears or turns
unstable, forcing the system to move to a different state [4–6].

— Rate-induced tipping or R-tipping occurs when the external input varies too fast, so the system
deviates too far from the moving base state and crosses some tipping threshold [7–11],
e.g. into the domain of attraction of a different state [12–17]. The special case of delta-kick
external input is referred to as shock-tipping or S-tipping [18]. In contrast to B-tipping,
R-tipping need not involve any bifurcations of the base state.

— Noise-induced tipping or N-tipping occurs when external random fluctuations drive the
system too far from the base state and past some tipping threshold [19], e.g. into the
domain of attraction of a different state [20–23].

Many complex systems have non-stationary base states, meaning that these systems exhibit
regular or irregular self-sustained oscillations for fixed external inputs [24–31]. Such base states
open the possibility for other generic tipping mechanisms when the external inputs vary over
time. In this paper, we focus on tipping from the next most complicated base state, a periodic
state (attracting limit cycle), and identify a new tipping mechanism:

— Phase tipping (partial tipping [26]) or P-tipping occurs when a too fast change or random
fluctuations in the external input cause the system to tip to a different state, but only from
certain phases (or certain parts) of the base state and its neighbourhood. In other words,
the system has to be in the right phases to tip, whereas no tipping occurs from other
phases.

The concept of P-tipping naturally extends to more complicated quasi-periodic (attracting tori)
and chaotic (strange attractors) base states and, in a certain sense, unifies the notions of R-tipping,
S-tipping and N-tipping. A simple intuitive picture is that external inputs can trigger the system
past some tipping threshold, but only from certain parts of the base state and its neighbourhood.
Thus, P-tipping can also be interpreted as partial tipping. Indeed, examples of P-tipping with
smoothly changing external inputs include the recently studied ‘partial R-tipping’ from periodic
base states [26], and probabilistic tipping from chaotic base states [28,31,32]. Furthermore, P-
tipping offers new insight into classical phenomena such as stochastic resonance [20,33,34], where
noise-induced transitions between coexisting non-stationary states occur (predominantly) from
certain phases of these states and at an optimal noise strength. Other examples of P-tipping due
to random fluctuations include ‘state-dependent vulnerability of synchronization’ in complex
networks [35], and ‘phase-sensitive excitability’ from periodic states [19], which can be interpreted
as partial N-tipping.

Here, we construct a general mathematical framework to analyse irreversible P-tipping from
periodic base states. By ‘irreversible’ we mean that the system approaches a different state in
the long term. The framework allows us to explain counterintuitive properties, identify the
underlying dynamical mechanism, and give easily testable criteria for the occurrence of P-tipping.
Furthermore, motivated by growing evidence that tipping points in the Earth system could be
more likely than was thought [2,36,37], we show that P-tipping could occur in real ecosystems
subject to contemporary climate change. To be more specific, we uncover robust P-tipping from
predator–prey oscillations to extinction due to climate-induced decline in prey resources in two
paradigmatic predator–prey models with an Allee effect: the Rosenzweig–MacArthur (RMA)
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model [38] and the May (or Leslie–Gower–May) model [39]. Intuitively, the phase sensitivity
of tipping from predator–prey oscillations arises because a given drop in prey resources has
distinctively different effects when applied during the phases of the cycle with the fastest growth
and the fastest decline of prey. Both the RMA and May models have been used to study predator–
prey interactions in a number of natural systems [40–42]. Here, we use realistic parameter values
for the Canada lynx and snowshoe hare system [43,44], together with real climate records from
various communities in the boreal and deciduous-boreal forest [45].

The nature of predator–prey interactions often leads to regular, high amplitude, multi-annual
cycles [46]. Consumer-resource and host–parasitoid interactions are similar, and also often lead
to dramatic cycles [47]. In insects, cyclic outbreaks can be a matter of deep economic concern,
as the sudden increase in defoliating insects leads to significant crop damage [48]. In the boreal
forest, one of the most famous predator–prey cycles is that of the Canada lynx and snowshoe hare
[47]. The Canada lynx is endangered in parts of its southern range, and the snowshoe hare is a
keystone species in the north, relied upon by almost all of the mammalian and avian predators
there [49]. These examples illustrate the ubiquitous nature of cyclic predator–prey interactions,
and their significant economic and environmental importance. Their persistence in the presence
of climate change is thus a pressing issue.

Anthropogenic and environmental factors are subjecting cyclic predator–prey systems to
external forcing which, through climate change, is being altered dramatically in both spatial and
time-dependent ways [41,50–54]. In addition to long-term changes due to global warming, there
is a growing interest in changes in climate variability on year-to-decade time scales, owing to
its more imminent impacts [55]. In particular, increased variability of short-term climatic events
manifests itself as, for example, larger hurricanes, hotter heatwaves and more severe floods
[53,56–63]. It is unknown how cyclic predator–prey systems will interact with these changes in
climate variability.

Beyond ecology, oscillatory predator–prey interactions play an important role in finance
and economics [64,65]. Thus, our work may also be relevant for understanding economies in
developing countries [66]. Such economies are non-stationary by nature, and it may well be
that developing countries have only short phases in their development, or narrow windows of
opportunity, during which external investments can induce transitions from poverty to wealth.

This paper is organized as follows. In §2, we introduce the RMA and May models,
define phase for the predator–prey oscillations, and describe the random processes used
to model climatic variability. In §3, Monte Carlo simulations of the predator–prey models
reveal counterintuitive properties of P-tipping and highlight the key differences from B-
tipping. In §4, we present a geometric framework for P-tipping and define the concept of
partial basin instability for attracting limit cycles. In §5, we produce two-parameter bifurcation
diagrams for the autonomous predator–prey frozen systems with fixed-in-time external inputs,
identify bistability between predator–prey cycles and extinction, and reveal parameter regions
of partial basin instability—these cannot be captured by classical bifurcation analysis but
are essential for understanding P-tipping. Finally, we show that partial basin instability
explains and gives testable criteria for the occurrence of P-tipping. We summarize our
results in §6.

2. Oscillatory predator–prey models with varying climate
We carry out our study of P-tipping in the context of two paradigmatic predator–prey models,
which we present here. We also define ‘phase’ in the context of the predator–prey limit cycles and
nearby oscillations. Finally, we introduce our climate variability model.

(a) The RMA and May models
The RMA model [9,38] describes the time evolution of interacting prey N and predator P
populations [67]:
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Table 1. Realistic parameter values for theRMAmodel (2.1) and theMaymodel (2.3), estimated fromCanada lynx and snowshoe
hare data [43,44].

parameter units RMAmodel May model

r 1/yr [0, 3] [0, 4]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c ha/(prey · yr) 0.19 0.22
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α prey/(pred · yr) 800 505
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

β prey/ha 1.5 0.3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

χ pred/prey 0.004 n/a
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

δ 1/yr 2.2 n/a
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

s 1/yr n/a 0.85
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

q prey/pred n/a 205
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

μ prey/ha 0.03 0.03
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ν prey/ha 0.003 0.003
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ε prey/ha n/a 0.031
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ṅ = r(t) N
(

1 − c
r(t)

N
)(

N − μ

ν + N

)
− αNP

β + N

and Ṗ = χ
αNP
β + N

− δP.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.1)

In the prey equation, −r(t)μ/ν is the low-density (negative) prey growth rate, cμ/ν quantifies
the nonlinear modification of the low-density prey growth, the term (N − μ)/(ν + N) gives rise
to the strong Allee effect that accounts for negative prey growth rate at low prey population
density, α is the saturation predator kill rate and β is the predator kill half-saturation constant.
The ratio r(t)/c is often referred to as the carrying capacity of the ecosystem. It is the maximum
prey population that can be sustained by the environment in the absence of predators [44]. In
the predator equation, χ represents the prey-to-predator conversion ratio and δ is the predator
mortality rate. Realistic parameter values, estimated from Canada lynx and snowshoe hare data
[43,44], can be found in table 1.

As we explain in §2(c), r(t) is a piecewise constant function of time that describes the varying
climate. This choice makes the non-autonomous system (2.1) piecewise autonomous in the
sense that it behaves like an autonomous system over finite time intervals. Therefore, much
can be understood about the behaviour of the non-autonomous system (2.1) by looking at the
autonomous frozen system with different but fixed-in-time values of r.

The RMA frozen system can have at most four stationary states (equilibria), which are derived
by setting Ṅ = Ṗ = 0 in (2.1). In addition to the extinction equilibrium e0, which is stable for r > 0,
there is a prey-only equilibrium e1(r), the Allee equilibrium e2 and the coexistence equilibrium e3(r),
whose stability depends on r and other system parameters:

e0 = (0, 0), e1(r) =
( r

c
, 0

)
, e2 = (μ, 0), e3(r) = (N3, P3(r)). (2.2)

In the above, we include the argument (r) when an equilibrium’s position depends on r. The prey
and predator densities of the coexistence equilibrium e3(r) are given by:

N3 = δβ

χα − δ
≥ 0 and P3(r) = r

α

(
1 − c

r
N3

) (β + N3)(N3 − μ)
ν + N3

≥ 0.
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Figure 1. One-parameter bifurcation diagrams with different but fixed-in-time r for (a) the autonomous RMA frozen model
(2.1) and (b) the autonomousMay frozenmodel (2.3). The other parameter values are given in table 1. (Online version in colour.)

The one-parameter bifurcation diagram of the RMA frozen system in figure 1a reveals
various bifurcations and bistability, which are discussed in detail in §5(a) and appendix C. Most
importantly, as r is increased, the coexistence equilibrium e3(r) undergoes a supercritical Hopf
bifurcation H, which makes the equilibrium unstable and produces a stable limit cycle Γ (r). The
cycle corresponds to oscillatory coexistence of predator and prey and is the main focus of this study. In
the ecological literature, this Hopf bifurcation is referred to as the paradox of enrichment [68]. As r
is increased even further, Γ (r) disappears in a dangerous heteroclinic bifurcation h at r = rh, giving
rise to a discontinuity in the branch of coexistence attractors. Past rh, the only attractor is the
extinction equilibrium e0. This heteroclinic bifurcation indicates where complete depletion of the
predator becomes part of the cycle. Note that, in the absence of noise, the predator remains extinct
once its level reaches zero because the subspace {P = 0} is invariant. Hence the counterintuitive
transition to predator extinction at high prey growth rates.

To show that phase tipping is ubiquitous in predator–prey interactions, we also consider
another paradigmatic predator–prey model, the May model [39,44]:

Ṅ = r(t) N
(

1 − c
r

N
) (

N − μ

ν + N

)
− αNP

β + N

and Ṗ = sP
(

1 − qP
N + ε

)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.3)

This model has the same equation for the prey population density N as the RMA model, but
differs in the equation for the predator population density P. Specifically, s is the low-density
predator growth rate and ε is introduced to allow prey extinction. In other words, this model
assumes that the predator must have access to other prey which allow it to survive at a low density
ε/q in the absence of the primary prey N. The parameter q approximates the minimum prey-
to-predator biomass ratio that allows predator population growth, and table 1 contains realistic
parameter values, estimated from Canada lynx and snowshoe hare data [43,44].

In addition to the extinction equilibrium e0, which is always stable, the May frozen system has
a prey-only equilibrium e1(r), an Allee equilibrium e2, and two coexistence equilibria e3(r) and e4(r),
whose stability depends on the system parameters. Further details and analysis of the May frozen
model are provided in appendix A.
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Figure 2. Phase portraits showing the (green) predator–prey limit cycles Γ (r) together with their phases ϕγ and basin
boundaries θ (r) in (a) the autonomous RMA frozen model (2.1) with r = 2.47 and (b) the autonomous May frozen model (2.3)
with r = 2. The other parameter values are given in table 1. Schematic phase portraits depicting all equilibria and invariant
manifolds are shown in appendix A, figure 10. (Online version in colour.)

(b) Phase of the cycle
To depict phase tipping, each point on the limit cycle, as well as in a neighbourhood of the
cycle, must be characterized by its unique phase. In the two-dimensional phase space of the
autonomous predator–prey frozen systems (2.1) and (2.3), the stable limit cycle Γ (r) makes a
simple rotation about the coexistence equilibrium e3(r). We take advantage of this fact and assign
a unique phase ϕγ ∈ [0, 2π ) to every point γ = (Nγ , Pγ ) on the limit cycle using a polar coordinate
system anchored in e3(r) = (N3(r), P3(r)):

ϕγ = tan−1
(

103 Pγ − P3

Nγ − N3

)
. (2.4)

In other words, the phase of the cycle is the angle measured counter-clockwise from the horizontal
half line that extends from e3(r) in the direction of increasing N, as is shown in figure 2. Since
the values of P(t) for the limit cycles in systems (2.1) and (2.3) are three orders of magnitude
smaller than the values of N(t), the ensuing distribution of ϕγ along Γ (r) is highly non-uniform.
To address this issue and achieve a uniform distribution of ϕγ , we include the factor of 103 in
(2.4).

In the problem of P-tipping, we often encounter oscillatory solutions that have not converged
to the limit cycle Γ (r). Equation (2.4) allows us to define the ‘phase’ of such oscillatory solutions
in a neighbourhood of Γ (r).

(c) Climate variability
Climate variability here refers to changes in the state of the climate occurring on year-to-decade
time scales. We model this process by allowing r(t), i.e. the prey birth rate and the carrying
capacity of the ecosystem, to vary over time. This variation can be interpreted as climate-induced
changes in resource availability or habitat quality. Seasonal modelling studies often assume
sinusoidal variation in climate parameters [69–72], but many key climate variables vary much
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Figure 3. Results of a Monte Carlo simulation for the RMA model (2.1), where time-varying r(t) is generated using p= 0.2
and ‘Climate variability’ interval [r2, r1]= [1.6, 2.7] containing rh. Shown are 103 numerical tipping experiments (B-tipping
and P-tipping) for a fixed initial condition (N0, P0)= (3, 0.002). The other parameter values are given in table 1.
(a,b) The time profiles of r(t), N(t) and P(t) in a single tipping experiment. (c) The values of r(t) (red) pre and (blue) post each
switch that causes a tipping event. (d) States in the (N, P) phase plane at the time of the switch that causes a tipping event (i.e.
states at the ‘tipping time’ defined in definition 4.4), (grey dots) B-tipping and (black dots) P-tipping. (e) The invariantmeasure
μ(ϕλ) of the limit cycleΓ (r) parameterized by the cycle phaseϕλ. (f ) Probability distribution of tipping phasesϕλ for (grey)
B-tipping and (black) P-tipping. (Online version in colour.)

more abruptly [41]. Since our unit of time is years, rather than months, we focus on abrupt
changes in climate.1

Guided by the approach proposed in [45,74], we construct a piecewise constant r(t) using two
random processes; see figure 3a. First, we assume the amplitude of r(t) is a random variable with

1In ecology, abrupt changes in the form of a single-switch between two values of an input parameter are called press
disturbances [73].
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a continuous uniform probability distribution on a closed interval [r2, r1]. Second, we assume the
number of consecutive years � during which the amplitude of r(t) remains constant is a random
variable with a discrete probability distribution known as the geometric distribution2

g(�) = Pr(x = �) = (1 − ρ)� ρ, (2.5)

where � ∈ Z+ is a positive integer and ρ ∈ (0, 1]. Such an r(t) can be viewed as bounded
autocorrelated noise. Using actual climate records from four locations in the boreal and
deciduous-boreal forest in North America, we choose a realistic value of ρ = 0.2 [45]. We say
the years with constant r(t) are of high productivity, or Type-H, if their amplitude is greater than
the mean (r1 + r2)/2. Otherwise we say the years are of low productivity, or Type-L, as indicated
in figure 3a.

3. B-tipping versus P-tipping in oscillatory predator–prey models
In this section, we use the non-autonomous RMA model (2.1) to demonstrate the occurrence of
P-tipping in predator–prey interactions. Furthermore, we highlight the counterintuitive
properties of P-tipping by a direct comparison with the intuitive and better understood B-tipping.

Note that, in the non-autonomous system, e0 remains the extinction equilibrium, but the
predator–prey limit cycle Γ (r) is replaced by (irregular) predator–prey oscillations. Nonetheless,
since the system is piecewise autonomous, the dynamics and bifurcations of the autonomous
frozen system help us to understand the behaviour of the non-autonomous one.

(a) B-tipping from predator–prey cycles
We begin with a brief description of B-tipping due to the dangerous heteroclinic bifurcation
h of the attracting predator–prey limit cycle Γ (r). In the autonomous frozen system, the cycle
Γ (r) exists for the values of r below rh, and disappears in a discontinuous way when r = rh; see
figure 1a. Thus, we expect one obvious tipping behaviour in the non-autonomous system with a
time-varying r(t):

(B1) B-tipping from predator–prey oscillations to extinction e0 will occur if r(t) increases past
the dangerous bifurcation level r = rh, and the system converges to e0 before switching
back to r < rh.

(B2) B-tipping will occur from all phases of predator–prey oscillations, but phases where the
system spends more time are more likely to tip. An invariant measure μ(ϕγ ) of Γ (r) can
be obtained and normalized to approximate the probability distribution for B-tipping
from a phase ϕγ as shown in figure 3e; see ref. [76] and appendix B for more details on
calculating μ(ϕγ ).

(B3) B-tipping from predator–prey oscillations cannot occur when r(t) decreases over time
because Γ (r) does not undergo any dangerous bifurcations upon decreasing r.

To illustrate properties (B1)–(B3), we perform a Monte Carlo simulation of the non-autonomous
RMA system (2.1). We restrict the variation of r(t) to the closed interval [r2, r1] containing the
bifurcation point rh (see the ‘Climate variability’ label in figure 1a, upper arrow), and perform
103 numerical experiments. In each experiment, we start from a fixed initial condition (N0, P0) =
(3, 0.002) within the basin of attraction of Γ (r), and let r(t) vary randomly as explained in §2c. We
allow the system to continue until tipping from predator–prey oscillations to extinction occurs
(figure 3b) due to a step change in r(t) from rpre to rpost (figure 3a). We then record the values of
rpre in red and the values of rpost in blue in figure 3c, the state in the (N, P) phase space when
the switch from rpre to rpost occurs in figure 3d, and the corresponding phase of this state to
produce the tipping-phase histograms in figure 3f. B-tipping is identified as the blue dots above

2In the statistical literature, the above form of the geometric distribution models the number of failures in a Bernoulli trail
until the first success occurs, where ρ is the probability of success [75].
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r = rh in figure 3c, meaning that transitions to extinction occur when r(t) changes from rpre < rh
to rpost > rh in agreement with (B1) and (B3). The tipping phases corresponding to grey dots in
figure 3d, and the ensuing grey histogram in figure 3f, correlate almost perfectly with the green
invariant measure μ(ϕγ ) of Γ (r) in figure 3e, in agreement with (B2).

(b) P-tipping from predator–prey cycles
The most striking result of the simulation is that B-tipping is not the only tipping mechanism at
play. It turns out that there are other, unexpected and counterintuitive tipping transitions. These
transitions indicate a new tipping mechanism, whose dynamical properties are in stark contrast
to B-tipping:

(P1) Tipping from the predator–prey oscillations to extinction occurs when r(t) decreases and
does not cross any dangerous bifurcations of Γ (r), which is in contrast to (B1) and (B3).
This is evidenced in figure 3c by the blue dots below r = rh depicting transitions to
extinction when r(t) changes from rpre < rh to rpost < rpre.

(P2) Tipping occurs only from certain phases of predator–prey oscillations, which is in contrast to
(B2). This is evidenced by the black dots in figure 3d, and the ensuing black tipping-phase
histogram in figure 3f.

(P3) The tipping phases do not correlate at all with the invariant measure μ(ϕγ ) of Γ (r) shown
in figure 3e. This is evidenced by a comparison with the black histogram in figure 3f.

Since the unexpected tipping transitions occur only from certain phases of predator–prey
oscillations, we refer to this phenomenon as phase tipping or P-tipping.

Although P-tipping is less understood than B-tipping, it is ubiquitous and possibly even more
relevant for predator–prey interactions. In figure 4, we restrict climate variability in the RMA
model (2.1) to a closed interval [r2, r1] that does not contain rh. In other words, we set r1 < rh.
Since the time-varying input r(t) cannot cross the dangerous heteroclinic bifurcation, all tipping
transitions are P-tipping events. Furthermore, owing to the absence of dangerous bifurcations of
Γ (r) in the May model (2.3) in figure 1b, P-tipping from predator–prey oscillations to extinction e0
is the only tipping mechanism in figure 5. Note that P-tipping is more likely to occur in the May
model, as evidenced by shorter tipping times; compare figures 4c and 5c.

The numerical experiments in figures 4 and 5 serve as motivating examples for the
development of a general mathematical framework for P-tipping in §4.

(c) The Allee threshold: intuitive explanation of P-tipping
Intuitively, P-tipping from predator–prey oscillations to extinction in the non-autonomous system
can be understood in terms of an Allee threshold θ (r) in the autonomous frozen system, separating
trajectories that lead to extinction from those that approach the predator–prey cycle (figures 2 and
10), and how a given drop in prey resources r(t) affects different phases near the predator–prey
cycle via the changing Allee threshold.

The shape and position of both the Allee threshold θ (r) and the predator–prey cycle Γ (r)
are modified by a drop in prey resources r(t). The strongest impact is expected when the drop
coincides with the region of the fastest decline in prey N(t) and a large predator population
P(t). These situations occur near the part of the cycle within a range of phases around ϕγ = π/2,
which is close to θ (r). There, the drop speeds up the prey decline, which, in conjunction with high
predation pressure, creates perfect conditions for the ecosystem to move away from the modified
cycle, cross the even closer modified Allee threshold and move towards extinction. Indeed, figures
4 and 5 show that P-tipping occurs from a range of phases around ϕγ = π/2. The ecosystem
response is very different if the same drop in prey resources coincides with the region of the fastest
growth of prey N(t) and a small predator population P(t). These situations occur near a different
part of the cycle, within a range of phases around ϕγ = −π/2, which is away from θ (r). There, the
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Figure4. (a,b) and (d) The sameas infigure 3 except for r(t) taking values fromadifferent ‘Climate variability’ interval [r2, r1]=
[1.6, 2.5] that does not contain rh. As a result, each of the 1000 tipping events is P-tipping. (c) The probability distribution of
tipping at time t. The other parameter values are given in table 1.

drop slows or even reverses the prey growth, but low predation pressure prevents the ecosystem
from crossing the distant Allee threshold and helps it adapt to the modified cycle instead. Hence
the observed phase sensitivity of tipping from predator–prey oscillations to extinction in the
non-autonomous systems.

4. A geometric framework for P-tipping: partial basin instability
Motivated by the numerical experiments in figures 4 and 5, and the fact that P-tipping is not
captured by classical bifurcation theory, the aim of this section is to provide mathematical tools
for analysis of P-tipping. Specifically, we develop a simple geometric framework that uses global
properties of the autonomous frozen system to study P-tipping from attracting limit cycles
and their neighbourhoods in the non-autonomous system. The key concept is basin instability.3

This concept was first introduced in ([13], Section 5.2) to study irreversible R-tipping from base
states that are stationary (attracting equilibria) for fixed-in-time external inputs. Here, we extend
this concept to base states that are attracting limit cycles for fixed-in-time external inputs. Our
framework will allow us to give easily testable criteria for the occurrence of P-tipping from limit
cycles in general, and explain the counterintuitive collapses to extinction in the predator–prey
systems from §3.

To define basin instability and P-tipping for limit cycles in general terms, we consider an
n-dimensional non-autonomous system

ẋ = f (x, p(t)), (4.1)

3Not to be confused with the notion of ‘basin stability’ introduced as a measure related to the volume of the basin of attraction
[77].
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Figure 5. (a–d) The same as in figure 4 but for the May frozen model (2.3) with r(t) taking values from the ‘Climate variability’
interval [r2, r1]= [2, 3.3]. Each of the 1000 tipping events is an instance of P-tipping. The other parameter values are given in
table 1. (Online version in colour.)

with x ∈ R
n, and a piecewise constant external input p(t) that can be single-switch or multi-switch.

When it is important to highlight the dependence of multi-switch inputs on ρ (see equation (2.5)),
we write pρ (t) instead of p(t). Note that the RMA (2.1) and May (2.3) models with r(t) from §2(c)
are examples of (4.1). Furthermore, we write

x(t, x0; t0),

to denote a solution to the non-autonomous system (4.1) at time t started from x0 at initial time t0.
We also consider the corresponding autonomous frozen system with different but fixed-in-time
values of the external input p, and write

x(t, x0; p),

to denote a solution to the autonomous frozen system at time t started from x0 for a fixed p.

(a) Ingredients for defining basin instability
One key ingredient of a basin instability definition is the base attractor in the autonomous
frozen system, denoted Γ (p), whose shape and position in the phase space vary with the input
parameter(s) p. The second key ingredient is the basin of attraction of the base attractor, denoted
B(Γ , p), whose shape and extent may also vary with the input parameter(s) p. For non-stationary
attractors Γ (p), we work with the distance4 between a solution x(t, x0; p) and the set Γ (p), and

4The distance between x(t, x0; p) and Γ (p) is d[x(t, x0; p), Γ (p)] = infγ∈Γ (p) ||x(t, x0; p) − γ ||.
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write

x(t, x0, p) → Γ (p) as t → +∞,

when this distance tends to zero as t → +∞. We define B(Γ , p) as the open set of all x0 whose
trajectories converge to Γ (p) forward in time:

B(Γ , p) = {x0 : x(t, x0, p) → Γ (p) as t → +∞}.

We often refer to the closure of the basin of attraction of Γ (p), denoted B(Γ , p), which comprises
B(Γ , p) and its boundary, and to the basin boundary of Γ (p), which is given by the set difference
B(Γ , p) \ B(Γ , p). Additionally, we assume that either all or part of the basin boundary of Γ (p) is
a basin boundary of at least two attractors. This property, in turn, requires that the autonomous
frozen system is at least bistable, meaning that it has at least one more attractor, other that Γ (p),
for the same values of the input parameter(s) p.

The third key ingredient is a parameter path �p, which we define as a connected set of all
possible values of the external input p(t). It is important that �p does not cross any classical
autonomous bifurcations of the base attractor Γ (p).

(b) Definitions of basin instability for limit cycles
In short, basin instability of the base attractor on a parameter path describes the position of the
base attractor at some points on the path relative to the position of its basin of attraction at other
points on the path. Here, we define this concept rigorously for attracting limit cycles setwise.

Definition 4.1. Consider a parameter path �p. Suppose the frozen system has a family of
hyperbolic attracting limit cycles Γ (p) that vary C1-smoothly with p ∈ �p. We say Γ (p) is basin
unstable on a path �p if there are two points on the path, p1, p2 ∈ �p, such that the limit cycle Γ (p1)
is not contained in the basin of attraction of Γ (p2):

There exist p1, p2 ∈ �p such that Γ (p1) �⊂ B(Γ , p2). (4.2)

Furthermore, we distinguish two observable (or typical) cases of basin instability:

(i) We say Γ (p) is partially basin unstable on a path �p if there are two points on the path,
p1 and p2 ∈ �p, such that the limit cycle Γ (p1) is not fully contained in the closure of the
basin of attraction of Γ (p2), and, for every two points on the path, p3 and p4 ∈ �p, Γ (p3)
has a non-empty intersection with the basin of attraction of Γ (p4)

There exist p1, p2 ∈ �p such that Γ (p1) �⊂ B(Γ , p2)

and Γ (p3)
⋂

B(Γ , p4) �= ∅ for every p3, p4 ∈ �p.

⎫⎬
⎭ (4.3)

(ii) We say Γ (p) is totally basin unstable on a path �p if there are (at least) two points on the
path, p1 and p2 ∈ �p, such that Γ (p1) lies outside the closure of the basin of attraction of
Γ (p2)

There exist p1, p2 ∈ �p such that Γ (p1)
⋂

B(Γ , p2) = ∅. (4.4)

Remark 4.2. Additionally, there are two indiscernible (or special) cases of basin instability for
limit cycles. They cannot be easily distinguished by observation from total basin instability,
or from lack of basin instability. However, the indiscernible cases are necessary (although not
sufficient) for the onset of partial basin instability and for transitions between partial and total
basin instability.
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(iii) We say Γ (p) is marginally basin unstable on a path �p if, in addition to (4.2), for every two
points on the path, p3 and p4 ∈ �p, the limit cycle Γ (p3) is contained in B(Γ , p4)

Γ (p3) ⊂ B(Γ , p4) for every p3, p4 ∈ �p. (4.5)

The special case of marginal basin instability separates the typical cases of ‘no basin
instability’ and ‘partial basin instability’. Furthermore, it is related to ‘invisible R-tipping’
and to transitions between ‘tracking’ and ‘partial R-tipping’ identified in [26].

(iv) We say Γ (p) is almost totally basin unstable on a path �p if there are (at least) two points on
the path, p1 and p2 ∈ �p, such that Γ (p1) does not intersect B(Γ , p2), and, for every two
points on the path, p3 and p4 ∈ �p, the limit cycle Γ (p3) intersects B(Γ , p4).

There exist p1, p2 ∈ �p such that Γ (p1)
⋂

B(Γ , p2) = ∅

and Γ (p3)
⋂

B(Γ , p4) �= ∅ for every p3, p4 ∈ �p.

⎫⎬
⎭ (4.6)

The special case of almost total basin instability separates the typical cases of ‘partial basin
instability’ and ‘total basin instability’. Furthermore, it is related to transitions between
‘partial R-tipping’ and ‘total R-tipping’ described in [26].

Note that, for equilibrium base states, ‘partial basin instability’ is not defined, whereas
‘marginal basin instability’ and ‘almost total basin instability’ become the same condition.

Guided by the approach proposed in [13], we would like to augment the classical autonomous
bifurcation diagrams for the autonomous frozen system with information about (partial) basin
instability of the base attractor Γ (p). The aim is to reveal non-autonomous instabilities that
cannot be explained by classical autonomous bifurcations of the frozen system. To illustrate basin
instability of Γ (p) in the bifurcation diagram of the autonomous frozen system, we define the
region of basin instability of Γ (p) in the space of the input parameters as follows:

Definition 4.3. In the autonomous frozen system, consider a C1-smooth family of hyperbolic
attracting limit cycles Γ (p), and denote it with G. For a fixed p = p1, we define a region of basin
instability of Γ (p1) ∈ G as a set of all points p2 in the space of the input parameters p, such that
Γ (p1) is not contained in the basin of attraction of Γ (p2) ∈ G

BI(Γ , p1) := {p2 : Γ (p1) �⊂ B(Γ , p2) and Γ (p2) ∈ G}. (4.7)

(c) Partial basin instability and P-tipping
Thus far, we have worked with a loosely defined concept of P-tipping. In this section, we give
rigorous definitions of P-tipping for single-switch and multi-switch p(t), show that partial basin
instability of Γ (p) for a single-switch p(t) is necessary and sufficient for the occurrence of P-tipping
from Γ (p), and discuss the applicability of this result to multi-switch p(t).

Definition 4.4. Consider a non-autonomous system (4.1) with a piecewise constant input p(t)
on a parameter path �p. Suppose the autonomous frozen system has a family of hyperbolic
attracting limit cycles Γ (p) that vary C1-smoothly with p ∈ �p.

(i) Suppose p(t) is a single-switch that changes from p1 ∈ �p to p2 ∈ �p at time t = t1. Suppose
also the system is on Γ (p1) at t = t1. We then say that system (4.1) undergoes irreversible
P-tipping from Γ (p1) if there are xa, xb ∈ Γ (p1), such that

x(t, xa; p2) → Γ (p2) as t → +∞ and x(t, xb; p2) /∈ B(Γ , p2) for all t > t1.

We call ϕxb a tipping phase associated with each such xb.



14

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210059

..........................................................

(ii) Suppose pρ (t) is multi-switch with a fixed ρ. If x(t,x0; t0) leaves the basin of attraction
B(Γ , pρ (t)) for good, we use t1 to denote the smallest switching time such that

x(t, x0; t0) /∈ B(Γ , pρ (t)) for all t > t1.

We use xb = x(t1, x0; t0) to denote the corresponding state, and ϕxb to denote the
corresponding tipping phase. We then say that system (4.1) undergoes irreversible P-tipping
if, for some initial condition x0 ∈ B(Γ , pρ (t0)) and all realizations of pρ (t), there are tipping
phases ϕxb and also a non-zero Lebesgue measure subset of [0, 2π ) that does not contain
any tipping phases ϕxb .

We call t1 the tipping time.

Remark 4.5. It should be possible to extend definition 4.4 to:

(i) Smoothly varying p(t), for which P-tipping from Γ (p) is expected to depend on the rate
of change of p(t) [26,30].

(ii) Non-periodic attractors such as tori or chaotic attractors, which may require an
alternative phase definition. We return to this point in §6.

In general, the occurrence of P-tipping depends on the initial state, the properties of the external
input p(t) and the topological structure of the phase space. We now show that partial basin
instability of Γ (p) for a single-switch p(t) is necessary and sufficient for the occurrence of P-tipping
from Γ (p).

Proposition 4.6. Consider a non-autonomous system (4.1) and a parameter path �p. Suppose the
frozen system has a family of hyperbolic attracting limit cycles Γ (p) that vary C1-smoothly with p ∈ �p,
and Γ (p) is partially basin unstable on �p. Then, for all p1 and p2 ∈ �p, a single-switch parameter change
from p1 to p2 gives irreversible P-tipping from Γ (p1) if and only if Γ (p1) �⊂ B(Γ , p2).

Proof. A single-switch parameter change from p1 to p2 at time t = t0 reduces the problem
to an autonomous initial value problem with initial condition x0 = x(t0) and fixed p = p2. It
follows from the definition of basin of attraction that only solutions x(t, x0; p2) started from
x0 ∈ B(Γ , p2) are attracted to the limit cycle Γ (p2). Thus, if Γ (p) is partially basin unstable on
�p and Γ (p1) �⊂ B(Γ , p2), then there will be γ ∈ Γ (p1) \ B(Γ , p2) that give irreversible tipping, and
γ ∈ Γ (p1) ∩ B(Γ , p2) that give no tipping. Conversely, if there is irreversible P-tipping from Γ (p1),
then there must be γ ∈ Γ (p1) \ B(Γ , p2), which implies Γ (p1) �⊂ B(Γ , p2). �

This rigorous statement no longer holds for multi-switch piecewise constant inputs pρ (t). The
reason is that trajectories are no longer guaranteed to converge to the limit cycle Γ (p), or to
the alternative attractor of the frozen system, if the time interval between consecutive switches
is short compared with the time of convergence. Additionally, trajectories started in the basin
of attraction of Γ (p) may move away from Γ (p) for finite time. These differences allow for
two dynamical scenarios that cannot occur in a system that starts on Γ (p) and is subject to a
single-switch p(t).

In the first scenario, following a switch, the system leaves the basin of attraction of Γ (p), but
fails to converge to an alternative attractor before the next switch happens, re-enters the basin
of attraction of Γ (p) upon the second switch, and avoids P-tipping despite basin instability of
Γ (p). We refer to such events as ‘rescue events’ [45]. Hence, basin instability of Γ (p) for a given
switch within a multi-switch p(t) does not guarantee the occurrence of tipping upon this particular
switch. For the second scenario, we extend the concept of partial basin instability to the whole
basin of attraction of Γ (p). Suppose that Γ (p) is basin stable on �p, but its basin of attraction
is partially basin unstable on �p. Following a switch, the trajectory moves away from Γ (p) and
enters the basin unstable part of the basin of attraction of Γ (p), then the next switch happens, and
the system undergoes P-tipping in the absence of basin instability of Γ (p). Hence, partial basin
instability of Γ (p) need not be necessary for the occurrence of P-tipping with multi-switch p(t).
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Keeping in mind that multi-switch P-tipping is defined for all realizations of pρ (t), it should be
possible to show that, for multi-switch piecewise constant p(t):

— Partial basin instability of Γ (p) on �p is sufficient for the occurrence of P-tipping in system
(4.1).

— If pρ (t) allows trajectories to converge to Γ (p) between all consecutive switches, then
partial basin instability of Γ (p) on �p is necessary and sufficient for the occurrence of
P-tipping in system (4.1).

5. Partial basin instability and P-tipping in predator–prey models
In this section, we start with classical autonomous bifurcation analysis of the predator–prey
frozen systems (2.1) and (2.3) to identify parameter regions with bistability between predator–
prey cycles and extinction. Then, we show that predator–prey cycles can be partially basin
unstable on several parameter paths �r that lie within these regions of bistability. Finally,
we demonstrate that partial basin instability of predator–prey cycles on a path �r explains
the counterintuitive collapses to extinction that occur only from certain phases of predator–
prey oscillations, and gives simple testable criteria for the occurrence of P-tipping in the
non-autonomous predator–prey system.

(a) Classical bifurcation analysis: limit cycles and bistability
There are four ecologically relevant parameter regions in the predator–prey frozen systems (2.1)
and (2.3), shown in figure 6. These regions have qualitatively different dynamics that can be
summarized in terms of stable states as follows:

— Oscillatory Coexistence or Extinction. The system is bistable and can either settle at the
extinction equilibrium e0, or self-oscillate as it converges to the predator–prey limit cycle
Γ (r). Here is where P-tipping may occur; see the green regions in figure 6.

— Stationary Coexistence or Extinction. The system is bistable and can settle either at the
extinction equilibrium e0, or at the coexistence equilibrium e3(r); see the yellow regions in
figure 6.

— Prey Only or Extinction. The system is bistable and can settle either at the extinction
equilibrium e0, or at the prey-only equilibrium e1(r); see the upper pink region in figure 6a.

— Extinction. The system is monostable and can only settle at the extinction equilibrium e0;
see the other pink regions in figure 6.

The region boundaries are obtained via two-parameter bifurcation analysis using the numerical
continuation software XPPAUT [78]. This analysis extends our discussion of the one-parameter
bifurcation diagrams from figure 1. We refer to appendix C for the details of the bifurcation
analysis, and to [79] for more details on classical autonomous bifurcation theory.

(b) Partial basin instability of predator–prey cycles
We now concentrate on the bistable regions labelled ‘Oscillatory Coexistence or Extinction’, apply
definitions 4.1 and 4.3 to predator–prey cycles, and show that

— Predator–prey cycles Γ (r) can be partially basin unstable on suitably chosen parameter
paths.

— Both predator–prey models have large parameter regions of partial basin instability.
When superimposed onto classical bifurcation diagrams, these regions reveal P-tipping
instabilities that cannot be captured by the classical autonomous bifurcation analysis.

— Partial basin instability of Γ (r) in the frozen system is sufficient for the occurrence of
P-tipping in the non-autonomous system.
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The base attractor is the predator–prey limit cycle Γ (r), and the alternative attractor is the
extinction equilibrium e0. The basin boundary of Γ (r) is the Allee threshold θ (r), which can be
computed as the stable invariant manifold of the saddle equilibrium es(r):

θ (r) := Ws(es(r)) = {(N0, P0) ∈ R
2 : (N(t), P(t)) → es(r) as t → +∞}.

In the RMA frozen model, es(r) is the saddle Allee equilibrium e2, whereas in the May
frozen model, es(r) is the saddle coexistence equilibrium e4(r) that lies near the repelling Allee
equilibrium e2. To uncover the full extent of partial basin instability for the predator–prey cycles
Γ (r), we fix a point p1 that lies within the region labelled ‘Oscillatory Coexistence or Extinction’;
see figures 7a and 8a. Then, we apply definition (4.7) to identify all points p2 within this region
such that the predator–prey limit cycle Γ (p1) is not contained in the closure of the basin of
attraction of Γ (p2). The ensuing (light grey) regions of partial basin instability bounded by the (dark
grey) curves of marginal basin instability are superimposed on the classical bifurcation diagrams
in figures 7a and 8a. Note that the basin instability regions BI(Γ , p1) depend on the choice of p1,
and are labelled simply BI for brevity. To illustrate the underlying mechanism in the (N, P) phase
plane, we restrict to parameter paths �r that are straight horizontal lines from p1 in the direction
of decreasing r. In other words, we set p = r; see figures 7a and 8a. When r2 ∈ �r lies on the dark
grey curve of marginal basin instability, there is a single point of tangency between Γ (r1) and
θ (r2), denoted γ± in figures 7d and 8d. When r2 ∈ �r lies within the light grey region of partial
basin instability, there are two points of intersection between Γ (r1) and θ (r2), denoted γ− and γ+
in figures 7e and 8e. These two points bound the (red) part of the cycle that is basin unstable.
The corresponding basin unstable phases are shown in figures 7b and 8b. Suppose that r(t) = r1,
and a trajectory of the non-autonomous system is on the same side of θ (r2) as the (red) basin
unstable part of Γ (r1). Then, when r(t) changes from r1 to r2, the trajectory finds itself in the basin
of attraction of the extinction equilibrium e0, and will thus approach e0.

The striking similarity is that predator–prey cycles from both models exhibit partial basin
instability upon decreasing r. This decrease corresponds to climate-induced decline in the
resources or in the quality of habitat. Furthermore, while the predator–prey cycle in the May
model has a noticeably wider range of basin unstable phases, neither cycle appears to be totally
basin unstable. All these observations are consistent with the counterintuitive properties (P1)–(P3)
of P-tipping identified in the numerical experiments in §3.
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(c) Partial basin instability explains P-tipping
Now, we can demonstrate that partial basin instability of Γ (r) in the autonomous predator–prey
frozen systems explains and gives simple testable criteria for the occurrence of P-tipping in the
non-autonomous systems. The families of attracting predator–prey limit cycles Γ (r), and their
basin boundaries θ (r), are the two crucial components of the discussion below.

First, recall the numerical P-tipping experiments from §3, and focus on the crescent-shaped
‘clouds’ of states from which P-tipping occurs; see the black dots in figures 4 and 5. Second,
recognize that each P-tipping event occurs for a different value of rpre ∈ [r2, r1], and thus from
a different predator–prey cycle Γ (rpre) or its neighbourhood. Therefore, we must consider the
union of all cycles from the family along the parameter path �r bounded by r2 and r1:

G := {
Γ (r) : r ∈ [r2, r1]

}
, (5.1)

which is shown in figure 9. Furthermore, we use the basin boundary θ (r2) of the cycle Γ (r2) at the
left end of the path to divide G into its (light green) basin stable part and (pink) basin unstable part
on �r with r ∈ [r2, r1]. The ‘clouds’ of states from which P-tipping occurs agree perfectly with the
basin unstable part of G. A few black dots that lie slightly outside the basin unstable part of G
in figure 9b correspond to those P-tipping events that occur from states that have not converged
to the limit cycle Γ (rpre) and lie visibly away from Γ (rpre) when the switch that causes tipping
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happens. Those P-tipping events occur if the time interval � during which r(t) = rpre is shorter
than the time of convergence to the limit cycle Γ (rpre) in the autonomous frozen system. For
this particular parameter path, we could not detect any tipping events in the absence of partial
basin instability of Γ (r). However, we could detect multiple ‘rescue events’ described in §4(c)
(not shown in the figure). In a ‘rescue event’, the system leaves the basin of attraction of the
predator–prey cycle after a switch that gives basin instability, but avoids tipping upon this switch
because it re-enters the basin of attraction of the predator–prey cycle after some future switch.
‘Rescue events’ occur if the time interval � during which r(t) = rpre is shorter than the time of
convergence to the extinction equilibrium e0 in the autonomous frozen system. In summary, the
general concept of partial basin instability of Γ (r) on a parameter path �r from definition 4.1 is
an excellent indicator for the occurrence of P-tipping in the RMA (2.1) and May (2.3) models.

6. Conclusion
This paper studies nonlinear tipping phenomena, or critical transitions, in non-autonomous
dynamical systems with time-varying external inputs. In addition to the well-known critical
factors for tipping in systems that are stationary in the absence of external inputs, namely
bifurcation, rate of change and noise, we identify here the phase of predator–prey limit cycles
and nearby oscillations as a new critical factor in systems that are cyclic in the absence of external
inputs.
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To illustrate the new tipping phenomenon in a realistic setting, we consider two paradigmatic
predator–prey models with an Allee effect, namely the RMA model [38] and the May model
[39]. We describe temporal changes in the carrying capacity of the ecosystem with real climate
variability records from different communities in the boreal and deciduous-boreal forest [45], and
use realistic parameter values for the Canada lynx and snowshoe hare system [43,44]. Monte Carlo
simulation reveals a robust phenomenon, where a drop in the carrying capacity tips the ecosystem
from predator–prey oscillations to extinction. The special and somewhat counterintuitive result
is that tipping occurs: (i) without crossing any bifurcations, and (ii) only from certain phases of
the oscillations. Thus, we refer to this phenomenon as phase tipping (partial tipping), or simply P-
tipping. Intuitively, P-tipping from predator–prey oscillations to extinction arises because a fixed
drop in prey resources has distinctively different effects when applied during the phases of the
oscillations with the fastest growth and the fastest decline of prey.

Motivated by the outcome of the simulation, we develop an accessible and general
mathematical framework to analyse P-tipping and reveal the underlying dynamical mechanism.
Specifically, we employ notions from set-valued dynamics to extend the geometric concept of
basin instability, introduced in [13] for equilibria, to limit cycles. The main idea is to consider the
autonomous frozen system with different but fixed-in-time values of the external input along
some parameter path, and examine the position of the limit cycle at some point on the path
relative to the position of its basin of attraction at other points on the path. First, we define
different types of basin instability for limit cycles, and focus on partial basin instability that does
not exist for equilibria. Second, we show that partial basin instability in the autonomous frozen
system is necessary and sufficient for the occurrence of P-tipping in the non-autonomous system
with a single-switch external input. Furthermore, we discuss the applicability of this result to
multi-switch external inputs. Third, we relate our results to those of ref. [26] on rate-induced
tipping from limit cycles.

We then apply the general framework to the ecosystem models and explain the
counterintuitive transitions from certain phases of predator–prey oscillations to extinction. We use
classical autonomous bifurcation analysis to identify parameter regions with bistability between
predator–prey cycles and extinction. In this way, we show that predator–prey cycles can be
partially basin unstable on typical parameter paths within these bistability regions. Moreover, we
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superimpose regions of partial basin instability onto classical autonomous bifurcation diagrams
to reveal P-tipping instabilities that are robust but cannot be captured by classical bifurcation
analysis.

We believe that this approach will enable scientists to uncover P-tipping in many different
cyclic systems from applications ranging from natural science and engineering to economics.
For example, the predator–prey paradigm is found across biological applications modelling,
including epidemiology [80], pest control [81], fisheries [82], cancer [83,84] and agriculture [85,86].
The fundamental relationship described in predator–prey models also appears in many areas
outside of the biological sciences, with recent examples including atmospheric sciences [87],
economic development [64,65], trade and financial crises [88–90] and land management [91].
External disturbances of different kinds exist in all of these systems, suggesting that the P-tipping
behaviours discovered in this paper are of broad practical relevance.

Furthermore, the concept of P-tipping, for base states that are attracting limit cycles with
regular basin boundaries, naturally extends to more complicated base states, such as quasi-
periodic tori and chaotic attractors, and to irregular (e.g. fractal) basin boundaries [28,31,32,92].
Defining phase for more complicated cycles in higher dimensions, and for non-periodic
oscillations, will usually require a different approach. For example, one could define phase for
an attracting limit cycle in a multi-dimensional system in terms of its period T as a linear
function of time ϕ = 2π t/T. This definition is independent of the coordinate system, and can
be extended to every point in the basin of attraction using isochrones. Another approach is to
work with a time series of a single observable and use the Hilbert transform to construct the
complex-valued analytic signal, and then extract the so-called instantaneous phase [93,94]. This
phase variable may provide valuable physical insights into the problem of P-tipping when the
polar coordinate approach does not work, or when the base attractor or its basin boundary have
complicated geometry and are difficult to visualize. Such systems will likely exhibit even more
counterintuitive tipping behaviours, but their analysis requires mathematical techniques beyond
the scope of this paper.

Another interesting research question is that of early warning indicators for P-tipping. In the
past decade, many studies of noisy real-world time-series records revealed prompt changes in
the statistical properties of the data prior to tipping [1,21,22,95], which appear to be generic for
tipping from equilibria. However, it is unclear if these statistical early warning indicators appear
for P-tipping, or if one needs to identify alternatives such as finite time Lyapunov Exponent [96].
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Appendix A. Equilibria and bifurcations of the May frozen system
The May frozen system can have at most five stationary solutions (equilibria), which are derived
by setting Ṅ = Ṗ = 0 in (2.3). In addition to the extinction equilibrium e0, which is always stable,
there is a prey-only equilibrium e1(r), the Allee equilibrium e2, and two coexistence equilibria e3(r) and
e4(r), whose stability depends on the system parameters

e0 =
(

0,
ε

q

)
, e1(r) =

( r
c

, 0
)

, e2 = (μ, 0), e3(r) = (N3(r), P3(r)), e4(r) = (N4(r), P4(r)). (A 1)

In the above, we include the argument (r) when an equilibrium’s position depends on r. The prey
population densities of the coexistence equilibria e3(r) and e4(r) are the two non-negative roots,
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denoted N3(r) and N4(r), respectively, of the third degree polynomial

N3 −
(

μ − β + r
c

− α

cq

)
N2 −

(
βμ + r(β − μ)

c
− α(ν + ε)

cq

)
N +

(
rβμ

c
+ ανε

cq

)
= 0, (A 2)

and the corresponding predator population densities are given by (figure 10)

Pi(r) = Ni(r) + ε

q
, i = 3, 4.

The one-parameter bifurcation diagram of the May frozen system in figure 1b reveals different
bifurcations and bistability. Most importantly, as r is increased, the coexistence equilibrium e3(r)
gives rise to a stable limit cycle Γ (r) via a safe supercritical Hopf bifurcation, denoted H1. The
cycle exists for a range of r, and disappears in a reverse supercritical Hopf bifurcation, denoted
H2, for larger r (see table 1).

Appendix B. Numerical computations of invariant measures
We estimate the invariant measure μ(ϕγ ) as the following:

(i) We start with a large number J of initial conditions, evenly distributed around the
periodic orbit Γ and solve the system subject to these initial conditions up to time T.
This gives J trajectories xj(t) for j = 1, 2, . . . , J and t ∈ [0, T].

(ii) We consider the final points of all of these trajectories, xj(T) and compute the phase of
cycle for these points ϕxj , for j = 1, 2, . . . , J.

(iii) For any point γ ∈ Γ , suppose that for some ε > 0 there are K points with the respective
phases ϕxk ∈ [ϕγ − ε, ϕγ + ε], for k = 1, 2, . . . K. We then define the invariant measure μ(ϕλ)
as:

μ(ϕλ) = K
J

.

In figure 3e, we choose J = 10 000, T = 100 and ε = 0.1.
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Appendix C. Classical autonomous bifurcation analysis
We start with the autonomous RMA frozen model (2.1), consider the climatic parameter r together
with the predator mortality rate δ, and examine the bifurcation structure in the (r, δ) parameter
space in figure 6a. The dynamics are organized by the codimension-two double-transcritical
bifurcation point TT, due to an intersection of two transcritical bifurcation curves, namely T1,
along which e1(r) and e2(r) meet and exchange stability, and T2, along which e1(r) and e3(r) meet
and exchange stability. (Since a Hopf bifurcation for a complex variable z = r eiθ is a transcritical
bifurcation for the ‘amplitude’ variable ρ = r2, we expected the unfolding of TT to be the same as
one of the unfoldings in the ‘amplitude equations’ for the Hopf–Hopf bifurcation. This, however,
is not the case. The unfolding of TT is akin, although not identical, to the unfolding of the
‘amplitude equations’ for the Hopf–Hopf bifurcation point in subregion 6 of the ‘difficult’ case
from ([79], Sec. 8.6)). TT is the origin of the Hopf H and heteroclinic h bifurcation curves, both
of which are subcritical (dashed) near TT. Furthermore, H changes from subcritical (dashed) to
supercritical (solid) at the codimension-two generalized Hopf bifurcation point GH, from which
the curve Fl of the fold of limit cycles emerges. The stable limit cycle Γ (r) shrinks onto e3(r) along
the supercritical (solid) part of H, or collides with an unstable limit cycle and disappears along
Fl. Then, Fl has another endpoint on h. This point is the codimension-two resonant heteroclinic
bifurcation point Rh, where h changes from subcritical (dashed) to supercritical (solid). The stable
limit cycle Γ (r) collides simultaneously with two saddles, e1(r) and e2, and disappears along the
supercritical (solid) part of h. Our main focus is on the (green) region of bistability between
oscillatory coexistence Γ (r) and extinction e0. This region is bounded by the three bifurcation
curves along which the stable limit cycle Γ (r) disappears: the fold of limit cycles Fl, the (solid)
supercritical part of the Hopf curve H and the (solid) supercritical part of the heteroclinic curve h.
Finally, note that there is a third transcritical bifurcation curve corresponding to T0 in the inset of
figure 1a. This curve is not shown in figure 6a for reasons of clarity; it lies very close to T1 and is
not relevant to our study.

For the autonomous May frozen model (2.3), we consider the climatic parameter r together
with q. Here, q specifies the minimum prey-to-predator biomass ratio required for predator
population growth, and can be thought of as an ‘equivalent’ of the predator mortality rate from
the RMA frozen model (2.1). The qualitative picture, shown in figure 6b, is very similar to that
for the RMA frozen model in figure 6a. The main difference is that the organizing centre for the
dynamics is the codimension-two Bogdanov-Takens bifurcation point BT. Furthermore, instead of
the three transcritical bifurcation curves there is just one, denoted T, along which e1(r) and e2
meet and become degenerate, together with a single (dark blue) curve Fe of fold of equilibria,
where e3(r) and e4(r) become degenerate and disappear. As a result, the region of ‘Extinction or
Prey Only’ is gone, leaving just three ecologically relevant parameter regions. The heteroclinic
bifurcation curve h is replaced by a homoclinic bifurcation curve h∗, along which Γ (r) collides
with one saddle, namely e4(r), and disappears. The resonant heteroclinic point Rh is replaced by
a resonant homoclinic point Rh∗ and appendix C. Most interestingly, except for the change from h
to h∗, the boundary of the (green) region of bistability between oscillatory coexistence Γ (r) and
extinction e0 consists of the same bifurcation curves as in the RMA frozen model.
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